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Flexible boundary-condition methods couple an isolated defect to bulk through the bulk lattice Green’s
function. Direct computation of the lattice Green’s function requires projecting out the singular subspace of
uniform displacements and forces for the infinite lattice. We calculate the convergence rates for elastically
isotropic and anisotropic cases for three different techniques: relative displacement, elastic Green’s function
correction, and discontinuity correction. The discontinuity correction has the most rapid convergence for the
general case.
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Atomic-scale simulation of isolated defects with a com-
putationally tractable number of atoms requires careful
choice of boundary conditions. Periodic or fixed boundary
conditions introduce fictitious forces when relaxing the ge-
ometry of defects; reducing the error requires increasing the
number of atoms. Flexible boundary-condition methods
avoid these errors by instead using harmonic lattice response
for atoms away from the defect. In particular, the bulk lattice
Green’s function �LGF� gives the short- and long-range dis-
placements in response to a point or line force. Sinclair et al.
�1� introduced flexible boundary conditions for studying de-
fects such as cracks �2,3�, dislocations �4–7�, vacancies and
free surfaces �8� with classical potentials, and isolated screw
or edge dislocations with density-functional theory �DFT�
�9–12�. Evaluation of the LGF in real space involves the
inverse Fourier transform of a function with a singularity at
the � point �k=0�, which requires algorithmic approaches to
evaluate numerically. Relative displacement method �2,13�,
elastic Green’s function �EGF� correction �14�, and disconti-
nuity correction �15� are three techniques to numerically
evaluating the bulk LGF; we compare these and find that the
discontinuity correction has the fastest convergence rate. We
verify our predicted convergence rates with a simple model
and density-functional theory results for Al.

The lattice Green’s function G� L�R� −R� �� and the force-

constant matrix D� �R� −R� �� relate the internal displacements

u��R� � and forces f��R� �� of atoms R� and R� � of the lattice

through u��R� �=�R��G�
L�R� −R� ��f��R� �� and f��R� �=−�R��D� �R�

−R� ��u��R� ��. Translational invariance of an infinite lattice
makes G� L a function of the relative positions of two atoms.
Substituting one of the above relations into the other gives

�R��G�
L�R� −R� ��D� �R� ��=−1��R� �, where ��R� � is the Kronecker

delta function. A constant shift in the atom positions does not

produce internal forces, giving the sum rule �R�D� �R� �=0 and

making G� L�R� � the pseudoinverse of D� �R� � in the subspace
without uniform displacements or forces. Fourier transform

of the lattice functions are defined as G> L�k��=�R�eik�·R�G� L�R� �,
G� L�R� �=�BZ

d3k
�2��3 e−ik�·R�G> L�k�� for k� in the Brillouin zone �BZ�.

The integral can be approximated by a discrete sum of Nk

points as G� L�R� �= 1
Nk

�k�e
−ik�·R�G> L�k��. In reciprocal space, the

matrix inverse relation and the sum rule are G> L�k��D> �k��=1

and D> �0��=0, respectively. For a single atom crystal basis,

D> �k�� expands for small k� as D> �k��=�R�D� �R� ��1− �k�·R� �2

2! +¯�
�− 1

2�R��k� ·R� �2D� �R� �, due to the inversion symmetry of D� �R� �.
At the � point, D> �k�� is of the order k2 so G> L�k�� has a second-
order pole. Due to this singularity, the three-dimensional
�3D� inverse Fourier transform of G> L�k�� converges very
slowly while the two-dimensional �2D� version does not con-
verge at all. Different behaviors of 3D and 2D integrals lie in
the integration factors which are proportional to k2 and k,
respectively. The 3D integration factor cancels out the
second-order pole leaving a discontinuity in the � point that
causes a poor convergence. The 2D integrand is still singular
which results in a nonconvergent integral.

Figure 1 shows the relative displacement method, elastic
Green’s function correction, and discontinuity correction
which are used to avoid the singularity in LGF. With regards
to relative displacement �2,13,16,17�, rigid body translations
leave the potential energy of the lattice unchanged. Choosing
an arbitrary atom as an undisplaced origin for the relative

displacements of atoms requires calculation of G� L�R� �
−G� L�0��=� d3k�

�2��3 G> L�k��eik�·R� −� d3k�

�2��3 G> L�k��eik�·0�, which reduces to

G� L�R� � − G� L�0�� =� G> L�k���cos�k� · R� � − 1�
d3k�

�2��3 , �1�

due to the sum rule and inversion symmetry. For small k,

cos�k� ·R� �−1 is of the order k2 which cancels out the second-
order pole in G> L�k�� leaving a k�-direction dependent discon-
tinuity at the � point. The discretized version of Eq. �1� is
1

Nk
�k��cos�k� ·R� �−1�G> L�k��. With regards to elastic Green’s

function correction, following the procedure and notations of
�15�, G> L�k�� for small k expands as G> L�k��= �D> �k���−1

=k−2��̃�2��k̂��−1+ ��̃�2��k̂��−1�̃�4��k̂���̃�2��k̂��−1+O�k2�=G> E�k��
+G> dc�k��+O�k2�, where k2�̃�2��k̂� and k4�̃�4��k̂� are the second
and fourth order terms in a small k expansion of D> �k��. The
Fourier transform of the elastic Green’s function G> E�k�� is the
second-order pole and G> dc�k�� is a k�-direction dependent dis-
continuity �15�. The elastic part G> E�k�� should be inverse
Fourier transformed analytically and the remaining part
which no longer has a pole �it still has a discontinuity� can be
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inverse transformed numerically by 1
Nk

�kcos�k� ·R� ��G> L�k��
−G> E�k��fcut�k���, where fcut is a cutoff function that smoothly
vanishes on the Brillouin-zone edges. Removal of the
second-order pole by subtraction of a cutoff version of elas-
tic Green’s function is used in the semicontinuum method of
Tewary and Bullough �14�. With regards to discontinuity cor-
rection �15�, to further improve convergence, the discontinu-
ity correction treats the G> dc�k�� part analytically. The remain-

ing portion of G> L�k�� given by 1
Nk

�kcos�k� ·R� �	G> L�k��− �G> E�k��
+G> dc�k���fcut�k��
 is smooth and can be integrated numerically
more efficiently.

We expect the convergence rate of the discontinuity cor-
rection method to be consistent with the results for integra-
tion of smooth periodic functions while the convergence of
relative displacement and elastic Green’s function correction
methods should be dominated by the discontinuity. For Ndiv
partitions in each direction, midpoint rule gives a Ndiv

−4 scale
for convergence rate of such integrals in all dimensions
�18,19�. The number of k points Nk is Ndiv

d for dimensionality
d=1,2 ,3; therefore, the convergence rate of the midpoint
rule scales as Nk

−4/d. In the EGF correction and relative dis-
placement method, the integrand is smooth everywhere ex-
cept the � point so we expect the error to be dominated by
the area/volume around � point and therefore be of the order
of Nk

−1 or Ndiv
−d .

We check the predictions of convergence for the three
methods using �1� a simple-cubic nearest-neighbor model
and �2� fcc Al. First, as a simplified case we consider a
square �cubic in 3D� elastically isotropic lattice with nearest-
neighbor interactions and lattice constant a0=�. The nonzero
component of the LGF matrix is GL�kx ,ky�= �sin2��kx /2�

+sin2��ky /2��−1. The second-order pole is given by the elas-
tic Green’s function GE�kx ,ky�=4 / ���k��2� which is multiplied
by a cutoff function to vanish smoothly at the BZ edges. The
discontinuity correction is given by Gdc�kx ,ky�= �k̂x

4

+ k̂y
4� /3�k��2 which is also multiplied by the cutoff function.

The three-dimensional GL, GE, and Gdc are obtained by re-
placing the 2D vector k� = �kx ,ky� with k� = �kx ,ky ,kz�. For the
elastically anisotropic Al, we obtain the force-constant ma-
trix D� �R� � from density functional theory �DFT� �ultrasoft
pseudopotentials with generalized gradient approximation
�GGA� �12��. Numerical integration over the BZ is done with
a uniform mesh evaluating the integrand at the midpoints.
Even and odd values of Ndiv give meshes that include or
avoid the � point—what we call � and non-� centered
meshes, respectively. When applying the relative displace-
ment method and EGF correction, the value of the
integrand—which is discontinuous at �—is assigned zero at
the � point. We calculate the numerical error as a function of
Nk and Ndiv to compare the efficiency of the three methods.

Figure 2 shows the convergence rates of relative displace-
ment method, EGF correction, and discontinuity correction
in the square lattice case. The discontinuity correction and
EGF correction scale as Nk

−2 and Nk
−1, respectively, as ex-

pected. The value of R� does not affect the power-law scalings
of the convergence but the prefactors are changed in the
relative displacement method, and are of the same order in
EGF and discontinuity corrections. While the Nk

−1 conver-
gence for relative displacement method obtained by a � cen-
tered mesh is in accordance with the analytical predictions,
use of a non-� centered mesh produces a convergence faster
than expected for this method. This is an artifact of the isot-
ropy of the EGF.

FIG. 1. �Color online� Integrand of the inverse Fourier transform for �a� LGF, �b� relative displacement method, �c� EGF correction, and

�d� discontinuity correction at R� = �1,1�. G> L�k�� has a second-order pole at the � point. The relative displacement method avoids the pole by
considering only the displacements relative to a fixed point. The EGF correction removes the second-order pole by subtracting a cutoff
elastic Green’s function. Removal of the pole creates a discontinuity independent of �k�� at the � point. The discontinuity correction removes
the discontinuity created by EGF correction. The remaining part of the integrand is smooth in the entire Brillouin zone. The bottom row
shows the variation in the integrand as a function of �k�� when the origin is approached from different angles �=tan−1�ky /kx�. The disconti-
nuity created at the � point by the relative displacement method and EGF correction is independent of �k�� but depends on the direction of
approaching the origin. N.B.: the vertical scale changes from LGF to relative displacement and EGF correction to discontinuity correction.
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The integrand in the relative displacement method is

I�k��= �cos�k� ·R� �−1�G> L�k��. Near the � point, G> L�k�� matches
G> E�k�� and the leading term in the integrand is I����k��=

−k2R2�k̂ · R̂�2G> E�k̂� /2k2. For an isotropic EGF, G> E�k̂� is con-
stant so Iiso

����k��=− 1
2G> ER2 cos2��k̂,R̂�, where �k̂,R̂ is the angle

between vectors k̂ and R̂. The value of the integral over a
square k0�k0 region around k=0, for small k is

�
k0

2
Iiso

����k��d2k = −� �
k0

2

G> ER2 cos2 �

2
dkxdky = −

k0
2

4
G> ER2.

�2�

The midpoint rule integration of the same region with a
non-� centered mesh uses the k points k�1= �k0 /2,k0 /2�, k�2

= �−k0 /2,k0 /2�, k�3= �−k0 /2,−k0 /2�, and k�4= �k0 /2,−k0 /2�
each contributing area k0

2 /4. The angle between each k�i and R̂
are �1, �2=�1+� /2, �3=�1+�, and �4=�1+3� /2. There-
fore, the numerical approximation for the integral around the
� point is

Īiso =
k0

2

4 �
i=1

4

Iiso
����k�i� = −

k0
2

4
G> ER2, �3�

which is equal to the exact value of the integral around �
point given by Eq. �2�. To avoid the effect of the discontinu-
ity at the origin using a � centered mesh, the �-point contri-
bution to the integral is considered zero while its actual value
is given by Eq. �2�. This is the source of the dominant error
in relative displacement method on a � centered mesh, and
accounts for the R2 dependence of the error. This dependence
is verified by comparing the ratio of prefactors of the relative
displacement convergence laws for different R values and the
corresponding R2 in Fig. 2 which are both approximately 27.
On the other hand, the non-� centered mesh automatically
gives the exact value of the integral around the origin based
on Eq. �3� and thus produces a faster convergence limited
only by the convergence of smooth periodic functions. For

elastically anisotropic materials, G> E�k̂� depends on k̂, and the
numerical integration around � will not equal the analytic
value—eliminating the special convergence for non-�
meshes.

Figure 3 shows that the 3D results follow the same trend
as the 2D ones in accordance with the expected values. Both
� centered and non-� centered meshes give Nk

−4/d�d=3�, and
Nk

−1 scale for the convergence rate of discontinuity and EGF
corrections, respectively. Similar to the trend observed in 2D
case the � centered mesh produces the expected Nk

−1 scale for
the convergence of relative displacement method and the
non-� centered mesh produces faster convergence due to the
isotropy of the elastic Green’s function.

Figure 4 shows that convergence trends are unchanged for
anisotropic long-range interactions in fcc Al except for rela-
tive displacement method. The lattice is periodic in the
threading direction �110�, appropriate for screw dislocations
in fcc. With a non-� centered mesh, the anisotropy of the
elastic Green’s function eliminates the fast convergence of
the relative displacement method. The convergence trends of
the three methods show that these trends are not specific to
the simplifying assumptions of isotropy or short-range inter-
actions and therefore can be trusted in realistic calculations.
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FIG. 2. �Color online� Convergence rate with number of k points
of the relative displacement method, EGF correction, and disconti-
nuity correction in a 2D square lattice. We expect Nk

−2 convergence
for discontinuity correction, and poorer Nk

−1 convergence for EGF
correction and relative displacement method. Using a non-� cen-
tered mesh �left� causes an unusually fast convergence for the rela-
tive displacement method in elastically isotropic materials. The ex-

ponents in the power-law scalings are not affected by the value of R�

while prefactors are changed in relative displacement method and
are of the same order in EGF and discontinuity corrections.
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FIG. 3. �Color online� Convergence rate with number of k points
of the relative displacement method, elastic GF correction, and dis-
continuity correction in a 3D cubic lattice. The error for disconti-
nuity correction method scales as Nk

−4/d with dimension d equal to
three. Note that using a non-� centered mesh creates a faster con-
vergence for the relative displacement method as observed in the
2D case.
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Table I summarizes the convergence results for the three
methods. The expected convergence rate for a numerical in-
tegral of a smooth periodic function evaluated by midpoint
rule is Ndiv

−4 . When expressed in terms of the number of k
points Nk, the convergence rate would be proportional to
Nk

−4/d. Since the discontinuity correction leaves a smooth pe-
riodic part of the integrand, it follows the above convergence
rate. The EGF correction and relative displacement method
also converge with the scale of Nk

−1 or Ndiv
−d . The convergence

rates imply that a certain amount of error is achieved with
less Nk by discontinuity correction method compared to EGF
correction or relative displacement method which means that
the discontinuity correction requires the least computational
effort. Although the EGF correction and relative displace-
ment method require comparable computational effort, the
R2 dependence of the error suggests that the relative dis-
placement method takes even more k points than the EGF
correction. Also note that there is a tradeoff between less

computational effort and more complex algorithms. EGF and
discontinuity corrections calculate the elastic Green’s func-
tion and discontinuity correction parts of the LGF analyti-
cally while relative displacement method does not require
additional analytic evaluations.

The relative displacement method, elastic Green’s func-
tion correction, and discontinuity correction have all been
used in different calculations. These computational methods
improve the slow rate of convergence for 3D and eliminate
numerically divergent terms for 2D calculations. We find the
discontinuity correction to be the most efficient method—
improving the convergence rate to quadratic convergence for
2D over linear convergence for the relative displacement and
elastic Green’s function correction. The discontinuity correc-
tion method is general, applicable to any monatomic lattice,
and can be generalized to any crystal. Beyond the mon-
atomic case, the leading terms of G> L�k�� expansion for small
k include an extra term of the order i /k without inversion
symmetry. This term should be subtracted from G> L�k�� in ad-
dition to the k−2 elastic contribution before applying the dis-
continuity correction. Finally, while the convergence trends
match the analytical values, there is an unusual exception for
lattices with isotropic elastic Green’s function. This connects
the elastic anisotropy of a material to the efficiency of the
computational methods used in Green’s function calcula-
tions.
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TABLE I. Effect of dimension on the convergence rate with
number of k points and number of divisions for the relative dis-
placement method, EGF correction, and discontinuity correction.
Ndiv is proportional to 1 /h, the inverse grid spacing and Nk=Ndiv

d .

Power law scaling of error

2D 3D

Nk Ndiv Nk Ndiv

Discontinuity correction −2 −4 −4 /3 −4

EGF correction −1 −2 −1 −3

Relative displacement −1 −2 −1 −310
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FIG. 4. �Color online� Convergence rate with number of k points
of the relative displacement method, elastic Green’s function cor-
rection, and discontinuity correction in computation of the G11

component of a 2D LGF in Al. The convergence of LGF calcula-
tions in a fcc lattice is the same as the one observed in the simpli-
fied problem in agreement with the expected values. Note that use
of the non-� centered mesh does not cause a fast convergence for
relative displacement method due to the anisotropy of the elastic
Green’s function.
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