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Stochastic pooling networks �SPN� are sensor networks where multiple sensors make independently noisy
and compressed measurements of the same information source, which are combined via pooling. Examples of
SPNs range from nanoelectronics to biological sensory neurons. Here it is shown that optimal information
transmission in SPNs with nodes that quantize to a finite number of states requires the input signal distribution
to be discrete. This is illustrated numerically for a simple SPN consisting of N binary-quantizing sensors. The
resultant information capacity is shown to be independent of the noise distribution when the signal distribution
can be freely chosen, but to imply an optimal noise distribution if the signal distribution is fixed. While larger
than the best performance of previously studied continuously valued input signals, the capacity does not scale
faster than the previous best result of log2��N� bits per channel use. It is also shown that a plot of the optimal
input distribution contains bifurcations as N increases, and that suprathreshold stochastic resonance occurs
when the mutual information is determined for a suboptimal noise distribution.
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I. INTRODUCTION AND BACKGROUND

The goal of both artificial sensors and biological senses is
to accurately transduce and represent an information source.
Often, accuracy in representation is achieved in the presence
of perturbing noise via the redundancy inherent in multiple
independent measurements of the same source, for example
noise reduction by beamforming or coherent averaging. If
the measurements need to be stored or communicated prior
to use, there is also a need for efficient representation via
compression.

Stochastic pooling networks �SPNs� are an abstract frame-
work for modeling some sensor networks where both signal
compression and noise reduction via averaging occur simul-
taneously. Both can be viewed as emergent properties of the
physical manner in which such networks combine individual
measurements and the nonlinear interaction between redun-
dancy, lossy compression and random noise �1,2�. SPNs are
intended to model either �i� engineered sensors where energy
or physical constraints do not permit use of optimal signal
processing techniques, e.g., noisy analog-to-digital convert-
ers �1,3,4� or nanoscale electronics �5�; �ii� biological sen-
sory processing, such as parallel neurons, receptor cells, or
synapses �6–10�. The suboptimality of SPNs compared to
ideal engineered sensor networks lead to some surprising
emergent phenomena—see �2�.

Part of the current paper is focused on suprathreshold sto-
chastic resonance �SSR�, a counter-intuitive emergent prop-
erty of some SPNs that occurs when random noise is re-
quired for good performance �11,12�. However, the main
result is determination of the previously unknown upper
limit to the information transmission performance of finite
size SPNs, that is, its information capacity, or channel ca-
pacity. For a memoryless input signal �which is assumed
here�, this is defined as the maximum achievable mutual in-
formation between two random variables �13�, which in this

case are the SPN input and output. Finding it generally
means assuming a fixed channel and searching for the opti-
mal input distribution �13�.

Only the simple N-node SPN often studied in the context
of SSR �3,8,11,14–16� or noise-enhanced detection �1,17�
will be considered here. This SPN has N identical binary-
quantizing nodes, and an output that pools its N measure-
ments by summation. However, the results reported here can
easily be generalized to any SPN for which the output signal
is a discrete random variable.

Previous work on information transmission in this SPN
has always assumed the input is a continuous random vari-
able, e.g., �3,8,11,14,16,18�, and capacity results have been
found only in the large-N limit �8,12�. In all cases, mutual
information is known to scale with log2��N�. What has not
been known is whether there exists some input distribution
for which the capacity for small N is significantly larger than
reported previously.

Here it is shown that capacity also scales with log2��N�
for small N. This result is achieved by numerical calculation
of the signal distribution that achieves maximum mutual in-
formation, via an algorithm that relies on some fundamental
properties of all memoryless information channels that have
a finite number of input or output states. In particular, it has
not been previously realized that capacity for the SPN con-
sidered here �and any SPN for which the output signal is a
discrete random variable� is achieved by an input signal with
a discrete distribution since the output is discrete and finite.
This claim is presented as the following restatement of �19�
�Corollaries 2 and 3, pp. 96�, for the context of SPNs:

Corollary 1. Channel capacity in an N-node SPN, where
each node’s output is a discrete random variable, is achieved
by input signals that have a discrete distribution and a finite
number of mass points. If the smallest number of points that
achieves capacity is Mo, then for this Mo a unique capacity
achieving input distribution exists, and Mo must be no larger
than the number of output states.

Note that for the SPN considered in this paper, with iden-
tical binary nodes and pooling by summation, Corollary 1
says that Mo�N+1.*mark.mcdonnell@unisa.edu.au
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The focus of the current paper is similar to other recent
work aimed at establishing the performance limits of systems
that exhibit stochastic resonance �SR� �20�, or more pre-
cisely, aperiodic stochastic resonance �ASR� �21–23� �SSR is
a form of ASR�. For example, calculations of the noise dis-
tribution that optimizes performance for suboptimal random-
ized detectors are given in �24�. A second example are theo-
rems that provide simple conditions for predicting when SR
will occur for random binary signals in static threshold sys-
tems �25� and spiking neuron models �26�. These are collec-
tively known as the forbidden interval theorem �25�, and
provide proof that SR effects should be expected in nearly all
threshold systems.

When the consequences of the forbidden interval theorem
are combined with the observation that SR occurs for impul-
sive �infinite variance� noise �27�, it is clear that SR is very
robust. This fact highlights that although published SR re-
search usually includes an assumption of finite variance
noise—very often Gaussian—this is not a necessary condi-
tion for SR to occur. The optimal signal distribution, i.e., the
one that best utilizes the fact that SR may occur, may be very
different to Gaussian, as illustrated in this paper. Indeed,
Corollary 1 also applies to previous work demonstrating sub-
threshold ASR in static threshold systems via calculations of
mutual information. For example, the system of �23,25� can
be viewed as a trivial SPN where N=1, and Mo=2, and
equivalent to a binary asymmetric channel �28�. Therefore
the binary input signal used in �23,25� is optimal in terms of
the number of mass points �although not in the mass loca-
tions, given the subthreshold assumption used�.

The remainder of this paper provides verification of Cor-
ollary 1 via comparison of the numerical capacity results of
Sec. III with previous analytical results �listed in Sec. II� for
mutual information in the binary-node SPN. Results provid-
ing an upper bound for the channel capacity and a lower
bound on Mo are also presented. It is shown that suboptimal
discrete input distributions give rise to SSR, and that the
capacity results can be interpreted in terms of finding an
optimal noise distribution for a fixed discrete signal distribu-
tion. The paper finishes in Sec. IV with discussion of the
significance of the optimality of discrete distributions for
SPNs in general, as well as for aperiodic stochastic reso-
nance, SSR, and biological neurons. First however some no-
tation is defined, and the capacity problem is described math-
ematically.

A. Problem formulation

Consider an N-node SPN where each sensor quantizes its
input zi using a threshold value � to produce the binary out-
put

yi�zi� = �1 zi � �

0 zi � �
� i = 1, . . . ,N . �1�

Let the output of this SPN be the sum of the binary measure-
ments, y=�iyi. This is a discrete random variable defined on
the non-negative integers n=0, . . . ,N, with probability mass
function �PMF� Py�n�.

In general, all nodes of an SPN operate on independently
noisy versions of the same signal sample, x �2�. For iid ad-
ditive noise, �i, the input to each sensor is zi=x+�i. For the
binary-node case of Eq. �1�, if the cumulative distribution
function �CDF� of the noise is F��·�, define the probability
that a sensor produces a 1 in response to x as

P1	x = 1 − F��� − x� . �2�

An SPN can be thought of as a communications channel
where measurements of a random signal x are corrupted via
noisy transmission. The channel is entirely described by the
transition probabilities, i.e., the conditional distribution of
the output given the input. For a binary-quantizing SPN with
N nodes, this is given by the binomial distribution �11�,

Py	x�y = n	x� = 
N

n
��P1	x�n�1 − P1	x�N−n, �3�

where n=0, . . . ,N. If the SPN’s input has CDF Fx�x�, the
output PMF is Py�n�=�xdFx�x�Py	x�n 	x�, while the mutual
information is the difference between the entropy of the out-
put, H�y�=−�n=0

N Py�n�log2 Py�n�, and the average condi-
tional entropy, H�y 	x�=�xdFx�x��n=0

N Py	x�n 	x�log2 Py	x�n 	x�,
i.e.,

I�x;y� = H�y� − H�y	x� . �4�

Channel capacity can be expressed as

C�x;y� = max

Fx�x��

I�x;y� . �5�

In some practical cases finding capacity requires additional
constraints on the source distribution such as maximum am-
plitude or average power �13�. Here no such constraint need
be considered, although it is certainly possible to do so.

Note that I�x ;y�= I�x ; �y1 , . . . ,yN��, which means that
summation of the N nodes’ outputs does not reduce informa-
tion in any way. This is due to the summation being a suffi-
cient statistic for the vector of individual node outputs �2�.
This fact captures what is meant by pooling of information in
an SPN. If the nodes were not identical, this would no longer
be true, and by the data processing inequality �13�, the ca-
pacity for the summed SPN nodes may only be smaller than
that without summation. However, as discussed in �2�, the
decrease in capacity may be very small.

Since the capacity achieving distribution must be discrete,
it is assumed in the following, except where otherwise stated,
that x is a discrete random variable with M points of support
and PMF Px�m��0, m=1, . . . ,M. The mass points are de-
noted as xm, m=1, . . . ,M.

It is important to note that since the channel transition
probabilities depend on the mass points via Eqs. �2� and �3�,
altering any xm actually alters the channel. However, instead
of finding optimal mass points, note that the channel capacity
can be equivalently written as

C�x;y� = max

M,Px�1�,. . .,Px�M�,P1	x1

,. . .,P1	xM
�

I�x;y� , �6�

which means searching for M optimal values of P1	x instead
of x.
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For use in Sec. III, by �19� �Theorem 4.5.1� necessary and
sufficient conditions for Px�·� to achieve capacity for a given
channel are that for all m with Px�m��0,

i�xm� ª �
n=0

N

Py	x�n	xm�log2
Py	x�n	xm�

Py�n�
� = C�x;y� , �7�

while i�xm��C�x ;y�∀x s.t. Px�m�=0. Consequently, a nec-
essary condition for capacity for the SPN is that C�x ;y�
=log2�Py

o�0��=log2�Py
o�N��, where Py

o�n� is the output distri-
bution induced by the capacity achieving input distribution.
This follows by noting that nonzero mass should always oc-
cur at P1	x=0 or P1	x=1 �since the channel will be determin-
istic in these cases� and substituting these values into Eq. �3�.

Corollary 1 provides a guide to an algorithm for numeri-
cally calculating the optimal discrete distribution for the
SPN. Before outlining such an algorithm and results in Sec.
III, some theoretical discussion and useful results are pro-
vided.

II. THEORETICAL RESULTS

A. Capacity for the binary-node SPN is independent
of � and the noise distribution

When there are no constraints on the signal distribution,
channel capacity depends only on N, and is invariant to
changes in the noise distribution or �. This can be seen by
noting from Eq. �6� that capacity can be found by optimizing
M values of P1	x. If the SPN is defined in terms of a known
noise distribution with CDF F����, then the optimal mass
points of the signal can be determined via inversion of Eq.
�2� since from Eq. �2�,

xm = � − F�
−1�1 − P1	xm

�, ∀ m = 1, . . . ,M , �8�

where F�
−1�·� is the inverse CDF of the noise.

Consequently, channel capacity is a property only of N,
i.e., the size of the SPN.

B. Lower bounds on capacity

Three previous exact theoretical expressions for the mu-
tual information in the binary-quantizing SPN can be used to
verify the numerical results presented in Sec. III. This is
because these expressions were derived assuming continu-
ously valued signal distributions �with PDF fx�·�� and speci-
fied noise distributions �with PDF f��·��, and therefore by
Corollary 1 must provide lower bounds to the channel capac-
ity.

First, when the signal is a continuously valued random
variable with the same distribution as the noise, i.e., fx�x�
= f���−x�, the mutual information is �29�

I1 ª log2�N + 1� −
N

2 ln 2
−

1

N + 1�
n=2

N

�N + 1 − 2n�log2 n .

�9�

Second, when

fx�x� =
f��� − x�

��F��� − x��1 − F��� − x��
, �10�

the mutual information is �12�

I2 ª − �
n=0

N

Py�n�log2�Py�n�


N

n
� � + N log2
 e

4
� , �11�

where Py�n� is beta-binomially distributed,

Py�n� = 
N

n
�	�n + 0.5,N − n + 0.5�

	�0.5,0.5�
, �12�

and 	�a ,b� is a beta function �30�. It is shown numerically in
�12� that I2� I1.

A third case of an exact expression derived in the context
of SSR is that of continuously uniform signal and noise with
equal mean, but where the noise’ support is smaller than the
signal’s support, and has ratio 
�1 ��14�, Eq. �7��. This is
equivalent to an input signal distribution that is a mixture of
discrete mass at the extremes of the noise’ support, each with
probability 0.5�1−
�, and uniform density between. From
Ref. �16�, Eqs. �4.59� and �4.60�, there is an optimal value of

,


o =
1

N − 1

N + 1
+ 21−F

,

where F is a function of N and I1,

F =
1

N − 1
��N + 1�I1 − 2 log2�N + 1�� .

The resultant mutual information can be expressed as

I3 ª log2�2 + 
N − 1

N + 1
�2F� . �13�

In this case for any 
,

Py�0� = Py�N� =



N + 1
+ 0.5�1 − 
� .

It is straightforward to show that when 
=
o, I3=
−log2�Py�N��. Consequently, the necessary condition for ca-
pacity mentioned in Sec. I A is satisfied for n=0 and n=N.
This does not mean I3 gives capacity, as the necessary con-
dition is not met for other values of n.

Using an approximation based on Fisher information �8�,
a fourth lower bound to the channel capacity can be derived
as �12�

C�x;y� � lim
N→�

I2 = 0.5 log2
N�

2e
�ª IL. �14�

C. Upper bounds on capacity

The entropy of any discrete probability distribution is up-
per bounded by the log of its cardinality, while mutual infor-
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mation can be no larger than the lesser of its input or output
entropy �13�. Hence, if the entropy of the capacity achieving
input with Mo points is Ho�x�, then

C�x;y� � Ho�x� � log2�Mo� � log2�N + 1� . �15�

Numerical determination of Mo and C�x ;y� as in Sec. III
finds that these inequalities are far from tight, except that
Ho�x� is close to log2�Mo�. A much tighter �although analyti-
cally unproven� bound for N�2 that is in agreement with the
numerics for at least N=2, . . . ,100 can be derived by taking
the large N limit of I3 �16�,

C�x;y� � lim
N→�

I3 = log2
2 +��N + 2�e
2�

�ª IU. �16�

Consequently, the channel capacity for small N also scales
with O�log2�N��, as was shown either for suboptimal input
distributions, and/or for large N in �8,11,12,14,29�. Notice
also that

lim
N→�

IU = lim
N→�

IL = log2��N� ,

and that therefore the upper and lower bounds coincide at
N=�.

D. Lower bound on Mo

In Sec. III, it is shown numerically that I3 is the lower
bound that is closest to capacity for small N, and I3� IL.
Consequently,

IL � I3 � C�x;y� � log2�Mo� .

Therefore, the number of points of mass of the capacity
achieving input distribution must satisfy

N + 1 � Mo � �2I3� � ��N�

2e
� . �17�

This bound states that the number of points of mass in the
input distribution must increase at a rate faster than �N but
slower than N in order to achieve capacity with a minimal
number of input mass points.

III. NUMERICAL RESULTS

A. Procedure for finding capacity

When a communication channel is defined by conditional
distributions that are independent of the values of M source
symbols, finding channel capacity means finding only the
optimal probabilities, Px�m�. This can be achieved using a
convergent iterative algorithm known as the Blahut-Arimoto
�BA� algorithm �13�.

However since the binary-node SPN depends on P1	xm
, the

BA algorithm cannot be used in isolation, except via an ap-
proximation where M is assumed to be very large, and the
P1	xm

uniformly spaced. The BA algorithm will theoretically
converge, possibly with the result that most Px�xm�=0. How-
ever convergence in such a situation is extremely slow, as

there are likely to be many near optimal solutions for Px on
this assumed support.

Nevertheless, this approach was successfully applied for
binary-node SPNs �8�, but only for large N. The resultant
capacity achieving PMF was assumed to estimate a PDF, and
is in agreement with an analytical formula derived using the
large N assumption �12�, in which it is also assumed that the
input signal must have a continuous distribution. However,
by Corollary 1 the optimal signal distributions of �8,12� can
only be optimal in the sense that they are the continuous PDF
to which a discrete PMF will converge, as N→�.

The necessity to preselect values of P1	xm
in this way can

be removed for small fixed M by combining the BA algo-
rithm with a gradient descent algorithm. Local optima of
I�x ;y� will be found by allowing P1	xm

to be free variables in
the gradient descent algorithm, and the BA algorithm used to
find the corresponding optimal Px�xm� for each trial solution
of P1	xm

.
The value of Mo for some N cannot be known in advance,

and needs to be determined. A way to achieve this follows
from the previously mentioned necessary and sufficient con-
dition for optimality of a discrete memoryless channel �19�
�Theorem 4.5.1�—see Eq. �7�—and use of an algorithm
given in �31�, where it is noted that it suffices to determine
the optimal Px�·� for increasing values of M, starting with
M =2, and stopping once the conditions are met. Further-
more, if a local optima satisfies �19� �Theorem 4.5.1�, then it
is actually a global optima.

An alternative approach is to first explicitly calculate the
channel capacity and the optimal output distribution, Py

o�n�
by applying standard minimax optimization algorithms to
Eq. �7�, as outlined in �32�. The optimal input distribution
can then be found by numerically finding the maxima of
i�xm� that results from Py

o�n�.

B. Unconstrained capacity results

The results of applying the above method to find channel
capacity for the binary-node SPN, for N between 1 and 100,
are shown as C�x ;y� in Fig. 1. Also shown are the lower
bounds I1, I2, I3, and IL, evaluated exactly from Eqs. �9�,
�11�, �13�, and �14�, and the conjectured upper bound, IU
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FIG. 1. Numerically calculated channel capacity, C�x ;y� as N
increases. Also shown are the upper and lower bounds to capacity
given by Eqs. �9�, �11�, �13�, �14�, and �16�.
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from Eq. �16�. It is clear that all the stated inequalities are
verified.

The input distribution that achieved C�x ;y� is shown in
Fig. 2. The upper panel shows the optimal Px�m� and the
corresponding points, P1	xm

for selected values of N, while
the lower panel shows only the optimal P1	xm

for N
=1, . . . ,100.

The output distribution at capacity is shown for selected
values of N in Fig. 3, while Fig. 4 shows the optimal number
of points, Mo and also the lower bounds of Eq. �17�.

C. Varying the noise level: Suprathreshold stochastic resonance

As discussed in Sec. II A, capacity for the binary-node
SPN is independent of the noise distribution. However, this
does not alter the fact that capacity is achieved by the pres-
ence of noise, and therefore that SSR occurs. This can be
demonstrated by assuming that the capacity achieving input
distribution is used and remains unaltered, and then allowing

the noise intensity to change, as is now described.
Suppose the optimal solution is given by


Mo , Px
o�1� , . . . , Px

o�M� , P1	x1

o , . . . , P1	xM

o �. From Eq. �8�, for
any given continuously valued noise distribution with in-
verse CDF F�

−1���, the optimal input mass points are

xm
o = � − F�

−1�1 − P1	xm

o �, ∀ m = 1, . . . ,M . �18�

Clearly the actual mass points of the optimal signal distribu-
tion �and consequently its statistics, e.g., mean and variance�
depend on the noise distribution, even though the capacity
does not.

As an example, suppose for a given N, the input distribu-
tion is optimal for zero mean, unity variance Gaussian noise,
and the threshold is �=0. This means that
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bounds become less accurate since the input entropy becomes
smaller than log2�Mo�.
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xm
o = − �2erf−1�1 − 2P1	xm

o �, ∀ m = 1, . . . ,M , �19�

where erf−1�·� is the inverse error function. If the Gaussian
noise is now allowed to have a variance of 
�

2 , this has the
affect of changing the P1	x from the optimal values to

P1	xm
= 0.5 + 0.5erf
 xm

o

�2
�
� . �20�

Clearly P1	xm
= P1	xm

o only if 
�=1. The resultant combination
of the optimal signal distribution and suboptimal noise dis-
tribution are no longer capacity achieving.

The reduction in mutual information can be calculated
numerically, as is shown in Fig. 5 for N=7, 15, 31, 63, and
100 for a range of Gaussian noise variances.

D. Equivalent optimal discrete noise distribution

A corollary of the observations of Sec. III C is that given
complete control over the noise distribution, capacity can be
achieved for any specified signal distribution by optimizing
the noise. Since calculation of mutual information depends
on P1	xm

rather than xm, then given a signal distribution with
the mass points of Eq. �18�, there exists an optimal noise
distribution.

While noise with CDF F���� would achieve capacity in
this case, this distribution is not unique when x is discrete
since any noise distribution with CDF F��·� such that P1	xm

o

=1−F���−xm
o �∀m will also be optimal. This includes the

possibility of a discrete noise distribution, which can be un-
derstood with the following example.

Suppose the noise distribution is discrete on �0,1�. Let its
mass points be the values

�m = 0.5�P1	xm−1

o + P1	xm

o �, m = 2, . . . ,M

and �1= P1	x1

o . Let its probability mass values be

P��m� = P1	xm

o − �
i=1

m−1

P1	xi

o , m = 1, . . . ,M .

This gives a CDF that has points of increase at �m, i.e.,

lim

→0

F���m + 
� = P1	xm

o .

Consequently

F��xm� = P1	xm

o .

IV. DISCUSSION AND CONCLUSIONS

A. Interpretation of the numerical results

It has been shown that the channel capacity for small N is
significantly larger than that achieved with continuously val-
ued signal distributions, e.g., I1 and I2. This is due to such
cases not exploiting the fact that the channel is deterministic
when P1	x is zero or unity. As shown in Fig. 2, it is always
optimal to place the largest Px at these points. This is also the
reason why I3 is very close to capacity since it includes prob-
ability mass at these points.

The optimal input distribution can be seen to be close to
uniform other than the points at M =0 and m=Mo, which is
likely the reason why the lower bound I3 is close to capacity.
The output distribution can be seen to be multimodal, with
the smallest probabilities close to N /2 and at n=1 and n
=N−1. Intuitively this can be expected to be the case since
�i� E�y 	 P1	x=0.5�=N /2 and the conditional variance of y is
largest when P1	x=0.5 since var�y 	x�=NP1	x�1− P1	x�; �ii� the
smallest conditional variance of y occurs when P1	x=0 and
P1	x=1, and consequently Py�0� and Py�N� should be large,
while other values of y near 0 and N should have small
probability.

The lower panel of Fig. 2 shows what appear to be dis-
continuous bifurcations as N increases. This behavior is
qualitatively similar to related but different optimizations of
the binary-quantizing SPN, where instead of optimizing the
input distribution, the optimization is of variable threshold
values �33�.

Here this result is more easily understood, in that bifurca-
tions occur when it is necessary for Mo to increase to achieve
capacity, similar to the results of �31�. For example, when
N=1, one bit per channel use can be achieved by Mo=2,
while for N=2, more than one bit per channel use can be
achieved with Mo=3, which requires an additional mass
point to appear at P1	x=0.5.

The increasing gap between Mo and the lower bounds
shown in Fig. 4 is due to the fact that the entropy of x is
significantly larger than the mutual information as N in-
creases. This is because the average conditional entropy of x
given y increases with N, as it becomes harder to discrimi-
nate between points in the input distribution as the number of
points grows.

B. Implications for ASR and SSR

For the demonstration of SSR in Fig. 5, the value at 
�

=1 is the channel capacity shown in Fig. 1. In this context,
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FIG. 5. Mutual information when the noise distribution is al-
lowed to vary from that used to calculate the capacity achieving
signal mass points for various N. The data is for an example of
Gaussian noise with zero mean and standard deviation 
�, when the
mass points are capacity achieving for 
�=1. SSR can be seen to
occur since noise with larger and smaller standard deviations than
optimal reduce the mutual information from channel capacity.
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�=1 is the optimal noise intensity and leads to the SSR
peak in mutual information. For values of 
� larger and
smaller than optimal, the mutual information is reduced from
capacity, in a qualitatively identical manner to all previous
work on SSR.

Although the greater focus here is on SSR, as discussed in
Sec. I trivial cases of the SPN model are equivalent to the
single threshold model previously used to demonstrate sub-
threshold ASR using mutual information. The current focus
on optimizing the signal distribution, rather than on finding
the optimal noise intensity for assumed signal and noise dis-
tributions, makes it clear that it is the thresholding operation,
and the number of measurements, N, that limits the informa-
tion capacity. The capacity is also independent of the noise
distribution. The fact that SSR occurs is due to the facts that
�i� N�1 and �ii� all nodes in the SPN are identical; while
subthreshold ASR occurs in the N=1 case only because of
the subthreshold constraint.

C. Implications for information transfer in biological neurons

One of the reasons for studying the binary-quantizing
SPN is its similarity to populations of parallel sensory neu-
rons, and the fact that its behavior, e.g., SSR, has been shown
to be qualitatively the same in more complex neural popula-
tion models �6,8,9�. As mentioned in Sec. I, SPNs exhibit
information pooling. The consequences of such an effect has
been of recent interest in neuroscience �7�, where it has also
been called aggregation �10�.

Provided biologically relevant models of pooling by net-
works of neurons can be mapped to an SPN framework
where the output signal is discrete with a finite number of
states, Corollary 1 states that the information capacity of that
network when the input signal is memoryless will be
achieved by a discrete input distribution.

Similar results on optimal discreteness was suggested for
a Poisson neuron model and an assumption of rate coding in
�34�. One difference between the Poisson case and the SPN
studied here is that while the output distribution of a Poisson
neuron is discrete; it is also infinite in cardinality. This means
that Corollary 1 does not apply, and a proof that the optimal
input is discrete has only been provided recently, as part of a

more general formulation �35� �although similar results out-
side the neural context for Poisson channels have long been
known �10,36,37��.

One implication of the results for the Poisson channel that
has been overlooked is that the discreteness of the capacity
achieving input distribution can be converted to mean that
the optimal neural tuning curve is also discrete �38�. Section
III C contained an analogous result for the binary-quantizing
SPN, except that instead of a discrete tuning curve, it is the
noise distribution that should be discrete to optimize infor-
mation transfer for an arbitrary continuous signal distribu-
tion.

The case where the input signal is continuous, and infor-
mation capacity is achieved by ensuring the tuning curve or
noise distribution is optimally discrete can be viewed as
achieving optimal source coding, i.e., the maximally infor-
mative representation of a signal obtained through noisy and
quantized observations. On the other hand, when the noise or
tuning curve is fixed, ensuring information capacity via a
discrete input signal distribution can be viewed as optimal
symbol coding for transmission in a noisy channel.

This “optimal discrete noise” result means that coding of
a continuous random variable for information transmission
through an SPN is achieved when the noise is added in dis-
crete packets or quanta. One biological scenario where it
may be worth exploring whether this actually occurs is the
synaptic junction between sensory receptors cells and affer-
ent nerve fibers, e.g., in the auditory system. While the po-
tential induced in the sensory cell by an external stimulus is
effectively continuously valued, transmission of that poten-
tial to each of a number of nerve fibers involves �i� a dis-
cretized representation prior to the nerve fiber since synaptic
transmission is both quantal and random �39� and �ii� dis-
crete outputs in the form of action potentials.
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