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Standard methods for lattice Boltzmann simulations of suspended particles, based on the momentum ex-
change algorithm, might lack accuracy or violate Galilean invariance in some particular situations. Aiming at
simulations of dense suspensions in high-shear flows, we motivate and investigate necessary correction terms.
We propose an approach which, combining accurate treatments of fluid-structure interaction and moving
boundaries, is able to preserve Galilean invariance in relevant orders and to improve the physical behavior of
the system. We validate the approach in a comparison with standard methods in simple test problems.
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I. INTRODUCTION

The lattice Boltzmann method �LBM� is by now a well
established approach to simulate incompressible Navier-
Stokes equations �1�. Since the very beginning, its possibility
and flexibility for different modeling setups and applications
have been widely explored.

We focus on simulation of dense liquid-particle suspen-
sions. The main approaches used for this class of problems
are the method by Ladd �2–4� and the ALD method �from
Aidun, Lu, Ding �5–7�� both based on the momentum ex-
change algorithm �MEA� �2�. The two techniques offer dif-
ferent treatments of the fluid-solid interaction, including ex-
plicit lubrication forces.

We are interested in the rheology of sheared suspensions,
i.e., the change in viscosity when the system is subject to an
external shear flow. In such situations, it becomes useful to
demand Galilean invariance of the computation of fluid-solid
interactions to ensure homogeneous behavior of the particles,
not dependent on the external velocity and therefore not de-
pendent on the position in a sheared system �see Fig. 1�.

An important tool in simulating sheared suspensions is the
Lees-Edwards boundary condition �LEbc� �8�, commonly
used to maintain a constant shear rate over a finite domain.
Briefly, the LEbc is implemented as a periodic boundary con-
dition in the directions perpendicular to a given shear veloc-
ity gradient, where, at the same time, the periodic copies of
the system are moving with respect to each other. From the
computational point of view, suspended particles crossing the
boundary are simulated in different reference systems.

It is therefore important to set up a method which reduces
the effect of numerical non-Galilean invariance. Without a
careful treatment of the fluid-particle interaction, this can be
amplified, resulting in relatively large errors in the dynamics
of the particles, and therefore that of the suspensions. In this
paper we investigate in detail the effect of non Galilean in-
variance of the LBM methods on the dynamics of sheared
particle-fluid systems. Selecting particular cases, we show
that standard methods for suspension simulations might lack

sufficient accuracy. Using asymptotic expansion techniques,
we motivate the need for a correction term and implement a
possible solution. The obtained corrected momentum ex-
change for suspension �CMES� preserves local consistency
and Galilean invariance in relevant orders.

In Sec. II we introduce the LBM, the standard approaches
for suspension flows, and a short description of Lees-
Edwards boundary conditions. Some preliminary numerical
tests motivate the need of a corrected algorithm, constructed
in Sec. III using the asymptotic expansion technique. Com-
parisons with existing approaches and further numerical re-
sults are discussed in Sec. III A. In Sec. IV we draw the
conclusions.

II. LATTICE BOLTZMANN METHOD

The lattice Boltzmann method �9,1� is an alternative ap-
proach to approximate solutions of the incompressible
Navier-Stokes equations. It can be derived starting from a
finite velocity model Boltzmann equation discretized on a
regular lattice.

The general iteration of the algorithm reads

f i�n + 1,j + ci� = f i�n,j� + A�f i
eq�f� − f i��n,j� , �1�

where ci, i=0, . . . ,b−1 is a finite set of b discrete velocities
and f i is the numerical solution for the density of particles
moving in direction ci. Focusing on a D2Q9 model �nine
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FIG. 1. �Color online� Simulating sheared suspensions particles
are immersed in a varying velocity field. Galilean invariance plays
a relevant role: dynamical properties of the system must be main-
tained independent from the flow velocity or gradient.
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discrete velocities in two dimensions�, we have

c1 = �1,0�, c2 = �0,1�, c3 = �− 1,0�, c4 = �0,− 1� ,

c5 = �1,1�, c6 = �− 1,1�, c7 = �− 1,− 1�, c8 = �1,− 1� ,

and c0= �0,0� for resting fluid densities.
The matrix A on the right hand side of Eq. �1� specifies

the collision operator. We employ a two-relaxation-times
�TRT� model �10� where

A�f i
eq�f� − f i� =

1

�
�f i

eq�f� − f i�+ +
1

�−
�f i

eq�f� − f i�−. �2�

F i
+ and F i

− denote the even and �respectively� the odd part of
a function on the velocity space:

F i
+ =

Fi + Fi*

2
, F i

− =
Fi − Fi*

2
,

where i* is such that ci*=−ci.
We consider Eq. �1� written in a dimensionless lattice

units reference system. In particular, sites in the computa-
tional domain are indexed by integers j�Z, representing the
spatial lattice, and n�N, counting the time steps. Space and
time units are represented by grid size and time step. We
remark that in problem relevant units time step �t and space
step h satisfy

�t = h2.

The last relationship, called diffusive scaling in the literature
�more generally, �t

h2 =const�, is a prerequisite to recover the
incompressible Navier-Stokes equations in the limit h→0
�11�.

The density � and the velocity u are obtained by a calcu-
lation of the zeroth and first velocity moments of the distri-
bution f:

��n,j� = �
i

f i�n,j� ,

u�n,j� = �
i

ci f i�n,j� . �3�

Conservation of mass and momentum during collision are
constrained by the form of the equilibrium distribution f eq,
which depends on f through its density and velocity:

f i
eq�f� = Ei��,u� = wi�� +

1

cs
2ci · u +

1

2cs
4 �ci · u�2 −

1

2c2
2u2� .

�4�

In the implementation the mass units of measure are renor-
malized in order to have a unitary reference density. The
parameters wi and cs appearing in the previous relations de-
pend on the particular realization of the LBM scheme. The
relaxation time � is related to the fluid viscosity � via

� =
1

2
+ cs

−2� . �5�

The second relaxation parameter �− is set to 1 �This choice is
due to stability issues. Dealing with dense suspension flows

at relative high Reynolds numbers, setting �−=1 effectively
damps checkerboard effects and numerical pressure waves
therefore improving the robustness. A comparison among
different choices of �−, e.g., to control the position of the
numerical boundaries �12�, is under investigation.�

In practice, the implementation of Eq. �1� is split into a
local collision step �2� and a propagation step:

f i�n + 1,j� = f i�n+,j − ci� . �6�

Asymptotic analysis. Using the asymptotic expansion
technique �11�, it can be shown that the numerical solution of
Eq. �1� can be approximated by the expansion

Fh�n,j� = f �0� + hf �1��nh2,hj� + h2f �2��nh2,hj� + O�h3� �7�

with smooth and h-independent coefficients defined as

f i
�0� = wi,

f i
�1� = wics

−2ci · uNS,

f i
�2� = wics

−2pNS +
wics

−4

2
��ci · uNS�2 − cs

2uNS
2 ��wics

−2ci · �uNS · ci,

�8�

where uNS and pNS solve a Navier-Stokes problem.
From Eq. �8�, we conclude that Eq. �3� yields a second

order accurate velocity, while a first order accurate pressure
can be obtained with

p = cs
2� − 1

h2 . �9�

Similarly, a first order approximation of the viscous stress
tensor S�u�=���u+�uT� can be extracted using

S�� = −
�

h2cs
2�

�
i

wi�f i − f i
eq�f��ci�ci�, �10�

i.e., the second order moment of the nonequilibrium part
with respect to the velocity space.

The results of the analysis actually provide more than
these accuracy results. They contain relevant information
concerning the structure of the solution, which can be used to
improve the algorithm.

A. LBM for moving particles

Two-dimensional particles are represented by moving
disks,

Pm�t� = 	x � ��
x − xm�t�
 	 Rm� , �11�

with centers xm and radii Rm, for m=1, . . . ,Nsusp. The lattice
nodes belonging to a disk Pm�tn� at a certain time step are
marked as solid �Fig. 2�.

Besides Eq. �1�, boundary condition algorithms are
needed to update the density distribution at the boundary
links, i.e., the links connecting fluid and solid domains. The
most popular choice is the bounce-back �BB� rule, which in
the standard formulation reverts a distribution at a node j if
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the associated link ci intersects a particle surface; see Fig. 2.
This leads to a computational boundary lying at the middle
of the fluid-solid link. More accurate boundary conditions
which take the exact intersection on the link into account
�13� are also available. These are based on extrapolation
rules for the missing populations, and might increase the
complexity of the implementation, particularly in the case of
high particle density.

Therefore, and for simplicity in demonstrating the im-
provement of our corrected method, we restrict to BB with
its extension to moving boundaries. In practice it can be
implemented �2� redefining the propagation step �6� as

f i�n + 1,j� = f i*�n+,j� − 2hcs
−2wici · ub �12�

if ci is a boundary link. The index i* is such that ci*=−ci and
ub is the velocity of the point on the particle where the link
ci intersects the surface.

Regarding hydrodynamical properties of suspended par-
ticles, it has been shown that the use of the bounce-back rule
for boundaries not orientated along the lattice results in an
effective hydrodynamic boundary slightly displaced from the
physical boundary. In the case of spherical particles with a
radius a this leads to a hydrodynamic radius ahd=a+�,
where the deviation � depends on the fluid viscosity �2,4�.
An a priori correction of ahd can achieve more accurate dy-
namics of the solid particles.

Fluid-particles forces. We begin focusing on two ap-
proaches to deal with the interaction between fluid flow and
solid suspensions, the method proposed by Ladd �2,3�, and
the ALD method �5–7� �Fig. 3�. Both techniques employ the
momentum exchange algorithm �2� to deal with hydrody-
namical forces exerted on the particles. According to its
original formulation, the MEA is used to approximate the
momentum given to the particle by the surrounding fluid. In
detail, for a boundary link i* at a node j �Fig. 2� where Eq.
�12� is applied, the momentum

pi*�n+,j� = ci*f i�n+,j� − ci f i�n + 1,j�

= 2ci*�f i�n+,j� − hcs
−2wici* · ub� �13�

is transferred to the particle. Force and torque exerted on a
particle are computed by a summation of the contributions
�13� over all the boundary link ib around its surface:

Fhd�n� = �
ib

pib
�n+,j� ,

Thd�n� = �
ib

�xj − xC� 
 pib
�n+,j� . �14�

In its original version �2� also the nodes inside the solid
particles are treated as fluid, which contribute to the hydro-
dynamical forces as well. In other words, the summations
�14� contain both fluid-solid and solid-fluid links. A particle
is therefore composed of a rigid shell and the inner fluid in
this description.

However, for solid phase densities �s��f the explicit up-
date of particle positions has been found to become unstable
�3� and improvements on the update have been proposed
�4,14�. The applicability was later extended �4� to smaller
ratios �s /�f by omitting the action of the inner fluid on the
shell.

In the ALD method, the inner fluid is only virtual, but is
still used to bypass an explicit treatment of the nodes which
become fluid when the particle moves. In this description,
the fluid momentum of a new fluid node has to be taken from
the particles momentum, while, when the particle “absorbs”
a fluid site its momentum is given to the particle. Formally,
the momentum exchange

pf→s = ��n,j��u�n,j� − Up� �15�

leads then to another contribution Ff→s to force and torque
on the particle.

When particles come close to each other the fluid pressure
between the particles might change drastically. This is hardly
captured by the lattice Boltzmann flow if the grid resolution
is not fine enough. To overcome the lubrication breakdown
problem, an explicit lubrication model has to be included,
based on �asymptotic� lubrication theory �4�. In most suspen-
sion models a single particle-particle force term is used. With

k

P

k

f_in

f_out

FIG. 2. �Color online� Sketch of computational fluid and solid
domains. Boundary conditions �12� are applied at the boundary
links, intersecting the solid-fluid interface, and the momentum ex-
change algorithm �13� is used to evaluate the fluid-particle
interaction.

FIG. 3. �Color online� LBM approaches for suspended particles.
Left: Ladd method: Particles are represented by a solid shell. Inner
points, belonging to the physical solid domain, are treated as normal
fluid nodes. Center: ALD method. The inner fluid has no physical
meaning, but it is still used to initialize new fluid nodes. Solid nodes
of different particles are turned into fluid nodes if they are in con-
tact. Bridge links are created via which lubrication force elements
are applied. Right: In the present work we use an improved method
applying a corrected momentum exchange �21� in combination with
a refill method �22�. The latter removes the need for an explicit
simulation of inner fluid.
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the ALD method linkwise lubrication corrections �7� were
introduced which provide a better resolution of lubrication
forces between arbitrary shaped particles or walls.

Combining hydrodynamical forces Fhd, possible Ff→s, lu-
brication forces Flub; and according torques, positions, and
velocities of the particles are updated by an integration of the
equations of motion for rigid bodies.

To summarize the methods, in Table I the main features of
the approaches are compared. Note that some features are
independent from others �e.g., refilling new fluid nodes and
lubrication corrections� and this produces several combina-
tions. For simplicity, we focused on setups reflecting the
original ideas.

B. Lees-Edwards boundary conditions

Lees-Edwards boundary conditions �LEbc’s� �8� are com-
monly used in MD simulations �18� to maintain a constant
shear over the simulation domain. LEbc’s are analogous to
periodic boundary conditions, with the difference that in one
spatial dimension, for example, y in two dimensions, the
upper periodic copy of the system is moving with a constant
horizontal speed uLE= �uLE,0�, while the lower one moves in
the opposite direction with −�uLE,0� �Fig. 4�a��. This induces
a shear with a rate �̇=uLE /Ly, where Ly is the height of the
periodic domain. The use of LEbc’s in suspension simula-
tions allows us to remove the influence of the shearing walls
in the commonly used Couette flow scheme, which results in
a depletion zone and slip, observable in real experiments and
simulations.

Implementation of LEbc’s exists also for CFD methods
�see, for example, �19��. For lattice Boltzmann flows with
suspensions, results with LEbcs have been reported in �20�.
In a recent publication �21� LEbc’s were used for shear flow
simulations of suspensions of deformable particles. In both
cases the standard MEA was used, either together with the
suspension method by Ladd, or, in the latter, with the ALD
method.

A short description of our LEbc formulation for LBM is
given below. For more details on the method, and for a wider
discussion of the specific applications, we refer the reader to
�22�.

Implementing LEbc’s within the LBM framework, one
has to deal with density distributions of the LB fluid and

solid particles which cross the Lees-Edwards boundary, i.e.,
the boundary of the system moving with a speed uLE. Three
major practical problems have to be solved: �i� the mapping
of densities between lattices with subgrid displacement, �ii�
the transform of densities that are based on a set of speeds of
a certain lattice, and �iii� subgrid boundary conditions due to
different representations of one particle on two subgrid
shifted lattices.

The issue �i� can be resolved using a first order interpola-
tion, mapping the density by allocating it to the two nodes
that partly overlap the nonexisting destination node of the
density, e.g.,

f i�xl2� = sf i�xl1 + ci� + �1 − s�f i�xl1� �16�

�omitting the time dependence for brevity�, where s
=mod�sLE,1� depends on the shift sLE between different cop-
ies of the system, and the sites xl1 ,xl2 belong to the two
lattices l1 and l2.

Regarding �ii�, in �23� it could be shown that it is suffi-
cient to approximate the Galilean transform of a density into
a different reference frame by the transform of its equilib-
rium part. Since ul2=ul1+uLE, we have

TABLE I. Comparisons of the approaches of Ladd �2,3�, ALD �5–7�, and CMES combined with an
accurate refill �Sec. III�, concerning the main algorithmic issues for LB suspension flows. In the case of Ladd
method, the algorithm from �2,3� has been combined with the later proposed lubrication correction �4�. Some
features are formally independent from each other, which leads to numerous combinations. For simplicity, we
restricted this work to the original formulations.

Ladd ALD Present paper

Inner fluid present, active present, virtual no

Refill �un�cover of
inner fluid nodes

�un�cover of
inner fluid nodes

equil+noneq.
refill �15�

Lubrication linear theory,
single two-part. term �4�

linear theory,
link-wise force terms

linear theory,
single two-part. term �16�

Force computation MEA MEA corrected MEA �17�

(a)

(b)

FIG. 4. �Color online� �a� Applying Lees-Edwards boundary
conditions, periodic copies of the system move with horizontal ve-
locity. �b� Zoomed into the region where the black arrow points to
in �a�, the propagation of densities f5 from nodes at the top of the
original reference frame in the case a particle crosses the LE bound-
ary are shown.
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f i�xl2� = f i�xl1� + f i
eq��,ul2� − f i

eq��,ul1� . �17�

Particles are described by the coordinates of their centers. To
approach �iii� a combination of the reallocation �16� and a
fractional reflection rule for densities at solid boundaries,
inspired by the boundary conditions presented in �24�, can be
applied together with the extension for moving boundaries
�12�.

The approach is illustrated in Fig. 4�b� on the basis of
densities f5 that have to cross a LE boundary or are �partly�
reflected at it.

C. First numerical tests

We aim for a method which resolves the dynamics of
particles independently from any constant velocity super-
posed to the movement of local centers of mass as present in
all nontrivial flow problems. In the case of errors due to the
violation of Galilean invariance, such errors would be ampli-
fied if the same physical problem is described using coupled
reference systems, like in the application of LEbc’s. We used
the LEbc proposed in �22� �and outlined in the previous sec-
tion� to allow simulations of homogeneously sheared sys-
tems and to superpose them with a small, constant velocity.

For the simulations presented in the following we used a
system size Lx=Ly =128 and a particle radius R=4.8 �all
numbers given in lattice units�. The density ratio was set to
�s /�f=10 and the kinematic viscosity of the fluid �=1 /6.

Single disk �D1�. We simulate a single particle in a peri-
odic shear flow. In detail, initially a particle is placed in the
midpoint of a squared domain, with a velocity equal to the
fluid velocity at that point vp�t=0�=us�t=0�= �ux ,0.005�
�Fig. 5�. Additionally the flow is initialized and maintained at
a horizontal shear �̇=uLE /Ly and the particle’s angular speed
is accordingly initialized to 
�t=0�= �̇ /2. With that an
equilibration of near-particle fluid field and 
 was reached
after approximately t=3000. In any case, this equilibration
process is physical and should therefore be Galilean invari-
ant, too.

Throughout the simulation we measure the vertical veloc-
ity of the particle vp,y�t�, which should remain constant in the
ideal case. However, as shown in Fig. 6, in the case of the
ALD method a significant deviation from vp,y�t=0�=0.005
can be observed already from early times on, not having
reached the LEbc yet. When the Ladd method is used, no
deviations can be seen during that time, which finds its ex-
planation in the fact that every error made in linkwise calcu-
lations is compensated by the use of physical inner fluid,
where every momentum exchange at a boundary link has its
inner inverted counterpart. Using the ALD method, e.g., ap-

plying MEA only at the outer surface, the particles feel a
nonphysical vertical force in situations where points at the
upper surface move at a different speed than points at the
lower surface.

Deviations in both methods appear when the particle
crosses the LEbc. Notice that in this situation boundary links
exist that connect nodes in different reference frames �in
practice, different ub are used in Eq. �13��. Here, errors can-
not be compensated by the inner fluid. The non-Galilean ef-
fect grows linearly when varying ux. A shear rate �̇=5

10−5 was present in all these measurements.

Figure 7 shows similar measurements. Here the curves are
recorded for different �̇ and the superposed initial velocity
us= �0.05,0.005� was kept constant. All the curves show
similar behavior compared to the measurements in Fig. 6,
both in absolute size and order. MEA in its form �13� leads to
a nonzero force integration over the surface depending on
both the absolute particle speed as well as the difference

FIG. 5. The benchmark D1: single particle crossing the bound-
ary between different reference frames.
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FIG. 6. The vertical speed vy of a single particle in a sheared
system ��̇=5
10−5� crossing a LEbc for different superposed ve-
locities us,x. At about t=12 300 the particle reaches the LEbc and
crosses it within a time tc�2000.

CORRECTED MOMENTUM EXCHANGE METHOD FOR… PHYSICAL REVIEW E 79, 036705 �2009�

036705-5



between surface velocities at the upper half and the lower
half of a particle.

Approaching disks �D2�. The next example aims to dem-
onstrate the effects of combining LB fluid-structure interac-
tion with suspension dynamics, when different flow veloci-
ties are used as background. We consider two equal particles
moving toward each other, driven by a small external force
�Figs. 8 and 9�. The gap at time t=0 is r1,2−R1−R2�1.19, in
order to have at least one fluid node between the particles at
the beginning. Without adaptive grid-refinement lubrication
forces have to be implemented explicitly. Regarding the dif-
ferent suspension methods, lubrication corrections were ap-
plied as given in Table I. For simulations using CMES we
applied a lubrication correction in the form proposed in �16�
for two-dimensional systems. Such forces were invoked for
gaps smaller than hc=1.0�0.21R.

Both particles are always aligned in the x direction. To
mimic the fact that particle-particle collisions happen at dif-
ferent locations in a shear flow, the flat �nonsheared� flow
field is superposed by a constant translational velocity us and
the experiment is repeated using different absolute values

and directions of us. The particles are always initialized with
the same velocity as the fluid. Measuring the gap between
the particles as a function of time, we can investigate the
combined effect of force computation, lubrication correc-
tions, and nodes’ re-initialization.

Figure 8 shows the results obtained with superimposed
velocities us= �ux ,0�. Looking at the problem from the lattice
reference frame, one particle is following the other while
they get closer. In an ideal case, the lubrication-damped col-
lision of the particles should not be affected by the absolute
velocity of their center of mass. However, using Ladd’s
method at higher superposed velocities the particles tend to
approach themselves faster in comparison to a simulation
where the center of mass is at rest �which is the usual way
lubrication behavior investigations are carried out in the lit-
erature�. Fluid between particles is of higher pressure than
the fluid at the opposite sides of the particles. When particles
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FIG. 7. The vertical speed vy of a single particle in a sheared
system crossing a LEbc for different shear rates �̇. The particle is
moving with the fluid at a superposed background velocity us

= �0.05,0.005�.
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FIG. 8. Test D2 a: Gap size between two particles that feel
horizontal forces pushing them together for different absolute val-
ues of the superposed velocity us. The direction is us 
r1,2. The three
plots show results obtained with different suspension models.
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move, fluid nodes will turn into inner fluid. Not instantly in
equilibrium with the rest of the inner fluid, such a high-
pressure inside fluid causes forces that counteract lubrication
forces. As an additional effect, adopting high-pressure gap
nodes also leads to a kind of pumping: the following particle
gains mass with the increase of inner-fluid pressure which
biases the particle dynamics. The “pumping effect” has an-
other consequence: When inner fluid turns into outside fluid
behind the particle the increased pressure also contributes to
a less damped collision behavior of the particles.

Although the last argument could also apply in the case of
simulations using ALD, results obtained with this method
show a better behavior. Here, by definition of the model,
fluid nodes always exist between the particles. As a conse-
quence we could observe that the pumping effect was less
pronounced.

When particles are very close and therefore lubrication
forces very sensitive we would have expected that the addi-
tional momentum exchanged when nodes are covered or un-
covered lead to deviant behavior. However, this seems to
have little importance for the particle dynamics in these tests.
Although small deviations can be seen, the action of a physi-
cal inner fluid turns out to be the most important source of
errors.

In Fig. 9 we show the results for the case of a constant
absolute superposed velocity �us�=0.075 but for different di-
rections. The curves for �=0,� /6,� /3,� /2 show only
slight deviations from each other if ALD is used. In the case
of active inner fluid �as in Ladd’s method�, a strong angle-
dependent behavior can be observed. For �=� /6,� /3 an-
other effect appears. If the background velocity has an incli-
nation 0	�	� /2 with respect to the vector r1,2=xp2−xp1,
we still observe a small pumping. With the broken symmetry
of the problem the different properties of the two particles
cause the particles to start to tumble around each other. The
results in Fig. 9 show the results for the case of a constraint
yp1�t�=yp2�t� was applied and curves that cross the x axis in
the case of tumbling.

III. CORRECTED MOMENTUM EXCHANGE FOR
SUSPENSIONS

The previous results show that Ladd’s method and ALD
have shortcomings. Using the asymptotic expansion tech-
nique it is possible to identify the main source of errors, and
to derive leading order corrections to the original algorithms.

Galilean invariant force computations. Starting from Eq.
�8�, which approximates the solution of the LBM �1�, a pre-
diction for the momentum exchange contributions �13� can
be derived.

Let us consider a boundary node k, and an outgoing
boundary link i at k. We denote with bi�k� the intersection
between the link ci and the fluid-solid interface. Inserting Eq.
�8� into Eq. �13� we obtain �dropping the time dependence
for brevity�

pi�k� = pi
�0��xk� + h2pi

�2��xk� + O�h3� , �18�

with

pi
�0��xk� = 2wici,

pi
�2��xk� = 2wics

−2�p +
cs

−2

2
��ci · ub�2 − cs

2ub
2�

− cs
−2�ci · �ub · ci�ci, �19�

where the quantities on the right hand sides are evaluated at
bi�k�.

Using this approach, it can be proved �25,17� that MEA
yields a first order accurate approximation of the force acting
on a particle P,
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FIG. 9. Test D2 b: Gap size between two particles for different
angles �= � �us ,r1,2�. Results for the three suspension models are
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FP�t� = 

�P�t�

�− p�x�n + n · S�x��d� . �20�

Beyond this general result, Eq. �19� provides additional use-
ful information. We focus on the second order coefficient of
Eq. �19�, which contains a term not related to the boundary
force, explicitly depending on the boundary velocity, and re-
sponsible for breaking the Galilean invariance.

It must be remarked that in most cases this term produces
a small global contribution �25�. However, this does not ap-
ply using Lees-Edwards boundary condition, when the solid-
fluid interaction of one particle is evaluated in different ref-
erence systems within the same time step �in practice, in this
case the MEA depends on the contributions of two parts of
the interfaces, with different velocities�.

Aware of Eq. �19� we can easily define a correction for the
momentum exchange algorithm which reads

pi
CME�k� = pi�k� − 2wici − h2wics

−4


	�ci · ub�bi�k���2 − cs
2ub�bi�k��2�ci. �21�

Together with pi�k� in Eq. �13� and the summation over the
particle surface in Eq. �14� this defines a corrected momen-
tum exchange algorithm �CMES� for the calculation of hy-
drodynamical forces and the torque on the particle.

The violation of Galilean invariance by MEA, when used
locally, has been already observed in �26� and cured by the
introduction of additional virtual fluid nodes inside the solid
domain. However, this is a special solution and care has to be
taken with the implementation of such an idea when bound-
ary links cross a Lees-Edwards boundary. The correction
�21� offers a consistent analytical solution and, in most cases,
allows an easier implementation.

Initialization of new fluid nodes. Reinitialization of new
fluid nodes is a common task dealing with moving boundary
LBM. Both Ladd’s and the ALD approach make use of inner
fluid to deal with this. In general, this is justified if inner
nodes hold densities which approximate the right character-
istics when turning from an inner surface node to an outer
surface node. This is likely only in situations where the par-
ticle acceleration is low. If a particle is accelerated the fluid
directly behind the particle is typically of lower pressure
while the adjacent node inside the shell would be of rather
high pressure.

The problem can be solved by a more accurate initializa-
tion of LB densities according to the expansion coefficients
�8�. This can be done in an efficient way, separately approxi-
mating the equilibrium and the nonequilibrium part, as de-
scribed in �22,15�. In detail, denoting with k a new fluid
node, first velocity u�k� and pressure p�k� are extrapolated
using a set of available neighboring fluid node, to construct
the equilibrium distribution,

f̃ i
eq�k� = Ei„�0 + cs

2h2p�k�,u�k�… .

Then, a low order extrapolation for the nonequilibrium part

f̃ i
neq�k� is added, initializing �omitting the time dependence�

f i�k� = f̃ i
eq�k� + f̃ i

neq�k� . �22�

In practice, f̃ i
neq�k� can be copied from a neighboring node

�15�. This approach is by definition locally consistent with
the inner LB solution, and yields the same accuracy as the
standard LBM �25,15�, providing a good balance between
computational effort and quality of results. We remark that
similar approaches, based on extrapolation techniques, have
been proposed in �13,27�, which also achieved accurate refill.
However, these are based on more complicated extrapola-
tions and become less practical when dealing with the flow
of dense suspensions. In practice, in the case of colliding
particles it might happen that not enough nodes are available
in order to implement algorithm �22� with the required accu-
racy. In those cases, we have used lower order approxima-
tions for the equilibrium distribution, based on simpler aver-
ages �but still including a nonequilibrium approximation�.

A. Numerical results

Including the modifications described in the previous sec-
tion, both tests D1 and D2 are solved more accurately.

Correction �21� for the momentum exchange algorithm
significantly reduces non-Galilean deviations in D1 �see Figs.
6 and 7� in comparison to the results obtained by standard
MEA, applied only at the outer surface �ALD�. Still, it can
be observed that CMES does not behave as accurate as the
original method by Ladd if the particle is treated in only one
reference frame, but this is mainly due to additional symme-
try properties of Ladd’s methods in the specific benchmark.
In general, Figs. 6 and 7 show that the particle dynamics has
significantly improved by the use of CMES when particle-
surface interaction has to be treated partly in different refer-
ence frames.

The benchmark D2 demonstrates that the use of an accu-
rate equilibrium+nonequilibrium refill improve the reso-
lution of particle dynamics, avoiding effects that are caused
by just turning physical inner fluid nodes into outer fluid
nodes and vice versa �Figs. 8 and 9�.

We remark that in D2 the ALD method also produces
results almost independent of us. However, it still requires
the computation of an inner fluid. Aiming at simulations of
dense suspensions the cost for this is in the order of �
=Vs /Vf. With the application of a refill procedure as pro-
posed in this paper the computation of inner fluid can be
omitted, providing a theoretical speedup factor of 1 / �1−��.

IV. CONCLUSION

Due to the pseudocompressible nature of the LBM, the
dynamics of simulated suspended particles may show non-
Galilean invariant effects. These contributions are typically
small in many applications, and comparable with the size of
numerical errors arising in the LB flow.

We have focused on the simulation of particles in a shear
flow, investigating the effects of the Lees-Edwards boundary
condition, and, in general, of the usage of LBM to resolve
suspension dynamics in different reference systems.
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Simple numerical experiments constructed to highlight
the effects of violated Galilean invariance showed that stan-
dard methods may produce unsatisfactory results. Using the
asymptotic expansion technique and accurate algorithms for
fluid-structure interaction problems, we have been able to
identify and remove the main sources of error, which re-
sulted in a corrected momentum exchange method for sus-
pensions �CMES�.

In simulations of two approaching particles the effect of a
moving reference frame was investigated. We could show
that an accurate refill method can remove negative effects
arising from the use of inner fluid. We proposed a refill
method based on interpolation of equilibrium and nonequi-

librium parts which gives results comparable to similar
methods, but is easier to implement in many situations.

In an upcoming work �22� we will present an application
of CMES together with Lees-Edwards boundary conditions
which allow simulations of sheared suspensions not bounded
by walls �like in a Couette-type flow�.
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