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We compute the entropy reduction in feedback controlled systems due to the repeated operation of the
controller. This was the lacking ingredient to establish the thermodynamics of these systems, and in particular
of Maxwell’s demons. We illustrate some of the consequences of our general results by deriving the maximum
work that can be extracted from isothermal feedback controlled systems. As a case example, we finally study
a simple system that performs an isothermal information-fueled particle pumping.
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I. INTRODUCTION

Controllers are ubiquitous in science and technology with
a number of purposes such as stabilizing unstable dynamics
or increasing the performance �1�. Furthermore, many real
systems in nature can be modeled as a system plus a control-
ler. A controller is an external agent whose action is to
modify the evolution of the system with a purpose. Feedback
or closed-loop controllers use information about the state of
the system. The feedback is the process performed by the
controller of measuring the system, deciding on the action
given the measurement output, and acting on the system. On
the contrary, an open-loop controller operates on the system
blindly, i.e., without information of its state. Although it is
intuitively clear that the information about the state of the
system can be used to improve the performance, there are
still open questions on the connections between feedback
control theory and information theory �see Ref. �1��. In par-
ticular, the understanding of the thermodynamics of feedback
control is still incomplete. Much of the progress in the solu-
tion of this problem has come from the study of Maxwell’s
demon �2�. This is a being that gathers information about a
system and is able to decrease the entropy of the system
without performing work on it. The seminal work of Szilard
�3� contains the basic ingredients of the trade off between
information theory and thermodynamics, which is precisely
stated in Landauer’s principle: the erasure of 1 bit of infor-
mation at temperature T implies an energetic cost of at least
kBT ln 2 �4�. Bennett �5� pointed out that Landauer’s prin-
ciple is the key to preserving the second law of thermody-
namics in feedback systems, as the controller must erase its
memory after each cycle to allow the whole system to truly
operate cyclically. How to achieve the shorter description for
the memory record of the controller in order to minimize the
energetic erasure cost was established by Zurek �6� by using
an algorithmic complexity approach. On the other hand,
Lloyd used in �7� a different point of view—that of the feed-
back controlled system. From this approach the effect of the
interaction of the controller with the system is to reduce the

entropy of the system due to the additional determination of
the macrostate of the system through the information ob-
tained from it. More recently, Touchette and Lloyd �8� com-
puted the maximum additional reduction in entropy attain-
able in one control action when a feedback control is used
instead of an open-loop control.

In this paper we also consider the point of view of the
feedback controlled system. The thermodynamics of the in-
teractions of the system with the controller and the environ-
ment are well studied for the heat and work exchanges. How-
ever, a complete understanding of the entropy reduction in
the system due to its interaction with the feedback controller
is still lacking. We solve here this problem and show how to
compute this entropy reduction after one or several control
steps. This result allows us to establish the thermodynamics
of feedback controlled systems without assuming Landauer’s
principle. Several concepts and quantities defined in infor-
mation theory �9� emerge naturally as one computes this
entropy reduction. For the definition of the entropy we will
use kB=1 and natural logarithms. This implies that the in-
formation quantities that naturally appear will be in nats
�ln 2 nats=1 bit�.

In Sec. II we compute the entropy reduction in a general
feedback controlled system due to the repeated operation of
the controller. The result allows us to establish the thermo-
dynamics of feedback controlled systems. In Sec. III, we
illustrate some of the consequences of our general result by
deriving the maximum work that can be extracted from iso-
thermal feedback controlled systems. In Sec. IV, we show the
applicability and usability of the results in a simple dynami-
cal system, a Markovian particle pump that is able to extract
useful work from the entropy reduction due to the informa-
tion used by an external feedback controller. Finally, we
summarize the results of the paper in Sec. V.

II. ENTROPY REDUCTION IN FEEDBACK
CONTROLLED SYSTEMS

Let us call XkªX�tk� the macrostate of a general dynami-
cal system at the kth control step of the controller �at time tk�.
In a feedback controlled system the control step involves
several operations by the controller: measuring the system,
deciding the control action to take given the measurement
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output, and acting on the system following the selected con-
trol action. Therefore, the control action is the modification
of the evolution of the system made by the external agent
that we shall call the controller. The controller can perform
several control actions on the system. By C1=c we denote
that at the first control step, the controller has chosen to
perform the action labeled by c. �It is not a specification of
the state of the controller.� As the control actions are decided
at their respective control steps, Ck represents only the deci-
sion taken at the kth control step.

Initially the entropy of the system is S0, which is fixed by
the probabilities pX0

�x� of each possible microstate x at time
t=0. Subsequently, the system evolves with an entropy
change from S0 to S1

b, which is the entropy just before the
first control step. It is given by the statistical entropy

S1
b = − �

x�X
pX1

�x�ln pX1
�x� ¬ H�X1� , �1�

with X as the set of possible microstates of the system. At
time t1 the controller measures the state of the system. The
result of this measurement determines, at least partially, the
action the controller will take. The additional information on
the system provided by the measure further determines the
system macrostate �7�, i.e., it defines a submacrostate that
contains only microstates compatible with the measured
value. However, from the point of view of the system, each
set of measurement outputs that leads to the same control
action can be considered as defining a single submacrostate
of the system because the controller in its action on the sys-
tem ignores the differences inside these sets. Thus, if the
measurement implies a control action C1=c, the entropy of
the system decreases to

H�X1�C1 = c� ª − �
x�X

pX1�C1
�x�c�ln pX1�C1

�x�c� . �2�

Therefore, the average entropy after the first control step can
be obtained by averaging over the set C of all possible con-
trol actions,

S1
a = �

c�C
pC1

�c�H�X1�C1 = c� ¬ H�X1�C1� . �3�

Hence the average variation in the entropy at the first step is

�S1 = S1
a − S1

b = H�X1�C1� − H�X1� ¬ − I�X1;C1� , �4�

i.e., it is the �minus� mutual information �9� between X1 and
C1.

Let us describe one more step. Each of the previous �C�
submacrostates of the system with entropy H�X1 �C1=c�
evolves to give an entropy H�X2 �C1=c� just before the sec-
ond control step. Following the second control step, each one
of these submacrostates of the system give �C� more submac-
rostates. The entropy of the system given that C1=c and
C2=c� is H�X2 �C2=c� ,C1=c�. Therefore, the average en-
tropy of the system after the second step is

S2
a = �

c,c��C
pC2C1

�c�,c�H�X2�C2 = c�,C1 = c� = H�X2�C2,C1� ,

�5�

and the average variation in the entropy at this second
control step is �S2=S2

a−S2
b=H�X2 �C2 ,C1�−H�X2 �C1�

=−I�X2 ;C2 �C1�. This conditioning of the mutual information
shows that the entropy of the system is only reduced by the
new information.

Analogously we get for the average entropy reduction in
the kth step �Sk=−I�Xk ;Ck �Ck−1�, where Ck−1 stands for
Ck−1 ,Ck−2 , . . . ,C1. Using the properties of mutual informa-
tion �9�, this average entropy reduction can be written as

�Sk = − I�Xk;Ck�Ck−1�

= − I�Ck;Xk�Ck−1�

= − H�Ck�Ck−1� + H�Ck�Ck−1,Xk� . �6�

Finally, we find that the total average entropy reduction
due to the information used in M control steps is �Sinfo
=�k=1

M �Sk, i.e.,

�Sinfo = − �
k=1

M

I�Ck;Xk�Ck−1� . �7�

This general result indicates that this entropy reduction can
be computed in terms of the joint probabilities for the state of
the system and the control actions history. Using Eq. �6� and
the chain rule for H �see Ref. �9��, we rewrite the last equa-
tion as

�Sinfo = − H�CM� + �
k=1

M

H�Ck�Ck−1,Xk� . �8�

Equation �7�, or equivalently Eq. �8�, is a central result of
this paper. As a consistency check, note that for open-loop
controlled systems the controller acts independently of the
state of the system and it gets no information of it. Thus,
H�Ck �Ck−1 ,Xk�=H�Ck �Ck−1�, which gives �Sinfo=0 after ap-
plying the chain rule in Eq. �8�, as expected. Note also that
the mutual information in Eq. �7� between the system and the
control actions is conditioned by the past control actions.
This reflects that the correlations between measurements
limit the attainable entropy reduction. Therefore, the entropy
reduction in M consecutive measurements is equal or lower
than in M independent measurements.

A. Deterministic feedback controllers

A relevant class of closed-loop controllers is deterministic
feedback controllers. For them the control action is deter-
mined without uncertainty by the state of the system and the
control actions history. Therefore

H�Ck�Ck−1,Xk� = 0, �9�

and the entropy reduction in Eq. �8� simplifies to
�Sinfo=−H�CM�, which can be computed by just using the
joint probability pC1,. . .,CM

�c1 , . . . ,cM�. Consequently, the
average entropy reduction after a large number of control
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actions is given by the entropy rate H̄�C� of the stochastic
process describing the control actions,

lim
M→�

�Sinfo

M
= lim

M→�

− H�CM�
M

¬ − H̄�C� . �10�

For a system and control dynamics without explicit depen-
dencies in time, this average entropy reduction coincides
with the asymptotic entropy reduction in one step �9�, that is,
limM→� �Sinfo /M =limM→� �SM.

B. Nondeterministic feedback controllers

Feedback controllers satisfying Eq. �9� are error free. On
the other hand, controllers affected by some source of error
are common in real systems. In this case the decorrelation
between the control actions and the state of the system re-
duces the attainable entropy reduction; see Eq. �8�. For in-
stance, consider a feedback controller with two possible ac-
tions, say “on” and “off,” for which the system state and the
previous control actions history determine which one of the
actions is taken with probability 1−�. For this system,
H�Ck �Ck−1 ,Xk�=Hb���, with Hb��� as the binary entropy
function Hb���ª−� ln �− �1−��ln�1−��, and Eq. �8� gives

lim
M→�

�Sinfo

M
= − H̄�C� + Hb��� . �11�

This shows that errors in the control operation limit the at-
tainable entropy reduction.

C. Discussion

The new relation �7� sets the entropy reduction in the
controlled system due to the information used by the external
agent that operates on it. The reformulation of this relation as
Eq. �8� allows us to understand the average entropy reduc-
tion per control step as two competing contributions: a nega-
tive term accounting for the entropy rate of the control ac-
tions and a positive term accounting for the decorrelation
between the controller actions and the state of the system.
This decorrelation can arise, for instance, from errors in the
operation of the controller �see Eq. �11��. These new rela-
tions, Eqs. �7� and �8�, also show how the past control action
history must be taken into account to avoid redundancy in
the computation of the entropy reduction. They are consis-
tent with the Zurek’s computational interpretation of the con-
troller as a memory record whose blocks occupied by past
measurements must be compressed before the erasure pro-
cess �6,10�. On the other hand, when only one control step is
considered, Eq. �7� reduces to Eq. �4�, which gives the well-
known Landauer’s energetic cost due to information �2�,
kBTI�X1 ;C1� �recovering units�, also found for quantum sys-
tems �11�.

The statement of the entropy reduction in terms of the
control actions is an important point of this paper. It allows
one to give a reachable bound for the efficiency. �If the con-
troller performs the same action for two different measured
values, the bound found for the efficiency considering the
entropy reduction in terms of the measure could be non-

reachable.� Note also that the overall reduction in the entropy
of the system due to feedback control is expressed in terms
of physical quantities and it can be computed without knowl-
edge of internal details of the controller. In addition, this
approach also allows one to compute the maximum entropy
reduction attainable with a nondeterministic feedback con-
trol, Eq. �11�, giving a reachable bound.

The entropy reduction in the system due to the informa-
tion used by the controller is a fundamental ingredient in the
thermodynamics of feedback controlled systems. It is the key
to improving the performance in these systems compared
with their open-loop counterparts. Once this entropy reduc-
tion is understood and we know how to compute it �Eq. �7�
or �8��, the thermodynamics of feedback controlled systems
is complete. In particular, we show in Sec. III how to com-
pute thermodynamic relations for an isothermal feedback
controlled system.

III. APPLICATION: ISOTHERMAL FEEDBACK
CONTROLLED SYSTEMS

We study in this section the implications of the previous
results for the case of an isothermal feedback controlled sys-
tem. A general isothermal feedback controlled system is a
system that is coupled to a feedback controller, to a thermal
bath of temperature T, and to another external system on
which it does work. When the system is operated cyclically,
the initial state is recovered after a cycle, and the variations
in internal energy and entropy of the system in the cycle are
zero. During such a cycle the system releases a quantity of
heat Q to the thermal bath and does work W on the external
system. The transfer of the internal energy of the controller
�Ucont to the system is given by the first law of thermody-
namics,

�Ucont + Q + W = 0. �12�

On the other hand, the second law of thermodynamics gives

T�Scont + Q � 0, �13�

with �Scont as the entropy increase in the controller. Combin-
ing both relations we get the inequality

W � − �Ucont + T�Scont = − �Fcont, �14�

where �Fcont is the variation in the Helmholtz free energy of
the controller in the cycle. From this relation it is natural to
define the efficiency of a feedback controlled system as

� =
W

− �Fcont
. �15�

In addition, if the controller only interacts with the system
and without heat transfer, we have �Scont�−�Sinfo, i.e., the
increase in entropy of the controller should be greater than or
equal to the reduction in the entropy of the system due to the
actions of the controller. This implies that the maximum ef-
ficiency that can be attained with an isothermal feedback
controlled system is
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� =
W

− �Ucont − T�Sinfo
, �16�

where W is the work extracted from the system, −�Ucont is
the work done by the controller on the system, and �Sinfo is
the entropy reduction in the system due to the information-
dependent operation of the controller, which can be com-
puted with Eq. �7�.

IV. EXAMPLE: MARKOVIAN PARTICLE PUMP

We shall illustrate how to apply our results in a simple
dynamical system, a Markovian particle pump, which is able
to extract useful work from the entropy reduction due to the
information about the system used by an external feedback
controller. Consider a particle in a one-dimensional lattice
that is in contact with a thermal bath at temperature T. An
external controller can activate reflecting barriers separated
by a distance L with n lattice sites between two consecutive
barriers; see Fig. 1. For the discussion of this example we
will consider units of kBT=1 and L=1. In the absence of
external forces, the particle jumps to the left or to the right
site with the same probability, 1/2, at each time step. Now let
us have a force f pointing in the negative direction. The
probability of jumping to the right decreases and becomes
�ª1 / �1+ef/n�, as follows from detailed balance. We aim to
move the particle to the right �against the force�. For this
purpose the controller measures the particle location and
consecutively raises from left to right the reflecting barriers
to trap the particle further and further to the right. The next
barrier to the right is raised when the measurement indicates
that the particle has crossed to the right-hand side. This im-
plies that when the particle moves to the left until the raised
barrier location, it finds a reflecting boundary condition,
while the particle has no bounds to its displacements to the
right.

This defines a deterministic feedback control that pumps
the particle by using information about the location of the

jumping particle. We stress that a blind open-loop control
strategy for the lifting of the barriers cannot achieve direct
flux against the load. In addition, our closed-loop controller
does not introduce any extra energy in the system. Thus, the
entropy reduction in the system thanks to the information-
gathering operation is the only responsible for the pumping.
In particular, we highlight that a naive definition of effi-
ciency as �=W / �−�Ucont� is meaningless for engines that
work due to an information-dependent operation. Our gen-
eral results allow us to compute the maximum possible effi-
ciency of this pump as a case example, not only in the qua-
sistatic regime �large time intervals between two operations
of the controller� but also when it is operated nonquasistati-
cally �for instance every time step�.

Let us first compute the maximum efficiency attainable
when the controller operates every time step. We consider
the particle initially at the origin with the reflecting barrier to
the left raised. At time tk the controller takes the value
Ck=1 when the next right barrier is raised or Ck=0 if the
barrier remains off. As the feedback control in this example
satisfies the deterministic condition �9�, the average entropy
reduction per step is given by Eq. �10�. Furthermore, in
order to simplify the computation of the entropy rate, it is
useful to change to a description in terms of a new stochastic

process C̃, with C̃s defined as the number of steps between
the raise of the barrier s−1 and that of the barrier s �first
passage time�. For example, the event �C1 , . . . ,C7�
= �0,0 ,0 ,1 ,0 ,0 ,1� corresponds to the event �C̃1 , C̃2�= �4,3�.
It is clear that we can establish a one-to-one correspondence

between C and C̃, as both represent univocally the control
actions history. Calling �	� as the average first passage time
through the next barrier position, we have that Eq. �10� reads

lim
t→�

T�Sinfo

t
= lim

t→�

− H�Ct�
t

= lim
s→�

− H�C̃s�
s�	�

. �17�

�That is, H̄�C�= H̄�C̃� / �	�.� As the new tilde variables are

independent and identically distributed we have H�C̃s�
=sH�C̃1�. Thus,

lim
t→�

T�Sinfo

t
=

− H�C̃1�
�	�

=
�k=1

�
p	�k�ln p	�k�

�k=1

�
kp	�k�

, �18�

where p	�k� is the probability mass function of the first pas-
sage time being 	=k. This asymptotic value, Eq. �18�, is
reached in a characteristic time �	�. The probability p	�k� can
be obtained from the transition probabilities between the
states of the jumping particle.

On the other hand, the average potential increase is
W= f / �	�. Therefore, the maximum efficiency attainable at
this nonquasistatic regime is obtained from Eq. �16� that
reads

�nq =
f

H�C̃1�
. �19�

1−α

α 6

L

1−α

α

1
2

3

4

5

7

FIG. 1. Illustration of the Markovian particle pump with n=2
lattice sites between barriers. This is a simple feedback controlled
system that extracts useful work from the entropy reduction due to
the information about the system used by the external feedback
controller.

F. J. CAO AND M. FEITO PHYSICAL REVIEW E 79, 041118 �2009�

041118-4



A. One lattice site between consecutive barriers

For instance, for the case with a single lattice site between

two barriers p	�k�=��1−��k−1, implying H�C̃1�=Hb��� /�
and �	�=1 /�. Thus, the average entropy reduction per step is
Hb���, and the average potential increase is W= f / �	�=�f .
Finally, the maximum efficiency attainable at this nonquasi-
static regime is �nq=�f /Hb���. This result for the model
with a single site between two consecutive barriers can also
be obtained without using Eq. �18�. For this simple case
operation steps at different times are independent and
T�Sk=−H�Ck� with pCk

�1�=�. This gives an entropy reduc-
tion per step Hb���. On the other hand, the average potential-
energy gain per step is �f because the particle gains an en-
ergy f with probability �. In view of these considerations we
recover �nq=�f /Hb���.

B. Several lattice sites between consecutive barriers

As � is the probability of jumping to the right, the prob-
ability of the first passage time being 	=k is obtained from
the probability pXk−1

�n� of finding the particle at site n �just
to the left to the first barrier� at instant time k−1 as
p	�k�=�pXk−1

�n�. To evaluate this probability we only need
to know the transition probabilities of jumping between the
different spatial positions �see Fig. 1�. We shall call 
 as the
matrix such that its �i , j�th entry is the probability pj→i of
jumping from the j site to the i site. Then, for the particle
pump with n sites between barriers, 
 is the n�n tridiagonal
matrix


 =	
1 − � 1 − �

� 0 �

� � 1 − �

� 0 1 − �

� 0

 . �20�

Assuming that the particle is initially situated at the origin,
the probability pXk−1

�n� is given by the �n ,1�th element of the
�k−1�th power of 
. Hence,

p	�k� = �
k−1�n,1� . �21�

For instance, for n=1 we recover p	�k�=��1−��k−1, with
�=1 / �1+ef�. For n=2 we get, after some straightforward
calculus, p	�k�=a�b+

k−1−b−
k−1�, where aª�2 /�1+2�−3�2

and b�ª �1−���1+2�−3�2� /2, with �=1 / �1+ef/2�.
Once the probabilities p	�k� are obtained, the entropy re-

duction and the efficiency can be computed with Eqs. �18�
and �19�, respectively. We plot in Fig. 2 this entropy reduc-
tion limt→� T�Sinfo / t for the particle pump with n=5 lattice
sites between barriers, together with the time dependence of
the average entropy reduction per time step obtained by
means of computer simulations of the dynamics in the maxi-
mum measurement regime. As expected, this time evolution
tends to the theoretical asymptotic value in a characteristic
time of order �	�=�k=1

� kp	�k�.
The numerical results in Fig. 2 have been obtained evolv-

ing the particle distribution according to the known transition

probabilities. The entropy reduction in each measurement is
given by the entropy difference between the particle distri-
butions before and after the measurement. After the measure-
ment we keep one of the two possible particle distributions
chosen randomly with the probability of the corresponding
measurement output, and we evolve this particle distribution
until the next measurement. Following this procedure we
have performed several realizations of the control actions
history, and thereafter we have performed an average over
realizations to obtain the average entropy per time step as a
function of time. For these simulations we have considered
n=5 lattice sites and force f =1 �in units of kBT=1 and
L=1� or equivalently �=1 / �1+e1/5��0.45.

C. Quasistatic regime

To conclude the analysis of the illustrating example, the
Markovian particle pump, we shall compute its maximum
efficiency in the quasistatic regime. Consider again the
particle initially situated at the origin. As the time between
measurements is large enough, the system has reached
equilibrium when the controller measures at a time t1.
Hence pXt

�m�= �1−e−f/n�e−fm/n and the jumping particle is
at the right-hand side of the next barrier with probability
�m�npXt

�m�=e−f. On the other hand, when the barrier is
raised the system gains a potential energy f . Thus, the en-
tropy reduction due to information is Hb�e−f�, while the po-
tential energy gained in one step is fe−f. Therefore the maxi-
mum efficiency for the quasistatic operation of the
Markovian particle pump is �q= fe−f /Hb�e−f�. We note that
0��nq��q�1, as expected.

In order to compare with results in Fig. 2 note that for
the same parameter values, a measurement step in the quasi-
static regime reduces the entropy on average an amount
Hb�e−1��0.66. However, a measurement step in the quasi-
static regime requires many evolution time steps, resulting in
a very low entropy reduction per time step.

V. CONCLUSIONS

In this paper we have addressed the thermodynamics of
closed-loop controlled systems, focusing on what character-
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FIG. 2. Average entropy reduction per time step as a function of
time for the particle pump with n=5 lattice sites between barriers:
numerical simulations �+ signs� and asymptotic value �dashed line�.
The asymptotic value is approached in a characteristic time of the
order of the mean first passage time �	�. Force f =1. Units kBT=1
and L=1.
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izes them, namely, the use of information. Our results show
explicitly how to calculate the entropy reduction due to in-
formation, Eq. �7� or �8�. Therefore, they allow one to com-
pute the thermodynamic quantities and their relations for
feedback controlled systems. In particular, we have calcu-
lated the thermodynamic relations for isothermal feedback
controlled systems, Eqs. �12�–�14�, and also the maximum
efficiency attainable, Eqs. �15� and �16�. As a case example,
we have shown how to apply our general results to a simple
system that performs an isothermal information-fueled par-
ticle pumping for both a maximum measurement regime and
a quasistatic regime. The results presented in this paper allow
one to study the thermodynamics of many other feedback

controlled systems. It will be particularly interesting to ob-
tain the thermodynamics of feedback flashing ratchets that
have been studied theoretically �12� and recently realized
experimentally �13�.
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