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We study the behavior of the Casimir force in O�n� systems with a diffuse interface and slab geometry
�d−1�L, where 2�d�4 is the dimensionality of the system. We consider a system with nearest-neighbor
anisotropic interaction constants J� parallel to the film and J� across it. We argue that in such an anisotropic
system the Casimir force, the free energy, and the helicity modulus will differ from those of the corresponding
isotropic system, even at the bulk critical temperature, despite that these systems both belong to the same
universality class. We suggest a relation between the scaling functions pertinent to the both systems. Explicit
exact analytical results for the scaling functions, as a function of the temperature T, of the free energy density,
Casimir force, and the helicity modulus are derived for the n→� limit of O�n� models with antiperiodic
boundary conditions applied along the finite dimension L of the film. We observe that the Casimir amplitude
�Casimir�d �J� ,J�� of the anisotropic d-dimensional system is related to that of the isotropic system �Casimir�d�
via �Casimir�d �J� ,J��= �J� /J���d−1�/2�Casimir�d�. For d=3 we derive the exact Casimir amplitude
�Casimir�3, �J� ,J��= �Cl2�� /3� /3−��3� / �6����J� /J��, as well as the exact scaling functions of the Casimir
force and of the helicity modulus ��T ,L�. We obtain that �c��Tc ,L�= �2 /�2��Cl2�� /3� /3
+7��3� / �30����J� /J��L−1, where Tc is the critical temperature of the bulk system. We find that the contribu-
tions in the excess free energy due to the existence of a diffuse interface result in a repulsive Casimir force in
the whole temperature region.
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I. INTRODUCTION

The excess free energy due to the finite-size contributions
to the free energy of a system with a film geometry charac-
terizes a fluctuation-mediated interaction which is termed the
Casimir force. In the case of a fluid confined between two
parallel walls this force is also sometimes called solvation
force or disjoining pressure. The force is named so after the
Dutch physicist Hendrik B. G. Casimir who in 1948 �1� no-
ticed that when two metallic perfectly conducting uncharged
plates face each other in vacuum at zero temperature the
restriction and the modification of the zero-point vacuum
fluctuations of the electromagnetic field between the two par-
allel plates lead to a dependence of the energy of the system
on the distance L between the plates and, thus, to a force
between them which turns out to be attractive. The above is
the so-called classical �actually quantum mechanical�
Casimir effect. When the fluctuating medium is not a
vacuum, but a thermodynamic system, say fluid, near its bulk
critical point Tc one arrives at the so-called thermodynamic
Casimir effect that has been predicted by Fisher and de
Gennes �2� in 1978 and which has been a subject of intensive
theoretical and experimental studies afterwards �3–29�.

In the current article we will investigate the behavior of
the Casimir force in systems with a diffuse interface. When
two phases coexist the borderline between them can either be
characterized by some abrupt change of their order param-
eter, i.e., via a sharp interface, or via a continuum change of
the order parameter in a given region of space between them,
thus forming a diffuse interface. As a realization of such
systems that might possess a diffuse interface one can con-

sider the so-called O�n� models. These models are character-
ized by an order parameter field with n components and by
an interaction energy which is O�n� invariant function of the
local dynamic variables �fields�. More precisely, one can
think about the reaction of O�n� models, with n�2, to some
helical external field which can be characterized in terms of
some helicity modulus � or, in the case of magnetic materi-
als, of Bloch walls between the domains of the magnet. Heu-
ristically, the helicity modulus is the analog of the interface
tension of Ising-like, i.e., n=1 systems, for O�n�2� sym-
metric systems. The simplest theoretical model of a system
with a diffuse interface is the O�n�2� model with antiperi-
odic boundary conditions and short-ranged interactions.
Prominent examples of the O�n� models are the XY �n=2�
and the Heisenberg �n=3� models.

A. The thermodynamic Casimir force

We remind the reader that for an O�n�1� model of a
d-dimensional system with a temperature T and geometry
�d−1�L the thermodynamic Casimir force is defined by
�3,5�

FCasimir
��� �T,L� = −

�fex
����T,L�
�L

, �1.1�

where fex
����T ,L� is the excess free energy

fex
����T,L� = f ����T,L� − Lfb�T� , �1.2�

and the superscript � denotes the dependence on the bound-
ary conditions. Here f ����T ,L� is the full free energy per unit
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area of such a system under boundary conditions � and fb is
the bulk free energy density. It is believed, and the accumu-
lated evidences support it �3–28,30–32�, that if the boundary
conditions are the same at both surfaces bounding the sys-
tem, FCasimir

��� will be negative. In the case of a fluid confined
between identical walls this implies that then the net force
between the plates will be attractive for large separations. If
the boundary conditions are essentially different at both sur-
face planes confining the system �e.g., one of the surfaces
prefer the liquid phase of the fluid while the other prefers the
gas phase� the Casimir force is expected to be positive in the
whole region of the thermodynamic parameters, i.e., then the
net force between the plates will be repulsive.

Recently it has been shown, however, that the above pic-
ture is oversimplified. It has been demonstrated, e.g., that
under appropriate conditions smooth crossovers from repul-
sive to attractive as well as from attractive to repulsive
Casimir forces are possible as the thickness L of a film
changes �29�. It has been also argued �35� that the Casimir
force can be influenced by the anisotropy of the system, even
in the case when the anisotropy is weak, i.e., when it does
not change the universality class of the bulk system. In the
current article we will show that the change of the boundary
conditions in an O�n� system with film geometry, from such
under which the system does not possess a diffuse interface
to such under which an interface is enforced, is enough to
transform the force between the plates bounding the film
from being attractive to being repulsive. We will allow for
anisotropy which reflects the geometry of the system taking
the interaction constant along the surface to be different from
the one perpendicular to the film. We will show that under
such anisotropy, which does not change the universality
class, the Casimir force of the anisotropic system differs
from that one of the isotropic system and will establish a
relation that connects both of them. We will perform our
calculations on the example of an exactly solvable model—
the mean spherical model. We will consider the behavior of
this model under periodic and antiperiodic boundary condi-
tions. We recall that under such boundary conditions, which
preserve the translational invariance of the system, the
spherical model is equivalent to the n→� limit of the O�n�
models �36�, and thus retains essential properties pertinent to
models with continuous symmetry of the order parameter
such as the XY and Heisenberg models.

B. Finite-size behavior of systems with a diffuse interface

According to the standard finite-size scaling theory �see,
e.g., Refs. �5,37� for a general review� one expects that near
the critical temperature Tc �of the corresponding bulk, i.e.,
L=� system� the behavior of FCasimir

�a� in a system with sssa
film geometry under antiperiodic �a� boundary conditions is
given by

�FCasimir
�a� �T,L� = L−dXCasimir

�a� �xt� , �1.3�

while that one of the excess free energy fex
�a� is

�fex
�a��T,L� = L−�d−1�Xf

�a��xt� , �1.4�

where �=1 / �kBT�, xt=attL
1/
 is the temperature scaling vari-

able with t= �T−Tc� /Tc being the reduced temperature, at is a

nonuniversal scaling factor, while XCasimir
�a� and Xf

�a� are uni-
versal �geometry dependent� scaling functions and 
 is the
corresponding �universal� scaling exponent that characterizes
the temperature divergence of the bulk two-point correlation
length � when one approaches the bulk critical temperature
from above, i.e., ��t→0+���0

+t−
. The scaling functions
XCasimir

�a� and Xf
�a� are related via

XCasimir
�a� �xt� = �d − 1�Xf

�a��xt� −
1



xt

d

dxt
Xf

�a��xt� . �1.5�

The value of Xf
�a� at the critical point is known as the Casimir

amplitude ��a�, i.e., ��a��Xf
�a��xt=0�. On its turn, the excess

free energy under antiperiodic conditions fex
�a� can be related

to the one of the same system under periodic boundary con-
ditions fex

�p� via the finite-size helicity modulus ��T ,L�. The
concept of the helicity modulus was introduced by Fisher et
al. �38�. Fundamentally, the helicity modulus is a measure of
the response of the system to a helical or “phase-twisting”
field. Alternatively, for an isotropic system with
n-component order parameter, where n�2, one can consider
the helicity modulus to be the analogy of the surface tension
or interfacial free energy between two phases in a system
with a scalar, i.e., n=1 order parameter �e.g., an Ising
model�. In other words, the helicity modulus is a measure of
the increase of the energy of the system due to the existence
of a diffuse interface within it. When in an O�n�, n�2,
model system such an interface is created by, say, the appli-
cation of antiperiodic boundary conditions, the finite-size he-
licity modulus can be defined, e.g., as suggested in �39�,

��T,L� �
2L

�2 �fex
�a��T,L� − fex

�p��T,L�� . �1.6�

Obviously, the helicity modulus of the “infinite” system then
simply is ��T�� limL→� ��T ,L�, with ��T��0, which is in
a complete agreement with �38�. Thus, inverting the above
definitions, one immediately obtains �40�

fex
�a��T,L� = fex

�p��T,L� +
�2

2L
��T,L� . �1.7�

For the behavior of ��T ,L� near Tc the standard finite-
size scaling theory states that

���T,L� = L−�d−2�X��xt� , �1.8�

where X� is a universal scaling function. Actually, when d
=3, a modification of Eq. �1.8� has been suggested in �42� by
Privman, who supposed the possibility of appearance of
“resonant” logarithmic term due to the mutual influence of
the regular and singular contributions in the helicity modulus

���T,L� = L−1�X̃��xt� + � ln�L/�0�� + ��T�L−1 + ¯ ,

�1.9�

where � is an universal amplitude, while ��T� is a regular at
Tc function and �0 is some characteristic microscopic length
scale �e.g., the distance between the molecules of the corre-
lated fluid, or the lattice spacing�. The validity of this hy-
pothesis has been checked in �39� on the example of the
exactly solvable mean-spherical model with isotropic
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nearest-neighbor interactions. No logarithmic corrections of
the type predicted in Eq. �1.9� have been found. In the cur-
rent article we will demonstrate that this statement is still
valid when the interaction is anisotropic �see below�. Let us
recall that in the case of superfluids �n=2, d=3� the helicity
modulus � is proportional �38� to the superfluid density frac-
tion �, namely �= �m /��2��T� with m being the mass of the
helium atom, and is directly measurable �for experiments
measuring � in thin films of 4He see, e.g., Refs. �43,44��. In
fact, Eq. �1.9� was proposed in �42� as an attempt to improve
the fit of the experimental data. It turns out, however, that the
overall fit of the data is improved only in a very limited way,
provided one insists on the bulk value of 
 in the scaling
variable xt. The scaling “data collapse” technique works well
if one takes 
 as an adjustable parameter not necessarily
equal to the correlation length exponent. It also should be
emphasized that one could expect additional complexity in
the behavior of the finite-size scaling function of the helicity
modulus in the case of superfluid transitions in a film geom-
etry; nevertheless, the analysis of the experimental data
shows no clear singularities or a jump in the finite-size scal-
ing function �43,44�.

According to all the accumulated analytical and numerical
evidences, see, e.g., Refs. �5,37�, and references cited
therein, when xt�1 both the excess free energy and the Ca-
simir force under both periodic and antiperiodic boundary
conditions in systems with short-ranged interactions is ex-
pected to tend to zero in an exponential-in-L way. This is
consistent with ��T��0 for T�Tc. When xt→−� the same
quantities tend to zero in a power-law-in-L way. This slow
algebraic decay of fex �and of FCasimir� is, of course, associ-
ated with the existence of soft modes in the system �spin
waves� when T�Tc and in the absence of an ordering exter-
nal field destroying the O�n� symmetry and suppressing the
spin-wave type excitations �45�. This, in turn, will lead to a
much greater �in comparison with the Ising-like case�
Casimir �solvation� force in O�n�1� models when T�Tc.
With respect to the Casimir force the last has not only been
predicted theoretically, but has been also observed experi-
mentally �12,16� and, relatively recently, confirmed within a
Monte Carlo study of the XY model �24,26�. The considered
systems do not posses, however, a diffuse interface. When
such an interface is present and T�Tc, from Eq. �1.7� it is
easy to see that

FCasimir
�a� �T � Tc,L � �0� �

1

2
�2��T�L−2. �1.10�

Since ��T��0 the last implies that the Casimir force will be
repulsive and much stronger, of the order of L−2, than in
systems with no diffuse interface where it is either of the
order of L−d, or smaller.

C. Finite-size behavior of systems with weak anisotropy

Since we consider film geometry, it is natural to allow for
an anisotropy of the interactions in the system which reflects
this geometry. To that aim we will take the interaction con-
stant in the Hamiltonian along the surface, say J�, to be dif-
ferent from the one perpendicular to the film, say J�. Since

such anisotropy, known as weak anisotropy, does not change
the universality class of the bulk system, one might naively
expect that the scaling functions of the finite system XCasimir

�a� ,
Xf

�a�, and X� will be the same as for the isotropic system.
Recently it has been argued, however, see Refs. �35,49�, that
this is not true and that one shall expect these functions to be
nonuniversal and depending on the ratio J� /J�. It has been
shown �35,49� that the main reason for this state of affairs is
the need of a generalization of the standard hyperuniversality

hypothesis �50–55�. According to it, if f̄ b,sing�T� is the singu-
lar part of the bulk free energy density fb normalized per
kBT, and ��T� is the bulk two-point correlation length in the
isotropic system, then one has

lim
T→Tc

+
f̄ b,sing�T����T��d = Q , �1.11�

where Q is a universal constant that characterizes the corre-

sponding universality class. If now f̄ b,sing�T �J� ,J�� is the cor-
responding free energy in the anisotropic film system with
���t→0+�=��,0

+ t−
 being the correlation length along the sys-
tem surface and ���t→0+�=��,0

+ t−
 the one perpendicular to
it, then the generalized hyperuniversality hypothesis states
that

lim
T→Tc

+
f̄ b,sing�T�J�,J������T��d−1���T� = Q , �1.12�

with Q being the same universal quantity as in the isotropic
case. Note that in Eq. �1.12� Tc is the critical temperature of
the anisotropic system which, in general, differs from that
one of the isotropic system, see Eq. �1.11�. Next, the hypoth-
esis involves two different correlation lengths, characterized
by two different correlation length amplitudes, while the
standard hypothesis deals with only one correlation length. It
is worthwhile to recall that the validity of Eq. �1.11� is one of
the main prerequisites for arguing the validity of the scaling
hypothesis �1.4� by Privman and Fisher �56�. It is, however,
possible to relate the scaling functions of the normalized free
energy densities of the anisotropic to that one of the isotropic
system. Indeed, choosing the isotropic system to be such that
its correlation length is equal to, say, �� and considering in
Eqs. �1.11� and �1.12� the limits T→Tc to the corresponding
critical temperatures of the anisotropic and isotropic systems,
one obtains that

f̄ b,sing�T�J�,J�� � 	 ���T�
���T� 
d−1

f̄ b,sing�T�, T → Tc
+,

�1.13�

and, thus one arrives at

Xf
�a��xt�J�,J�� = 	 ��,0

��,0

d−1

Xf
�a��xt� , �1.14�

where ��,0 and ��,0 are the correlation length amplitudes in
the anisotropic system, while Xf

�a��xt� is the universal scaling
function of the isotropic one. We expect xt to be of the form
xt=at�b�tL1/
. The last implies that all the effect of the an-
isotropy of the type considered can be incorporated in the
factor ���,0 /��,0�d−1 in front of the scaling function on the
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right-hand side of Eq. �1.14� and in the nonuniversal factor at
that enters in the definition of the temperature scaling vari-
able xt, provided the reduced temperature t is measured with
respect to the critical temperature Tc shifted by the aniso-
tropy. Of course, despite of the arguments presented aimed to
justify these relations, Eqs. �1.13� and �1.14� shall be consid-
ered only as plausible hypotheses whose validity has to be
verified �57�. Note that, if valid, Eq. �1.14� implies a relation
of the Casimir amplitudes in the anisotropic and isotropic
systems

�Casimir�d�J�,J�� = ���,0/��,0�d−1�Casimir�d� . �1.15�

It is worthwhile to mention that despite Eqs. �1.14� and
�1.15� written in terms of systems with antiperiodic boundary
conditions, no specific properties of systems with such
boundary conditions have been used in arguing their validity.
We required only the validity of Eqs. �1.11� and �1.12� which
concern bulk systems, i.e., they are independent of any pos-
sible boundary conditions applied on the finite system. Thus,
we expect that Eqs. �1.14� and �1.15� hold for general bound-
ary conditions � imposed on the pair of isotropic and aniso-
tropic systems involved in these equations.

In the current article on the example of the exactly solv-
able mean spherical model with 2�d�4 we will demon-
strate that in the anisotropic system with a diffuse interface
the scaling functions XCasimir

�a� , Xf
�a�, and X� indeed depend, in

addition on the scaling variable xt, on the ratio J� /J�. This
will lead, e.g., to nonuniversality of the Casimir amplitudes
in such systems which are, however, simply related to the
ones of the isotropic system via the relation �1.15�. We will
determine the explicit form of the scaling function of the free
energy, Casimir force, and of the finite-size helicity modulus.
For the case d=3 in the isotropic system we will find the
universal values of these quantities at the critical point Tc of
the bulk system. We will also consider the case when the
nearest-neighbor interaction J� along the film might be dif-
ferent from the one in orthogonal direction J�.

The structure of the article is as follows. In Sec. II we
define the model under consideration and provide some basic
expressions needed for its treatment. The results for the
finite-size behavior of the free energy and of the Casimir
force are presented in Sec. III, in Sec. III A we present our
general results for 2�d�4, while in Sec. III B the explicit
results for the important case of d=3 are given. Our findings
about the behavior of the helicity modulus are contained in
Sec. IV. The article closes with a discussion and concluding
remarks given in Sec. V. Some technical details and results
needed in the main text are derived in Appendixes A and B.

II. THE SPHERICAL MODEL

As stated above, we will study the finite-size behavior of
an anisotropic system with a diffuse interface on the example
of a spherical model embedded on a d-dimensional hypercu-
bic lattice L�Zd, where L=L1�L2� ¯Ld. Let Li=Niai ,
i=1, ¯ ,d, where Ni is the number of spins and ai is the
lattice constant along the axis i with ei being a unit vector
along that axis, i.e., ei ·e j =�ij. With each lattice site r one

associates a real-valued spin variable Sr which obeys the
constraint

1

N �
r�L

�Sr
2
 = 1, �2.1�

where N=N1N2¯Nd is the total number of spins in the sys-
tem. The average in Eq. �2.1� is with respect to the Hamil-
tonian of the model

�H = −
1

2
��

r,r�

SrJ�r,r��Sr� + s�
r

Sr
2, �2.2�

where s is the so-called “spherical field” whose value is such
that the constraint �2.1� is fulfilled. In the current article we
will consider only the case of nearest-neighbor interactions,
i.e., we take J�r ,r��=J��r−r���=Ji, if r−r�= �aiei,
i=1, ¯ ,d, and J�r ,r��=0 otherwise. Explicitly, one has
J�r ,r��=�i=1

d Ji���r−r�−aiei�+��r−r�+aiei��. Let periodic
boundary conditions be applied along directions ei,
i=1, ¯ �d−1�, while antiperiodic boundary conditions, re-
sponsible for the creation of a diffuse interface within the
system, are applied along ed. Generalizing the results of
�5,7,39,59,60� pertinent to an isotropic model for the here
considered anisotropic case, it can be shown that the free
energy of the model �per unit spin� is given by �61�

�f �a���,N�d,J� = −
1

2
ln � + sup

s�Ĵmax
�a�
�− s +

1

2N �
k�BZ1

ln	s

−
1

2
�Ĵ�a��k�
� , �2.3�

where N= �N1 ,N2 , ¯Nd�, J= �J1 ,J2 , ¯ ,Jd�, Ĵ�a��k� is the
Fourier transform of the interaction J, i.e.,

Ĵ�a��k� = �
r

J�r�eik·r, �2.4�

Ĵmax
�a� =maxk Ĵ�a��k�, and the wave vector k= �k1 ,k2 , ¯ ,kd�

�BZ1, with BZ1 being the first Brillouin zone, has compo-
nents ki=2�ni /Li, where ni=0, ¯ ,Ni−1, and i=1, ¯ , �d
−1�, while kd=2��nd+1 /2� /Ld with nd=0, ¯ ,Nd−1. Thus,
explicitly one has

Ĵ�a��k� = 2�
i=1

d−1

Ji cos�2�ni

Ni
� + 2Jd cos���2nd + 1�

Nd
� ,

�2.5�

and Ĵmax
�a� =2�i=1

d−1Ji+2Jd cos�� /Nd�� Ĵ0−2Jd�1−cos�� /Nd��,
with Ĵ0=2�i=1

d Ji. Note that the ground state energy Ĵmax
�a� de-

pends on Nd and is twofold degenerate—it is reached for
both k1=k2= ¯ =kd−1=kd=0 and k1=k2= ¯ =kd−1=0,kd
=Nd−1. Equation �2.1� for the spherical field s reads

1

2N �
k�BZ1

1

s −
1

2
�Ĵ�a��k�

= 1. �2.6�
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We will be mainly interested in determination of the Ca-
simir force and the helicity modulus within the considered
model in a film geometry. For that aim let us take J1=J2
= ¯ =Jd−1=J�, N1=N2= ¯ =Nd−1=N�, Jd=J�, Nd=N� and
perform the limit N�→�, i.e., consider a system with a film
geometry in which all the interactions in directions parallel
to the film surface are equal �to J�� but possibly different
from the interaction in the direction perpendicular to the sur-
face �which is J��. Then, Eqs. �2.3� and �2.6� become

�f �a���,N��d,J� =
1

2
ln

K

2�
−

1

2
K

Ĵmax
�a�

Ĵ0

+ sup
w�0

�U�a��w,N��d,J� −
1

2
Kw� ,

�2.7�

K =
1

N�
�
kd

�
k��BZ1

�d−1� 1

w + ��a��k�,kd�d,J�
, �2.8�

correspondingly, where k= �k� ,kd� with k� = �k1 ,k2 , ¯ ,kd−1�,
K=�Ĵ0,

U�a��w,N��d,J� =
1

2N�
�
kd

�
k��BZ1

�d−1�

ln�w + ��a��k�,kd�d,J�� ,

�2.9�

with

��a��k�d,J� = �Ĵmax
�a� − Ĵ�a��k��/Ĵ0 � 0, �2.10�

�
k�BZ1

�d−1�

� �
i=1

d−1 �
0

2� dki

2�
, �2.11�

and we have replaced the spherical field s by another field w,
defined as

w = 2s/K − Ĵmax
�a� /Ĵ0. �2.12�

Here

Ĵmax
�a� = 2�d − 1�J� + 2J� cos��/N�� �2.13�

is the ground state energy of the finite system under antipe-
riodic boundary conditions, while

Ĵ0 = 2�d − 1�J� + 2J� �2.14�

is the ground state energy of the infinite one and, thus,

Ĵmax
�a� /Ĵ0 = �d − 1�b� + b� cos��/N�� , �2.15�

where

b� = J�/�
i=1

d

Ji �2.16�

and

b� = J�/�
i=1

d

Ji �2.17�

reflect the asymmetry in the interaction.
Equations �2.7�–�2.12� provide the basis for the investiga-

tion of the behavior of the Casimir force within the mean-
spherical model in the presence of a diffusive interface in the
system.

III. FINITE-SIZE BEHAVIOR OF THE FREE ENERGY
AND THE CASIMIR FORCE

A. General results for the case 2�d�4

From Eq. �2.7� for the excess free energy
�fex

�a��� ,N� �d ,b�=N���f �a��� ,N� �d ,b�−�fb�� �d ,b�� one
obtains

�fex
�a���,N��d,b� = N�	1

2
b�K�1 − cos

�

N�

� −
1

2
K�w − wb�

+ U�a��w,N��d,b� − Ud�wb�b�
 , �3.1�

where fb�� �d ,b�� limN�→� f�� ,N� �d ,b�, b= �b� , ¯ ,b� ,b�,
w�w�K ,N� �d ,b� is the solution of Eq. �2.8�, and wb
�wb�K �d ,b� is the �N�→�� limit of wb�K ,N� �d ,b�, i.e.,
wb�K �d ,b�=limN�→� w�K ,N� �d ,b�. As it is well known,
see e.g., Ref. �5�, for K�Kc=Wd�0 �b� the spherical filed wb
is solution of the equation

K = Wd�wb�b� , �3.2�

where, for w�0,

Wd�w�b� =
1

2
�

k�BZ1

�d� 1

w + ��k�d,b�
, �3.3�

is the d-dimensional Watson type integral. When K�Kc one
has wb=0. In Eq. �3.1� Ud�w �b�=limN�→� U�a��w ,N� �d ,b�
which, according to Eq. �2.9�, reads

Ud�w�b� =
1

2
�

k�BZ1

�d�

ln�w + ��k�d,b�� . �3.4�

Note that it does not depend on the boundary conditions.
Obviously, the only nontrivial N� dependence in fex

�a� stems
from the size dependence of the spherical field w and from
the asymptotic behavior of U�a��w ,N� �d ,b� on N� for
N��1. Let us now study these dependencies in detail.

Using the identity

ln a = �
0

� dx

x
�e−x − e−ax� �3.5�

one can rewrite Eq. �2.9� into the form

U�a��w,N��d,b� =
1

2
�

0

� dx

x
�e−x − e−wxSN�

�a� �xb��

� �e−xb�I0�xb���d−1� , �3.6�

where
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SN
�a��z� =

1

N
�
n=0

N−1

exp	− z�cos
�

N
− cos

��2n + 1�
N

�

�3.7�

and I0�z� is the modified Bessel function of the first kind
�58�. With the help of the identity

SN
�a��z� = exp	z�1 − cos

�

N
�
�2S2N

�p��z� − SN
�p��z�� , �3.8�

where

SN
�p��z� =

1

N
�
n=0

N−1

exp	− z�1 − cos
2�n

N
�
 �3.9�

the problem of determining the asymptotic behavior of the
sum SN

�a��x� when N�1, which characterizes the antiperiodic
boundary conditions, can be reduced to the determination of
the asymptotic behavior of the sum SN

�p��x�, which is pertinent
to systems with periodic boundary conditions. It can be
shown that �39�

SN
�a��x� � �SN

+�a� =
2

N
+

2

N
R�+�� �2

2N2x� − v�x/2� , x � N2,

SN
−�a� = exp	x�1 − cos

�

N
�
	e−xI0�x� +� 2

�x
R�−��2N2

x
�
 , x � N2,� �3.10�

with corrections to the right-hand side of the above expres-
sions smaller than the terms retained there; here

R�+��x� = �
n=1

�

e−4n�n+1�x, �3.11�

R�−��x� = 2�
n=1

�

e−n2x − �
n=1

�

e−n2x/4, �3.12�

v�x� =
1

�4�x
�1 − erf���x�� . �3.13�

In addition, with the help of the Poisson identity, one can
easily check that the following equivalent representations of
functions R�+��x� and R�−��x� are valid

R�+��x� =
1

2
ex�2�0,e−4x� − 1, �3.14�

R�−��x� = �
n=1

�

�− 1�ne−n2x/4 =
1

2
��4�0,e−x/4� − 1� , �3.15�

where �2�x� and �4�x� are the corresponding elliptic theta
functions �58�.

If one insists on using only the second asymptote in Eq.
�3.10� as the one valid for all x, see, e.g., Ref. �60�, then the
corresponding result for U�a��w ,N� �d ,b� reads

U�a��w,N��d,b� = Ud�w̃�b� −
N�

−d

�4��d/2�b�

b�
��d−1�/2

� �
0

� dx

x
x−d/2e−ỹxR�−��1

x
� , �3.16�

where

w̃ = w − b��1 − cos
�

N�

� , �3.17�

ỹ = y − �2, y = �2N�
2 /b��w �3.18�

and, see Eq. �3.6�,

Ud�w̃�b� =
1

2
�

0

� dx

x
�e−x − e−w̃x�e−xb�I0�xb���

� �e−xb�I0�xb���d−1� . �3.19�

Using the representation �3.19� it can be shown �19� that
when w̃→0+ one has

Ud�w̃�b� = Ud�0�b� +
1

2
w̃Wd�0�b�

−
1

2

��− d/2�

�2��d/2�i=1

d �bi

w̃d/2 + ¯ , �3.20�

with the dots representing terms of higher order than those
retained in the expression. From Eqs. �3.16� and �3.20�, and
with the help of the representation �3.15�, for the finite-size
part U�w ,N� �d ,b� of the free energy in the limit w̃→0+ and,
thus ỹ�0, see Eq. �3.18�, one obtains

U�a��w,N��d,b� = Ud�0�b� +
1

4
b�ỹWd�0�b�N�

−2

− N�
−d�b�

b�
��d−1�/2

ỹd/2� 1

2

��− d/2�
�4��d/2

+
2

�2��d/2 �
n=1

�

�− 1�nKd/2�n�ỹ�

�n�ỹ�d/2 �
+ O�N�

−4� , �3.21�
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where K
�z� is the modified Bessel function of the second
kind �58�. Then, from Eqs. �3.1�, �3.20�, and �3.21� for the
excess free energy one derives the final result

�fex
�a���,N��d,b� = N�

−�d−1��b�

b�
��d−1�/2� 1

4
xt�ỹ − yb�

−
1

2

��− d/2�
�4��d/2 �ỹd/2 − yb

d/2�

−
2ỹd/2

�2��d/2 �
n=1

�

�− 1�nKd/2�n�ỹ�

�n�ỹ�d/2 � ,

�3.22�

where xt is the temperature dependent scaling variable

xt = b�� b�

b�

��d−1�/2
�Kc − K�N�

1/
, 
 = 1/�d − 2� ,

�3.23�

yb = �2N�
2 /b��wb, �3.24�

with wb being the solution of the bulk spherical field equa-
tion �3.2�. We recall that both Kc and wb in Eqs. �3.23� and
�3.24� depend on b, i.e., on the anisotropy of the system.

Let us now see what is the correct answer when the com-
plete asymptotic behavior, as given in Eq. �3.10�, is used for
the determination of the excess free energy.

Using the asymptotes given by Eq. �3.10� one obtains, see
Appendix A,

U�a��w,N��d,b� = Ud�0�b� +
1

4
b��y − �2�Wd�0�b�N�

−2

−
1

2
N�

−d�b�

b�
��d−1�/2 1

�4��d/2���− d/2�yd/2

+ �2��1 − d/2�yd/2−1

+ 2�4��
0

� dx

x
x−�d−1�/2e−yx	1 + R�+���2x�

−
1

2�4�x
�1 + �2x�
� , �3.25�

where y= �2N�
2 /b��w�0. Then from Eqs. �3.1� and �3.20�

for the excess free energy one obtains

�fex
�a���,N��d,b� = N�

−�d−1��b�

b�
��d−1�/2�1

4
xt�y − �2 − yb�

−
1

2

1

�4��d/2 ���− d/2��yd/2 − yb
d/2�

+ �2��1 − d/2�yd/2−1� + I�y,d�� ,

�3.26�

where

I�y,d� � −
1

�4���d−1�/2�
0

�

dxx−�d+1�/2e−yx

�	1 + R�+���2x� −
1 + �2x

2�4�x

 . �3.27�

The expression �3.26� has to be compared with Eq. �3.22�
that follows when one uses as asymptote of SN

�a�, when N
�1, only the asymptote SN

−�a� from Eq. �3.10� �see, e.g., Ref.
�60��. As we see, Eqs. �3.26� and �3.22� differ from each
other. However, using the identity

1 + R�+���2x� =
e�2x

�4�x
	1

2
+ R�−��1

x
�
 �3.28�

one can show that when d�4 and y��2,

I�y,d� = − ỹd/2 2

�2��d/2 �
n=1

�

�− 1�nKd/2�n�ỹ�

�n�ỹ�d/2
−

1

2

��− d/2�
�4��d/2

�	�ỹd/2 − yd/2� + �2d

2
yd/2−1
 �3.29�

and, thus, expression �3.26� is equivalent to �3.22� for y
��2. In the opposite case, when y��2, one can use Eq.
�3.26� or, equivalently, the analytical continuation of Eq.
�3.22�. Therefore, although in the derivation of Eq. �3.22� the
incomplete asymptotic behavior of sums involved has been
used, which makes this derivation mathematically wrong,
and the expansion �3.20� of the bulk quantities has been ap-
plied, which is valid only for y��2, Eq. �3.22� is still valid
and can be used for all y�0 since this equations is equiva-
lent to Eq. �3.26� which is obtained when one follows the
proper mathematical procedures.

When �y−�2��4�2 one can provide a representation of
the integral I�y ,d� in terms of power series which is very
convenient for analysis of its behavior for small values of the
argument y. The corresponding representation is derived in
Appendix B, and reads

I�y,d� =
y�d−2�/2

2�4��d/2 ��2��1 − d/2� + y��− d/2��

− ��d−1�/2�
m=0

�

am
�d���2 − y�m, �3.30�

where the coefficients am
�d� are given by

am
�d� =

�21−d − 2−2m���m +
1 − d

2
���2m + 1 − d�

�2mm!
.

�3.31�

From Eqs. �1.1�, �3.22�, and �3.26� for the Casimir force one
obtains the following two equivalent representations:
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�FCasimir
�a� ��,N��d,b� = N�

−d�b�

b�
��d−1�/2� 1

4
xt�ỹ − yb�

− �d − 1�	1

2

��− d/2�
�4��d/2

��ỹd/2 − yb
d/2� + ỹd/2 2

�2��d/2

� �
n=1

�

�− 1�nKd/2�n�ỹ�

�n�ỹ�d/2 
� ,

�3.32�

in the derivation of which we have used the identity

�

�y
�y�K��ay�� = − ay�K�−1�ay� , �3.33�

and

�FCasimir
�a� ��,N��d,b� = N�

−d�b�

b�
��d−1�/2	1

4
xt�y − �2 − yb�

− �d − 1��1

2

1

�4��d/2 ���− d/2��yd/2

− yb
d/2� + �2��1 − d/2�yd/2−1�

− I�y,d��
 . �3.34�

In Eqs. �3.32� and �3.34� the variables y �or ỹ� and yb satisfy
the spherical field equations �2.8� and �3.2�, respectively. It
can be easily shown that these two equations can be rewritten
in a scaling form. In the geometry of a film and under anti-
periodic boundary condition the equation for ỹ reads

−
1

2
xt =

��1 − d/2�
�4��d/2 ỹd/2−1 + ỹd/2−1 2

�2��d/2

� �
n=1

�

�− 1�nKd/2−1�n�ỹ�

�n�ỹ�d/2−1
, �3.35�

which is equivalent to

−
1

2
xt =

��1 − d/2�
�4��d/2 yd/2−1 +

��2 − d/2�
2d�d/2−2 yd/2−2 + 2

d

dy
I�y,d� ,

�3.36�

while the corresponding equation for yb is

−
1

2
xt =

��1 − d/2�
�4��d/2 yb

d/2−1. �3.37�

Equations �3.23�, �3.32�, �3.34�, �3.35�, and �3.37� dem-
onstrate that the Casimir force in a system with an aniso-
tropic interaction can be written in the form

�FCasimir
�a� ��,N��d,b� = N�

−d�b�

b�
��d−1�/2

XCasimir�xt� ,

�3.38�

where XCasimir is a universal scaling function, provided a suit-
able definition of the scaling variables, see Eq. �3.23�, is
used. Note that xt is of the form xt=at�b� tL1/
 which means
that all the effect of the anisotropy of the type considered can
be incorporated in the factor �b� /b���d−1�/2= �J� /J���d−1�/2 in
front of the scaling function on the right-hand side of Eq.
�3.38� and in the nonuniversal factor at that enters in the
definition of the temperature scaling variable xt, provided the
reduced temperature t is measured with respect to the critical
temperature Tc shifted by the anisotropy. Note that with re-
spect to the Casimir amplitudes Eq. �3.38� leads to the fol-
lowing relation between the amplitudes in the anisotropic
and isotropic systems

�Casimir�d�J�,J�� = � J�

J�
��d−1�/2

�Casimir�d� . �3.39�

Note also that, because of the universality, the value of the
Casimir amplitude in the isotropic system does not depend
on J�J�=J�. In order to achieve a conformity with relation
�1.15� one needs only to determine the ratio �� /�� in the
anisotropic system. In fact, this has already been done in �19�
with the result that

��

��

=�J�

J�

. �3.40�

Inserting Eq. �3.40� into Eq. �3.39� one, indeed, immediately
obtains Eq. �1.15�.

B. Results for the case d=3

Since d=3 is of special importance we will present some
explicit results for this case. With d=3, Eqs. �3.32� and
�3.34� simplify to

�FCasimir
�a� ��,N��d = 3,b�

= N�
−3�b�

b�
��1

4
xt�ỹ − yb� −

1

6�
�ỹ3/2 − yb

3/2�

−
�ỹ

�
Li2�− e−�ỹ� −

1

�
Li3�− e−�ỹ�� , �3.41�

where Lin�z� is the polylogarithm �58�, and

�FCasimir
�a� ��,N��d = 3,b� = N�

−3�b�

b�
��1

4
xt�y − �2 − yb�

−
1

6�
�y3/2 − yb

3/2� +
�

4
y1/2 + 2I�y,3�� ,

�3.42�

respectively. Accordingly, Eqs. �3.35� and �3.36� for ỹ and y
become
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xt =
1

2�
�ỹ +

1

�
ln�1 + e−�ỹ� , �3.43�

and

xt =
1

2�
�y −

�

4�y
+

1

�
�

0

� dx

x
e−yx	1 + R�+���2x� −

1 + �2x

2�4�x

 .

�3.44�

Equation �3.43� can be explicitly solved in the form

�ỹ = 2 arccosh	1

2
e�xt
 . �3.45�

At T=Tc, i.e., when xt=0, this solution simplifies to

�ỹ = � i
2�

3
. �3.46�

As it is well known �5�, the scaling form of the solution of
Eq. �3.37� for yb for the infinite system with d=3 is

�yb = �2�xt, xt � 0,

0, xt � 0.
� �3.47�

At T=Tc with yb=0, according to Eq. �3.47�, and ỹ from Eq.
�3.46� one can from Eq. �3.41� obtain the Casimir amplitude
in the form

�Casimir = � J�

J�
�	1

3
Im�Li2��3 − 1�� −

��3�
6�


 , �3.48�

which, using the relation Im�Li2�ei���=Cl2��� between the
polylogarithm and the Clausen function �see, e.g., �62��,

Cl2��� = �
k=1

�
sin�k��

k2 , �3.49�

can be written as

�Casimir = � J�

J�
�	1

3
Cl2��

3
� −

��3�
6�


 � 0.274 543� J�

J�
� .

�3.50�

One can also determine the full temperature dependence of
the Casimir force. For that aim, in Fig. 1 we present the
scaling function XCasimir�xt� of the Casimir force
FCasimir

�a� �� ,N� �d=3,b� as a function of the temperature scal-
ing variable xt. We observe that XCasimir�xt��0 for all xt, i.e.,
the Casimir force under antiperiodic boundary conditions is
always a repulsive force. Furthermore, from Eqs. �3.41�,
�3.43�, and �3.47� it is easy to check that when xt�1, one has
y ,yb�1 which lead to the result that the scaling function
XCasimir�xt� decays exponentially fast to zero, while for
xt�−1 one has y→0+, yb=0 and that

XCasimir�xt� �
xt→−�

−
�2

4
xt −

��3�
�

. �3.51�

As we will see below, the last equation, together with Eqs.
�3.38� and �4.7�, leads to the conclusion that when T�Tc the
behavior of the Casimir force in systems with a diffuse in-
terface in indeed given by Eq. �1.10�.

IV. HELICITY MODULUS

A. General results for the case 2�d�4

When in an O�n�2� system an interface is created by,
say, applying antiperiodic boundary conditions, the corre-
sponding helicity modulus characterizing that interface can
be defined, e.g., as suggested in �39�

���,N��d,b� �
2N�

�2 �fex
�a���,N��d,b� − fex

�p���,N��d,b�� ,

�4.1�

where fex
�p��� ,N� �d ,b� is the excess free energy of the

system under periodic boundary conditions when no such
diffuse interface exists. Obviously, the helicity modulus
of the infinite system then simply is ��� �d ,b�
� limN�→� ��� ,N� �d ,b�.

Within the isotropic spherical model the corresponding
result for ��� �d� is known, see, e.g., Ref. �39�,

���T�d� =
1

2d
�K − Kc� . �4.2�

The needed information for fex
�p��� ,N� �d ,b� is also available,

see, e.g., Ref. �19�,

�fex
�p���,N��d,b� = N�

−�d−1��b�

b�
��d−1�/2� 1

4
xt�yp − yb�

−
��− d/2�
2�4��d/2 �yp

d/2 − yb
d/2�

− yp
d/2 2

�2��d/2 �
n=1

�
Kd/2�n�yp�
�n�yp�d/2 � , �4.3�

where yp is the solution of the equation
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0
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X
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t
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FIG. 1. The scaling function XCasimir�xt� of the Casimir force
FCasimir

�a� �� ,N� �d=3,b� for d=3. Note that XCasimir�xt��0 for all xt.
The asymptotic behavior of XCasimir�xt� for xt�−1 is given accord-
ing to Eq. �3.51�.
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−
1

2
xt =

��1 − d/2�
�4��d/2 yp

d/2−1 + yp
d/2−1 2

�2��d/2 �
n=1

�
Kd/2−1�n�yp�
�n�yp�d/2−1

.

�4.4�

Using Eqs. �3.22� and �4.3�, for the finite-size scaling behav-
ior of the helicity modulus we obtain

����,N��d,b� = N�
−�d−2�� J�

J�
��d−1�/2

X��xt� , �4.5�

where the scaling function of the helicity modulus � is

X��xt� =
2

�2� 1

4
xt�ỹ − yp� −

1

2

��− d/2�
�4��d/2 �ỹd/2 − yp

d/2�

−
2

�2��d/2	 ỹd/2�
n=1

�

�− 1�nKd/2�n�ỹ�

�n�ỹ�d/2

− yp
d/2�

n=1

�
Kd/2�n�yp�
�n�yp�d/2 
� , �4.6�

where ỹ is the solution of Eq. �3.35�, yp is the solution of Eq.
�4.4�, and xt is defined in Eq. �3.23�. Taking into account that
when T�Tc and N��1 one has yp→0+ and y→0+, from
Eqs. �4.5� and �4.6� one derives, within the spherical model,
the behavior of the “bulk” helicity modulus in an anisotropic
system,

���T�d,b� =
1

2
b��K − Kc� . �4.7�

Despite the close similarity with Eq. �4.2�, note that here Kc
is the critical coupling of the anisotropic system, while in Eq.
�4.2� it is the corresponding one of the isotropic system.

B. Results for the case d=3

Since d=3 is of special importance we, similar to what we
have done for the Casimir force in systems with a diffuse
interface, will present in more details explicit results for the
finite-size behavior of the helicity modulus in this case.
When d=3 Eqs. �4.6� and �4.4� simplify to

����,N��d = 3,b� = N�
−1�b�

b�
� 2

�2�1

4
xt�ỹ − yp�

−
1

12�
�ỹ3/2 − yp

3/2� −
1

2�
��ỹ Li2�− e−�ỹ�

− �yp Li2�e−�yp� + Li3�− e−�ỹ�

− Li3�e−�yp��� , �4.8�

and

xt =
1

2�
�yp +

1

�
ln�1 − e−�yp� , �4.9�

respectively. The solution of Eq. �4.9� for periodic boundary
conditions is

�yp = 2 arcsinh	1

2
e�xt
 , �4.10�

which has to be compared with the corresponding solution
for the antiperiodic boundary conditions, see Eq. �3.45�.

Let us determine the critical value of the finite-size helic-
ity modulus ���c ,N� �d=3,b�. Knowing the Casimir ampli-
tude for antiperiodic boundary conditions �Casimir �see Eq.
�3.50�� and that one under periodic boundary conditions �7�
�see also �21��

�Casimir
per = −

2

5�
��3� � − 0.153 051, �4.11�

from Eq. �4.1� one obtains

�c���c,N��d = 3,b� =
2

�2N�

� J�

J�
���Casimir − �Casimir

per �

=
2

�2N�

� J�

J�
�	1

3
Cl2��

3
� +

7

30�
��3�


� 0.086 649N�
−1� J�

J�
� . �4.12�

The dependence of the scaling function X��xt� is plotted
in Fig. 2. It is easy to show that X��xt� decays exponentially
fast for xt�1, while for xt�−1 one derives that

X��xt� �
xt→−�

− xt/2. �4.13�

The asymptote of X� for T�Tc leads to Eq. �4.7� for the
behavior of the helicity modulus within the anisotropic O�n�
models when n→� in the limit limN�→� ���� ,N� �d
=3,b�.

V. DISCUSSION AND CONCLUDING REMARKS

In the current article we studied as a function of the tem-
perature the behavior of the Casimir force and the helicity
modulus in anisotropic O�n� systems with continuous �n

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1
asymptote

xt

X
Υ
(x

t
|d

=
3)

FIG. 2. The scaling function X��xt� of the helicity modulus
��T ,L� for d=3. One observes that it is a monotonically decreasing
function of xt. The asymptote of X��xt� for xt�−1 is given in Eq.
�4.13�.
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�2�-component order parameter. We envisaged systems
with a film geometry when the boundary conditions imposed
enforce the presence of a diffuse interface in them. The in-
teraction along the film is characterized by a coupling con-
stant J� while in the direction perpendicular to the film it is
J�. We argued that in such anisotropic systems the Casimir
force, the free energy and the helicity modulus differ from
those of the corresponding isotropic systems, even at the
bulk critical temperature, despite that these systems both be-
long to the same universality class. We suggested a relation
between the scaling functions pertinent to the both systems;
say, for the scaling functions of the excess free energies �nor-
malized per kBT� one has

Xf
�a��xt�J�,J�� = 	 ��,0

��,0

d−1

Xf
�a��xt� , �5.1�

see Eq. �1.14�, where ��,0 and ��,0 are the correlation length
amplitudes in the anisotropic system, while Xf

�a��xt� is the
universal scaling function of the isotropic one. Equation
�5.1� implies the following relation between the correspond-
ing scaling functions of the Casimir force

XCasimir�xt�d,J�,J�� = 	 ��,0

��,0

d−1

XCasimir�xt�d� , �5.2�

and, thus, between the corresponding Casimir amplitudes

�Casimir�d�J�,J�� = 	 ��,0

��,0

d−1

�Casimir�d� . �5.3�

In addition we argued that the presence of a diffuse interface
leads to a strong repulsive Casimir force for T�Tc. For such
systems one also expects that the force will remain repulsive
even at Tc, i.e., that �Casimir�0.

In order to further support and substantiate the above gen-
eral statements, which are expected to be valid for any O�n�,
n�2 model system, in the current article we derived explicit
exact analytical results for the scaling functions, as a func-
tion of the temperature T, of the free energy density, Casimir
force, and the helicity modulus for the n→� limit of O�n�
models with antiperiodic boundary conditions applied along
the finite dimension L of the film. Such boundary conditions
enforce the existence of a diffuse interface within the inves-
tigated system. In full agreement with the presented above
hypothesis, we have found that all scaling functions, includ-
ing the Casimir amplitude, depend on the ratio J� /J� and are,
thus, nonuniversal. More precisely, we have found that the
Casimir force in a d-dimensional anisotropic system, with
2�d�4, can be written in the form, see Eq. �3.38�,

FCasimir
�a� �T,N��d,J�,J�� = �kBTc�N�

−dXCasimir�xt�d,J�,J�� ,

�5.4�

near the corresponding bulk critical temperature Tc of the
anisotropic system, where xt is a properly defined
temperature-dependent scaling variable and the nonuniversal
scaling function

XCasimir�xt�d,J�,J�� = � J�

J�
��d−1�/2

XCasimir�xt�d� �5.5�

can be related to XCasimir�xt �d�, which is the universal scaling
function characterizing the corresponding isotropic system.
The explicit form of XCasimir�xt �d�, for 2�d�4, is given in
Eq. �3.32� and, equivalently, in Eq. �3.34�. Similar relations
can be written also for the helicity modulus, see Eq. �4.5�,

��T,N��d,J�,J�� = �kBTc�N�
−�d−2�X��xt�d,J�,J�� , �5.6�

where, again, the nonuniversal scaling function,
X��xt �d ,J� ,J��,

X��xt�d,J�,J�� = � J�

J�
��d−1�/2

X��xt�d� �5.7�

can be related to an universal scaling function X��xt �d� char-
acterizing the corresponding isotropic system. The explicit
form of X��xt �d�, for 2�d�4, is given in Eq. �4.6�.

From Eq. �5.5� one obtains, see Eq. �3.39�,

�Casimir�d�J�,J�� = � J�

J�
��d−1�/2

�Casimir�d� . �5.8�

Since, within the spherical model, see Eq. �3.40�,

��

��

=�J�

J�

�5.9�

all the relations �5.5�, �5.7�, and �5.8� are in full conformity
with our general predictions given by Eqs. �5.1� and �5.3�.

In addition to the more general results valid for 2�d
�4, we have also derived some explicit closed-form results
for the case d=3. The scaling function of the Casimir force
then is given in Eq. �3.41� and, equivalently, in Eq. �3.42�.
The behavior of this function is visualized in Fig. 1. The
scaling function for the helicity modulus is presented in Eq.
�4.8� and is depicted in Fig. 2. For the value of the Casimir
amplitude at d=3 one has, see Eq. �3.50� �63�,

�Casimir = 	1

3
Cl2��

3
� −

��3�
6�


� J�

J�
� , �5.10�

while the value of the helicity modulus at Tc is �see Eq.
�4.12��

�c��Tc,L� =
2

�2	1

3
Cl2��

3
� +

7��3�
30�


� J�

J�
�L−1.

�5.11�

Let us recall that the Casimir amplitude of the spherical
model for periodic boundary conditions �7�

�Casimir
per = −

2

5�
��3� � − 0.153 051 �5.12�

numerically coincides �within the corresponding error bars�
with the best known estimate of the Casimir amplitude
�Casimir

per,Ising�−0.153 for the three-dimensional Ising model �9�
obtained via Monte Carlo methods. This fact still lacks ad-
equate theoretical explanation. It will be very interesting to
check if a similar relation also holds for the Casimir ampli-
tudes of the spherical and Ising models under antiperiodic
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boundary conditions. For such boundary conditions we are
also not aware about any Monte Carlo data for the critical
value of the helicity modulus in the three-dimensional XY
and Heisenberg models. Let us note that, under antiperiodic
boundary conditions, both the Casimir amplitude, as well as
the Casimir force, are positive, i.e., they correspond to a
repulsion between the plates of the system. Let us stress that
this effect is solely due to the existence of a diffuse interface
in the system. We recall that under periodic boundary condi-
tions for d=3 and in the notations of the current article the
Casimir force under periodic boundary conditions is given
by the expression �19�

�FCasimir
�p� ��,N��d = 3,b� = N�

−3�b�

b�
��1

4
xt�yp − yb�

−
1

6�
�yp

3/2 − yb
3/2� −

�yp

�
Li2�e−�yp�

−
1

�
Li3�e−�yp�� , �5.13�

where yp and yb are given by Eqs. �4.10� and �3.47�, respec-
tively. The comparison between the force under antiperiodic
and periodic boundary conditions is shown in Fig. 3. We
observe that the contribution of the helicity energy is so
strong that the Casimir force converts from being every-
where attractive �under periodic boundary conditions� into
everywhere repulsive �under antiperiodic boundary condi-
tions�.

The idea of creating a diffuse interface in a nanosystem
can eventually be used for practical purposes when applying
some ordering external field might cause border spins, elec-
tric or magnetic dipoles, etc., to order in a parallel or in an
antiparallel way to each other. More concretely, in order to
avoid sticking of the working metal surfaces of a nanoma-
chine, e.g., it is possible to immerse it in a dipolar, or a

magnetic fluid, and to create a diffuse interface between its
working surfaces by imposing opposite �or tilted, at a given
angle� electric, or magnetic fields on them. Of course, by
changing the degree of helicity the force will pass from be-
ing attractive through being zero into being repulsive. Obvi-
ously, it will be interesting to consider such a scenario in
more details by say, studying a system under twisted at a
given angle boundary conditions. We hope to return to this
problem in a future work.
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APPENDIX A: EVALUATION OF U(w ,N� �d ,b)

In the current appendix we prove the validity of Eq. �3.25�
for the behavior of U�w ,N� �d ,b� when N��1 and 0�w
�1. Because of the representation �3.6� of U�w ,N� �d ,b�
and the asymptotes �3.10� of SN

�a��x� one divides the region of
integration in two subregions, from 0 to aN�

2 and from aN�
2

to infinity, where a is a fixed real number such that 0�a
�1. Let us denote the integral over the first region �over
“moderate” values of x� by Um and let Ul is the integral over
the “large” values of x, i.e., let

Um �
1

2
�

0

aN�
2 dx

x
�exp�− x� − exp�− x	w

− b��1 − cos
�

N�

�
�	e−xb�I0�xb��

+� 2

�xb�

R�−��2N�
2

xb�

�
 � �e−xb�I0�xb���d−1�
�A1�

and

Ul �
1

2
�

aN�
2

� dx

x �e−x − e−xw�e−xb�I0�xb���d−1

� 	 2

N�

+
2

N�

R�+���2b�

2N�
2 x�
� . �A2�

Obviously U=Ul+Um. The evaluation of Ul is straightfor-
ward. Since x�1 in calculating Ul one can use the large
value asymptote of the Bessel function �60�

I
�x� =
exp�x − 
2/2x�

�2�x
	1 +

1

8x
+

9 − 32
2

2!�8x�2 + ¯ 
 �A3�

with the help of which one directly obtains that
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FIG. 3. The scaling functions XCasimir�xt� of the Casimir forces
FCasimir

�a� �� ,N� �d=3,b� and FCasimir
�p� �� ,N� �d=3,b� for d=3. The

difference is due to the contributions stemming from the helicity
modulus. We see that this contribution is rather strong and domi-
nates the behavior of the force under antiperiodic boundary condi-
tions converting it from attractive �under periodic boundary condi-
tion� into a repulsive one �under antiperiodic boundary conditions�.
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Ul = − N�
−d�b�

b�
��d−1�/2 1

�4���d−1�/2

� �
ab�/2

� dx

x
x−�d−1�/2e−yx�1 + R�+���2x�� , �A4�

where y is defined in Eq. �3.18�. Let us deal now with the
term Um. We divide this term into “bulklike” contributions
Um,b and “finite-size” contributions Um,fs where Um=Um,b
+Um,fs with

Um,b �
1

2
�

0

aN�
2 dx

x
�e−x − e−xw̃�e−xb�I0�xb���

� �e−xb�I0�xb���d−1� �A5�

and

Um,fs � − �
0

aN�
2 dx

x
e−xw̃ 1

�2�xb�

R�−��2N�
2

xb�

�
� �e−xb�I0�xb���d−1, �A6�

where

w̃ = w − b��1 − cos
�

N�

� . �A7�

It is straightforward to evaluate Um,fs. Due to the representa-
tion �3.15�, for all x�N�

2 the corresponding contribution into
the integral on the right-hand side of Eq. �A6� will be expo-
nentially small. Thus, one again can use in Eq. �A6� the
large-value asymptote �A3� of the Bessel function I0�x�
which leads to

Um,fs = − N�
−d�b�

b�
��d−1�/2 1

�4��d/2

� �
0

ab�/2 dx

x
x−d/2e−ỹxR�−��1

x
� . �A8�

It now remains only to deal with the term Um,b. By subtract-
ing and adding, up to the linear in x term, the asymptote of
exp�xb��1−cos �

N�
�� for small values of x one rewrites Eq.

�A5� into the form

Um,b =
1

2
�

0

aN�
2 dx

x �e−x − �1 +
1

2
b�

�2

N�
2 x�e−xw�e−xb�I0�xb���

��e−xb�I0�xb���d−1� +
1

2
�

0

aN�
2 dx

x
	�1

+
1

2
b�

�2

N�
2 x�e−xw − e−xw̃
�e−xb�I0�xb���

��e−xb�I0�xb���d−1. �A9�

It is easy to understand that the integration over small values
of x in the second line of the above equation will provide
contributions of the order of O�N�

−4� which we will neglect,
since we are only interested in contributions that are not
smaller than O�N�

−d�, with 2�d�4. Thus, in this integral
one again can use the large value asymptote �A3� of the
Bessel function I0�x�, which leads to

Um,b =
1

2
�

0

aN�
2 dx

x
�e−x − e−xw�e−xb�I0�xb����e−xb�I0�xb���d−1�

−
1

4
b�

�2

N�
2 �

0

aN�
2

dxe−xw�e−xb�I0�xb���

� �e−xb�I0�xb���d−1

+ N�
−d�b�

b�
��d−1�/21

2

1

�4��d/2�
0

ab�/2 dx

x
�e−xy�1 + �2x�

− e−xỹ�x−d/2. �A10�

One can complete the integral in the first and second line of
the above equation so that the integration is from 0 to � and
to subtract the parts of integration from aN�

2 to �. In the
subtracted parts one can again use the large value asymptote
�A3� of the Bessel function I0�x�. In this way one obtains

Um,b = Ud�w�b� −
1

4
b�

�2

N�
2 Wd�w�b�

+ N�
−d�b�

b�
��d−1�/21

2

1

�4��d/2	�
ab�/2

� dx

x
e−xy�1

+ �2x�x−d/2 + �
0

ab�/2 dx

x
�e−xy�1 + �2x� − e−xỹ�x−d/2
 .

�A11�

Expressing from Eq. �3.28� function R�−��x� in terms of
R�+��x� and substituting the so-obtained representation in Eq.
�A8� one obtains

Um,fs = − N�
−d�b�

b�
��d−1�/2 1

�4���d−1�/2�
0

ab�/2 dx

x
x−�d−1�/2e−yx	1 + R�+���2x� −

1

2

1
�4�x

e�2x
 =

− N�
−d�b�

b�
��d−1�/2 1

�4���d−1�/2��
0

ab�/2 dx

x
x−�d−1�/2e−yx	1 + R�+���2x� −

1

2

1
�4�x

�1 + �2x�

+

1

2

1
�4�

�
0

ab�/2 dx

x
x−d/2e−yx��1 + �2x� − e�2x�� . �A12�
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In a similar way, by adding and subtracting the asymptote of
1+R�+���2x� for small values of the argument, one can re-
write Ul �see Eq. �A4�� into the form

Ul = − N�
−d�b�

b�
��d−1�/2 1

�4���d−1�/2��
ab�/2

� dx

x
x−�d−1�/2e−yx

�	1 + R�+���2x� −
1

2

1
�4�x

�1 + �2x�

+

1

2

1
�4�

�
0

ab�/2 dx

x
x−d/2e−yx�1 + �2x�� . �A13�

By adding Um,b, Um,fs, and Ul as given by Eqs. �A11�–�A13�,
respectively, one obtains, after using the representation
�3.20� for Ud�w �b�, as well as the fact that Wd�w �b�
=�Ud�w �b� /��, the final result for U�w ,N� �d ,b� given in
Eq. �3.25� in the main text.

APPENDIX B: DERIVATION OF THE SERIES
REPRESENTATION OF I(y ,d)

In this appendix we derive the power series representation
�3.30� of the integral I�y ,d� defined in Eq. �3.27�. The pro-
cedure described in the following employs dimensional regu-
larization and is analogous to the one discussed in Appendix
C of reference �27�.

First, let us note that using the representation �3.11� for
the function R�+��x�, the integral I�y ,d� can be decomposed
as I�y ,d�= I�1��y ,d�+ I�2��y ,d�, where

I�1��y,d� = −
1

�4���d−1�/2 �
n=1

� �
0

�

dxx−�d+1�/2e−yxe−4�2n�n+1�x

�B1�

and

I�2��y,d� = −
1

�4���d−1�/2�
0

�

dxx−�d+1�/2e−yx	1 −
1 + �2x

2�4�x

 .

�B2�

Employing dimensional regularization, the latter integral can
be done analytically and becomes

I�2��y,d� =
y�d−2�/2

2�4��d/2 ��2��1 − d/2� − 4��y���1 − d�/2�

+ y��− d/2�� . �B3�

Introducing the variable ỹ�y−�2, the integral I�1��y ,d� can
be written as

I�1��y,d� = −
1

�4���d−1�/2 �
n=1

� �
0

� dx

x�d+1�/2e−ỹxe−��2+4�2n�n+1��x

�B4�

and upon replacing exp�−ỹx� by its Taylor series representa-
tion the integral I�1��y ,d� becomes

I�1��y,d� = −
1

�4���d−1�/2 �
n=1

�

�
m=0

�

bn,m
�d� �− ỹ�m

m!
�B5�

with the coefficients

bn,m
�d� = �

0

�

dxxm−�d+1�/2e−��2+4�2n�n+1��x. �B6�

Again in the sense of dimensional regularization the x inte-
gration in the latter equation can be performed to give

bn,m
�d� =

�n +
1

2
�d−2m−1

��m +
1 − d

2
�

�2��2m+1−d . �B7�

Inserting this into Eq. �B5�, the n summation can be done
analytically leading to

I�1��y,d� = ��d−1�/2�21−d�
m=0

� �− ỹ�m��m +
1 − d

2
�

�2mm!

− �
m=0

�

am
�d��− ỹ�m� �B8�

with the coefficients am
�d� defined in Eq. �3.31�. The first m

sum in square brackets can also be done analytically and we
obtain

I�1��y,d� = �4���1−d�/2���1 − d�/2��ỹ + �2��d−1�/2

− ��d−1�/2�
m=0

�

am
�d��− ỹ�m. �B9�

If we now add up I�1��y ,d� and I�2��y ,d� we arrive at the
power series representation �3.30� of I�y ,d� given in the
main text. Note that no terms being nonanalytic with respect
to ỹ are present, and furthermore that the radius of conver-
gence of the expansion is �ỹ�= �y−�2��4�2.
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