PHYSICAL REVIEW E 79, 041109 (2009)

One-dimensional gas of hard needles
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We study a one-dimensional gas of needlelike objects as a testing ground for a formalism that relates the
thermodynamic properties of “hard” potentials to the probabilities for contacts between particles. Specifically,
we use Monte Carlo methods to calculate the pressure and elasticity coefficient of the hard-needle gas as a
function of its density. The results are then compared to the same quantities obtained analytically from a

transfer-matrix approach.
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I. INTRODUCTION

Due to the relative simplicity of the derivation of their
thermodynamic properties, classical one-dimensional (1D)
systems are frequently employed as a test bed of theory and
methods for collective behavior in higher dimensional sys-
tems. For instance, the collection of “hard spheres” on a line,
sometimes referred to as the Tonks gas [1], has served as an
initial step in the study of two- and three-dimensional sys-
tems of hard disks or spheres. There is indeed a general
method for exact analysis of a gas of point particles interact-
ing in 1D via potentials that depend only on near-neighbor
separations [2]. Here, we employ such methods to study a
gas of hard needle-shaped objects. Our object is to compare
the analytical results to those obtained from a formalism that
relates thermodynamic properties (specifically the pressure
and elasticity coefficient) of the gas to the probabilities of
contact among the particles, as evaluated by Monte Carlo
simulations.

“Hard” potentials, which are either zero or %, help to
illuminate the geometrical/entropic features of a thermody-
namic system. Since there is no energy scale arising from
such potentials, the temperature 7" appears only as a multi-
plicative factor in the free energy and various other thermo-
dynamic quantities, such as pressure and elastic coefficients.
Thus the state of the system becomes independent of 7" and
only depends upon such features as density. The clarity of
the geometrical perspective, combined with the simplicity of
numerical simulations, has lead to extensive studies of such
systems. In fact, simulations with hard potentials date back
to the origins of the Metropolis Monte Carlo (MC) method
[3] and have flourished in the decades that have followed
(see Ref. [4] and references therein). A typical example of
nontrivial behavior is the entropically driven first-order
phase transition from a liquid to a solid phase [5].

Alignments of nonspherically symmetric molecules lead
to a diversity of phases in liquid crystals [6]. For example, in
the nematic phase the molecules have no positional order
(such as a liquid), while their orientations are aligned to a
specific direction. From the early stage research into liquid
crystal it was realized that the entropic part of the free energy
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related to nonspherical shapes of the molecules can by itself
explain many of the properties of such systems [7]. Not sur-
prisingly, hard potentials were frequently invoked and even
such simplifications as infinitely thin disks [8] or rods [9]
have provided valuable insights regarding liquid crystals.
The interplay between the rotational and translational de-
grees of freedom in molecular solids [10] leads to elastic
properties that are coupled to orientational order. How does
one compute the elastic response of such systems from first
principles?

Recently a formalism enabling direct calculation of elastic
properties and stresses of a system of hard nonspherically
symmetric objects was developed [11] by extending a previ-
ously known formalism for hard spheres [12]. Not surpris-
ingly, given that the elastic response in two and higher di-
mensions depends on a rank-four tensor, the resulting
expressions contain a large number of terms. Typical terms
correspond to a variety of possible contacts between particles
and numerous components of the separations between them
(see, e.g., Eq. 23 in Ref. [11]). Since these expressions are
obtained after numerous mathematical transformations, it is
advisable to subject them to independent tests. Indeed they
have been shown to reduce to the known results for isotropic
objects, but up to now there had been no comparison to exact
results for nonspherical particles. Here, we consider the sta-
tistical mechanics of a 1D system of hard needlelike particles
rotating in two dimensions with their centers affixed to a 1D
line, as depicted in Fig. 1. The needles are not allowed to
intersect and thus act as “hard” potentials. This model is a
particular case of a group models considered by Lebowitz et
al. [13] with anisotropic objects in one dimension. From the
perspective of complexity, such systems are a slight gener-
alization of the Tonks gas, yet they provide nontrivial in-
sights into the interplay of rotational and translational de-
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FIG. 1. (Color online) Needle-shaped particles of length 2€ and
vanishing thickness are free to rotate in two dimensions, with their
centers moving along a line. Particle (needle) i is characterized by
its translational position x; and orientation angle ¢;.
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grees of freedom. The model can be solved exactly, and
thermodynamic properties, such as elastic coefficients, can
be calculated. We compare the values obtained analytically
by the transfer-matrix method to those from MC simulations
using the expressions from Ref. [11] adapted to the 1D case.

The paper is organized as follows. The model of hard
needles is introduced in Sec. II, and we demonstrate how the
relative orientations of neighbors lead to an effective hard
potential as a function of their separation. Section III is de-
voted to reviewing how elastic properties of a system can be
characterized and the expressions for computing elastic co-
efficients in 1D are presented. The numerical difficulties as-
sociated with evaluation of various quantities by MC simu-
lations are also described. In Sec. IV we present the transfer-
matrix method for solution of the model. Details of the MC
simulation are presented in Sec. V, along with comparisons
to results obtained by transfer-matrix method. Discussion
and additional features of the model are presented in Sec. VI.

II. MODEL

Figure 1 depicts a configuration of our model, consisting
of needles of length 2¢, with their center positions restricted
to move on a 1D line. Needle i is characterized by its posi-
tion x;, and orientation ¢; measured with respect to the nor-
mal to the line. Since orientations differing by 7 are indis-
tinguishable, we restrict —m/2=¢;<m/2. (Such entities,
called directors, frequently appear in the description of liquid
crystals [6].) As € is the only microscopic length scale in the
problem, it can be used to construct dimensionless param-
eters. In particular, the mean distance between particles a is
made dimensionless by considering a/¢, while the density n
can be replaced by n€.

The needles are not allowed to intersect but do not inter-
act otherwise. Since the particles cannot cross each other, we
number them (left to right) along the 1D line and require that
this order is unchanged, i.e., x;_; <x;. (This convention sim-
plifies the enumeration of the possible contacts between par-
ticles.) Thus the distance of closest approach between adja-
cent needles is a function of their orientations, given €d, with
the dimensionless function

Sin|¢i - ¢i—1|
max[cos(¢;_;),cos(¢h;)] '

This function is depicted in Fig. 2 and varies between zero
(when the needles are parallel, ¢;=¢,_;) and 2 (with the
needles lying on the line, ¢;=—¢,_; — 7/2). Note that value
of d is poorly defined at the points (*77/2, * 77/2) and de-
pends on the limiting procedure. Analytic computations
would have been considerably simplified if d was only a
function of the difference in orientation, but this is not the
case because of the denominator in Eq. (1).

We consider a collection of N needles, either in an en-
semble of fixed length L (for MC simulations) or fixed ex-
ternal pressure (force) p (for transfer-matrix studies). It is
convenient to impose the boundary conditions through the
definition of the minimal distance. For the MC simulations,
we introduce fictitious particles i=0 an i=N+1. Periodic
boundary conditions on a line of length L are implemented

di—l,i(¢i—l’¢i) = (1)
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FIG. 2. Gray-level representation of the function d; »(¢;, ¢,) in
Eg. (1) for the dependence of minimal distance between needles on
their orientations. The black diagonal corresponds to d=0 for par-
allel needles, while white corresponds to d=2 for needles along the
line.

by requiring xy,;=x;+L and ¢y, =¢;, while xo=xy—L and
¢o=dy. This extends the validity of Eq. (1) to i=1 and
i=N+1, enabling the treatment of all particles on equal foot-
ing. In the fixed pressure ensemble, which is used in transfer-
matrix calculations, the orientation of the first (last) particle
i=1 (i=N) is restricted only by its neighbor from the right
(left), i.e., i=2 (i=N-1). The position of the both end par-
ticles is arbitrary in this ensemble, with x; >0 and xy=L
(which is also a variable in this ensemble). In this case, we
set d0,1=dN,N+1 =0.

As explained above, adjacent particles interact via the
hard potential

O, if X;— Xi—1 > €di—1,i’

oo, otherwise.

Vieri = V&= xic, dic1, ) = {
(2)

As such a potential does not have an energy scale, the tem-
perature T will appear only as a prefactor in the thermody-
namic quantities. In particular, the Helmholtz free energy F
which is an extensive quantity with units of energy will have
a form F=NkzTh(nf), where kg is the Boltzmann constant.
In 1D, the pressure p and the elastic coefficient C have units
of force and can be made dimensionless by considering
f=pBptl and BCL, where B=1/kzT. The Gibbs free energy
G=NkgTg(f) depends only on the dimensionless pressure f.

III. ELASTICITY OF 1D SYSTEM

Shape and size deformations of objects are usually de-
scribed by the strain tensor [14]. In 1D this reduces to a
scalar quantity 7 which simply relates the distorted size of
the system L' to its original size L via L'?=L*(1+27) [15].
(While this definition is slightly awkward in 1D, the use of
squared distances between points is convenient because in
higher dimensions it clearly separates trivial changes in ge-
ometry caused by rotations and real deformations.) In 1D, for
small 7, the Helmholtz free energy can be expanded as
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where C is the elastic coefficient of the body. (Note, that the
free energy on the left-hand side (lhs) of the equation is
divided by the undistorted size of the system.) Consequently,
p and C can be calculated from the first and second deriva-
tives of F with respect to 7 at fixed 7.

While the elastic properties are more naturally obtained
from the Helmholtz free energy, we will also use the Gibbs
free energy G=F+pL, in which the pressure is the (imposed)
variable [16]. The system size L or the mean interparticle
distance is then obtained from a=d(G/N)/dp|y, or in terms
of dimensionless variables,

a_ d(BGIN) 4)
¢ af Iy
Similarly, C=-a/(5t|7)+p and
a
BEC=———+F. (5)

5«|T

Squire et al. [17] developed a formalism for a direct cal-
culation of elastic parameters from the correlation functions
of particles. In this approach stress (pressure) and elastic
moduli are related to thermal averages of products of various
interparticle forces and separations. This formalism was ex-
tended to hard potentials in Refs. [11,12]. Since for hard
potentials the forces vanish except when the particles touch,
the results depend on various contact probabilities. In two
and three dimensions the stress and the elastic constants are
tensors and the expressions involve averages over a variety
of components. These results simplify in 1D and in particu-
lar, the expression for stress [Eq. (22) in Ref. [11]] can be
considerably simplified. If we denote the separation between
two adjacent needles by s;=x;,;—x;, they are in contact if the
argument of A;=8[s;—€d, ;,1(¢;, $;,1)] vanishes. The dimen-
sionless pressure f then becomes

f= n€<1 + ]%E <s,»A,-)). (6)

The first term in this expression is simply the pressure of the
ideal gas, while the second term can be easily recognized as
the mean value of the product of the interparticle separation
and force, as appears in the virial theorem [18]. To evaluate
Eq. (6), we need the probability that two particles (i and
i+1) with specified orientations (¢; and ¢;,;) touch each
other.
Similarly, the elastic coefficient C can be expressed as

3 1 2
BCl = n€[2 + X’E, (s;A)) + N(EI <S,-Ai>>2 - X,E (s:5;8,4))

i<j
1 2, 2
- 5\,2 (Gs; + 53, D)AALD |- (7)
The last two sums in the right-hand side (rhs) of Eq. (7)

involve averages of products of As, i.e., they require knowl-
edge of the joint probability density of two simultaneous
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contacts. The last sum involves cases when three particles i,
i+1, and i+2 touch each other, while the preceding sum
depends also on cases when two independent pairs are in
contact, i.e., particle i touches i+1 and a different particle j
(>i+1) touches j+1. The lhs of Eq. (7) is an intensive quan-
tity, while the third and the fourth terms on its rhs contain
O(N?) terms. However, most of the terms appearing in these
two sums can be grouped in pairs (s;A;)(s;A;)—(s;5;4,4,),
which decay to zero when the distance between the pairs of
particles exceeds the correlation length. All the averages ap-
pearing in Egs. (6) and (7) can be calculated in MC simula-
tions.

IV. TRANSFER-MATRIX APPROACH

The partition functions of 1D models with short-range
interactions can be found analytically using a transfer-matrix
method [16,19,20]. It is convenient to consider the isobaric
ensemble with fixed external pressure (force) p, such that
(the configurational part of) the partition function is given by

N N

Zg= f [T ax T dge v, ®)

i=1 i=1

Since xy=2;s;, we can change variables and perform integra-
tions over the separations s; between adjacent particles. For
the hard potential given by Eq. (2), this leads to

N
Zg= (lgp)—N H [dqgie—ﬁpfdi-u(¢i—1s¢1)]

i=1
N

=(Bp)™ I1 [do:Di_y i(fs by )], 9
i=1

where

Di_y (f; b1 i) = e i1l D100, (10)

(According to the definition of d, all D are identical, except
for Dy =Dy y,1 =1 at the boundaries, as explained in the
Sec. I1.)

The expression in Eq. (1) is too complicated for the inte-
grals in Eq. (9) to be performed analytically. Nevertheless,
multiple integrals of this kind can be easily performed nu-
merically to any desired accuracy. We can subdivide the
range of the angular integration into M equal segments by
setting ¢ =—1/2+ 3k, with k=0,1,...,M—1. This replaces
the function D by an M X M matrix and the integrals in Eq.
(9) are replaced by matrix products. The partition function
then becomes

Ze = (Bp) ™N(m/M)NoDN v, (11)

where v is a column vector with all of its elements equal to
1. Repeated multiplications can be performed numerically,
first multiplying D by itself, then multiplying the resulting
matrix by itself, etc. After a total of K such iterations we
arrive at DV, with N=2%+1. The exponential dependence on
K allows us to achieve very large values of NV, in practice we
used K=20 in our simulations. For moderate pressures, the
discretization of the angle ¢ has little influence on the result
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FIG. 3. (Color online) The upper curve depicts the Gibbs free
energy per particle (made dimensionless by multiplying by B) as a
function of the dimensionless pressure f=Bp€. The lower curve

shows, for comparison, the same quantity for noninteracting
needles; the curves begin to separate when f is larger than about 1.

once M exceeds 10 and we report results for M=512. (It
should be noted that the same results can also be obtained by
numerically finding the largest eigenvalue of D. However, in
our case this alternative provides no numerical advantage.)
From the numerical value of Z;, we then obtain the Gibbs
free energy.

Figure 3 depicts the scaled Gibbs free energy calculated
by this numerical procedure. For noninteracting needles the
partition function is Zy=(7/Bp)™ and the corresponding
BGy/N=In(Bp/ ) is indicated by the lower line in the fig-
ure. (Both curves exclude the trivial contribution due to ki-
netic energy.)

V. SIMULATIONS AND RESULTS

A Monte Carlo procedure was used to evaluate the pres-
sure and elastic coefficient of the system of hard needles. We
simulated N=128 particles with periodic boundary condi-
tions. Correlations between the needles for small and mod-
erate densities do not persist past a few neighbors. The short
correlation length and the use of periodic boundary condi-
tions lead to negligible finite-size effects, which we explic-
itly verified by varying N. An elementary MC move consists
of randomly choosing a needle, randomly deciding whether
to displace or to rotate it, and attempting to perform such a
move. The move is accepted if in the new position, or with
new orientation, the needle does not overlap with neighbor-
ing needles. The particles are sequentially ordered and a po-
sition change is rejected if it changes this ordering. The at-
tempted moves are uniformly distributed over an interval,
whose width is chosen to be as large as possible, while main-
taining an acceptance rate larger than 50%. The varying size
of the interval implies a diffusion constant for each particle
that decreases with increasing density. A single MC time unit
consists of 2N attempts to move or rotate particles. The re-
laxation time of the system is proportional to L? and in-
versely proportional to the diffusion constant and elastic co-
efficient. (The latter increases with increasing density.) Our
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choice of elementary step ensured that, within the examined
range of densities, the relaxation time was approximately
constant and remained of order N2. This was verified by
directly measuring several autocorrelation functions. For ev-
ery density n the simulation time was 5 X 10°N?. Such long
times are required to ensure high accuracy of measured con-
tact probabilities, as explained below.

The presence of the Dirac & function in the definition of
A, necessitates delicate handling. Both Egs. (6) and (7) re-
quire measuring separation s; between the adjacent needles at
the moment of contact. Such events have zero probability,
and the formulas really involve probability densities. The
latter can be evaluated by examining the probability that the
two needles are within €; and divide the result by ;. Of
course, the number of such near collisions decreases with
decreasing €; and the statistical error increases. The situation
is even worse for terms of type (s;5;4,4;), where two simul-
taneous contacts are supposed to appear. One may define two
near collision events by considering intervals of sizes €, and
€. The opposing requirements of having €;— 0 (for accurate
calculation of probability densities) and large €; (to ensure
statistical accuracy) can be partially reconciled by consider-
ing each argument of a ¢ function being in the range
[me,(m+1)e), with m=0,1,...,M. We used M=10 and €
=0.002 (0.01) for high (low) particle density simulations.
With 11 data points for single contact terms and 11? points
for two-contact terms, we could view the results as a func-
tion of one variable m; or two variables m; and m,, and
extrapolate the results to the “exact contact” limit. The accu-
racy and practicality of such a procedure have been demon-
strated in Ref. [12]. The total simulation time was deter-
mined by requirement of having sufficient number of terms
in each “bin” of the statistical procedure explained above.
The total simulation time was dictated by the need to have a
very accurate estimate of the fourth term on the rhs of Eq.
).

Since the MC simulation is performed in the ensemble of
fixed length, the density or mean interparticle distance a are
given, while the dimensionless pressure f and the dimension-
less elastic modulus B¢C are calculated. The full circles in
Fig. 4 depict the calculated dependence of f (horizontal axis)
on a (vertical axis). The error bars on f are negligible, since
Eq. (6) includes only single pair contacts, and the large sta-
tistics as well as small €; ensures very high accuracy. This
result is compared to the relation between f and a obtained
from the Gibbs free energy via Eq. (4) by taking the numeri-
cal derivative of G calculated by the transfer-matrix method.
The latter is depicted by the dashed line. Excellent agree-
ment is obtained between the results from these two meth-
ods.

The solid squares in Fig. 4 depict the MC results for the
dimensionless elastic coefficient B€C (vertical axis) as a
function of the dimensionless pressure f (horizontal axis).
Since in the MC procedure f is itself a computed quantity,
there are now also horizontal error bars, which are negligible
as explained in the previous paragraph. The accuracy of C,
however, is much lower and depends on both statistical er-
rors and systematic errors from extrapolation to the true con-
tact probability densities. We chose the values of ¢€; and the
simulation time in such a way that both errors were of the
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FIG. 4. (Color online) The mean distance between particles a (in
units of £), as a function of the dimensionless force f. The result for
the ideal gas (f=€/a, lower solid line) is compared to the virial
expansion truncated at the second term (upper solid line, described
in Sec. VI) and with the exact transfer-matrix result (dashed line).
The dashed-dotted line is the transfer-matrix result for the elasticity
coefficient C. Solid circles represent the relation between a and f
from the MC simulations. Solid squares represent the MC results
for the elastic coefficient. Dotted line represents the asymptotic re-
lation C=2p.

same order. We estimate that the vertical error bars are ap-
proximately the size of the symbol for the leftmost point and
decrease to half the symbol size for the rightmost point. The
dashed-dotted line depicts the same relation obtained from G
by using Eq. (5) and the transfer-matrix calculations. The
results from both approaches coincide within the estimated
erTors.

VI. DISCUSSION

The good agreement between the results from MC simu-
lations, based on contact probabilities, and those from the
transfer-matrix method supports the validity of the expres-
sions reproduced in Egs. (6) and (7) for the pressure and
elastic moduli of hard potentials. While limited to 1D, this is
the first direct comparison between formulae derived in Ref.
[11] and an exact alternative approach.

We conclude by pointing out an interesting feature of the
hard needle system: Both at small and large densities, the
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pressure and elastic coefficient are related by the simple ex-
pression C=2p, while the behavior at intermediate densities
is more complicated. For low pressure (density) the system
behaves as an ideal gas with a=(8p)~!, and substituting in
Eq. (5) immediately yields C=2p in this limit. Interestingly,
as discussed by Lebowitz er al. [13], the relation between
density and pressure also simplifies at very high pressure
(density). In this limit the angular integrations are themselves
constrained by pressure and a Gaussian approximation leads
to additional powers of Bp in the Gibbs partition function.
This in turn leads to a density n=a"'=2pp, i.e., the same
functional dependence as an ideal gas but with a factor of 2.
Inserting this limiting behavior into Eq. (5) again leads to
C=2p as in the ideal-gas limit. This relation is indicated by
the dotted line in Fig. 4.

The lower solid line if Fig. 4 depicts the dependence of a
on f for an ideal gas. The dashed curve representing the
exact solution deviates from ideal behavior for values of f
larger than about 0.2. At higher densities (and pressures) we
can improve upon the ideal-gas behavior by using a virial
expansion. From the form of the interaction we compute a
second virial coefficient of B,=8/7>. As indicated by the
upper solid line in Fig. 4, inclusion of the second virial co-
efficient provides a good approximation for f up to 3. Clearly
there is no simple relation between C and f in this interme-
diate region.

The focus of this paper was to use the model of hard
needles to validate the relation between elastic moduli and
contact probabilities for the exactly solvable model of hard
needles. However, the model itself has some interesting fea-
tures, which will be explored elsewhere [21]. In particular
the simplified behavior alluded above in the high-density
limit is related to an incipient critical point. The nature and
universality of this criticality is related to the shapes of the
hard objects (in this case, needles).
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