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Diffuse-interface theory provides a foundation for the modeling and simulation of microstructure evolution
in a very wide range of materials, and for the tracking and capturing of dynamic interfaces between different
materials on larger scales. Smoothed particle hydrodynamics (SPH) is also widely used to simulate fluids and
solids that are subjected to large deformations and have complex dynamic boundaries and/or interfaces, but no
explicit interface tracking or capturing is required, even when topological changes such as fragmentation and
coalescence occur, because of its Lagrangian particle nature. Here we developed a SPH model for single-
component two-phase fluids that is based on diffuse-interface theory. In the model, the interface has a finite
thickness and a surface tension that depend on the coefficient k of the gradient contribution to the Helmholtz
free energy functional and the density-dependent homogeneous free energy. In this model, there is no need to
locate the surface (or interface) or to compute the curvature at and near the interface. One- and two-

dimensional SPH simulations were used to validate the model.
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I. INTRODUCTION

In the study of multicomponent and single-component
multiphase fluids, the geometry and properties of the inter-
face(s) separating different phases are often the focus of at-
tention. The classical singular (sharp) interface model devel-
oped by Young and Laplace in the early 1800s assumes that
the interface is a surface of zero thickness. Within this para-
digm, the free energy includes an excess surface free energy,
which is proportional to the area of the interface, and this
leads to the concept of surface tension. This sharp-interface
model has been successfully employed in a wide range of
applications. However, a zero interface thickness and the as-
sociated discontinuous physical quantities across the inter-
face, such as density and pressure, are nonphysical.

The theory of diffuse (nonzero thickness) interfaces,
originally developed by van der Waals [1] and refined by
Cahn and Hilliard [2,3], is based on the idea that a rapid but
smooth transition between two adjacent, essentially homoge-
neous, bulk phases takes place across a thin interface zone.
For many applications, in which important characteristic
length scales are much larger than the interface width (typi-
cally on the order of 1 nm), the sharp-interface description
works very well. However, diffuse-interface theory provides
an alternative but more realistic description of interfacial
phenomena, and it has been widely applied to physical pro-
cesses with associated length scales that are comparable to
the interfacial width, such as the critical point phenomenon
[4], the motion of fluid-fluid-solid contact lines along solid
surfaces [5], solidification physics [6,7], nucleation theory
[8,9], vapor condensation [10,11], and many applications in-
volving interfaces that undergo large deformations and/or to-
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pological changes (see [12] for an extensive review of the
development of diffuse-interface theory and its application to
single-component and binary fluids). Coupling of diffuse-
interface theory with the Navier-Stokes equations provides a
continuum (phase-field) approach to multiphase fluid flow
and interface dynamics [13].

Most simulations of free surface flows and multiphase
flows are performed using grid-based methods to solve con-
tinuum fluid dynamics equations, such as the Navier-Stokes
equations. However, smoothed particle hydrodynamics is
quite widely used to simulate the behavior of multiphase
materials subjected to large deformations. Despite its rela-
tively low computational efficiency relative to grid-based
computational fluid dynamics, it is well suited to research
applications because it allows fluid dynamics to be coupled
with other physics, in a transparent manner, with relatively
little code development effort. In this paper we describe a
smoothed particle hydrodynamics (SPH) model that incorpo-
rates diffuse-interface theory to simulate multiphase fluid dy-
namics. SPH, a Lagrangian particle approach, was originally
introduced by Lucy [14] and Gingold and Monaghan [15,16]
in the 1970s for astrophysical fluid dynamics applications.
SPH has the advantages of explicit mass and linear momen-
tum conservation. Additionally, because of the Lagrangian
particle nature of SPH, explicit interface tracking is not re-
quired and the difficulties associated with the application of
grid-based continuum numerical methods to processes with
complex dynamic interfaces and/or boundaries is circum-
vented. More recently, SPH has been extensively applied to a
wide range of free surface fluid flows [17], fluid flow in
fractured and porous media [18,19], phase separation of van
der Waals fluid mixtures [20], and the behavior of solid ma-
terials under extreme loading and deformation conditions
[21]. The purpose of this paper is to introduce a SPH model
for diffuse interfaces and describe simple applications of the
model. This model is based on the well-established diffuse-
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interface theory for surface tension, and it retains the advan-
tages of rigorous mass and momentum conservation.

In smoothed particle hydrodynamics, an ensemble of SPH
particles with individual masses m;, positions X;, and veloci-
ties v; is used to represent flowing fluids and/or deforming
solids. SPH particles can be regarded as moving thermody-
namic subsystems [22] that carry various field variables
(such as the density p; and internal energy u;), depending on
the particular application. The basic foundation of SPH is the
use of interpolation kernels or smoothing functions W to
compute field variables and their spatial gradients at any lo-
cation. In general, the SPH formulation of continuum equa-
tions is not unique. One of the commonly used SPH formu-
lations of continuum hydrodynamics is [23,24],
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where o is the total stress tensor at particle 7, and
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where u; is the internal energy associated with particle i. In
these equations, r;;=x;—X;, where X; is the position of par-
ticle i, and n; is the number of neighbors of particle i (the
number of particles within a distance of /, the range of the
smoothing function W). Equations (1)—(3) are the discretized
SPH version of mass conservation, linear momentum conser-
vation, and energy conservation. In general, the viscosity and
equation of state are temperature dependent, and a SPH heat
conduction term must be included in the energy equation
[24,25]. However, we are interested in the behavior of mul-
tiphase fluids under essentially constant temperature condi-
tions in the subsurface, and we use a barotropic equation of
state and omit the heat equation, as is common practice in
many SPH simulations. The B spline
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is a widely used interpolation kernel (smoothing function),
where v=r/ h, D is the spatial dimension, and «y, is a con-
stant that assures proper normalization of the smoothing
function (ap=2/3,10/7,1/ for D=1, 2, and 3).

II. SPH FORMULATION FOR THE DIFFUSE-INTERFACE
MODEL

Following the Cahn-Hilliard approach [2], the modified
free energy (including the density gradient contribution) as-
sociated with the system of N SPH particles is the sum of the
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free energies associated with each particle. The modified free
energy F is given by

N
F=2 m[A(p.T) +k|Vp|?/p,], (5)
=1

where N is the total number of particles and A; is the free
energy per unit mass corresponding to the bulk free energy
density, which is a state function of the mass density p;, and
the temperature 7. In Eq. (5), k is the “gradient energy”
coefficient, which is assumed to be constant for simplicity.
The simple quadratic form for the contribution of the density
gradients to the free energy has been used extensively in
diffuse-interface models, and it can be interpreted using sta-
tistical mechanics [26]. A relationship between the pressure
and the free energy density for each particle can be based on
the standard thermodynamic law p=—(dF/dV); (p is the
pressure, I is the Helmholtz free energy, and V is the vol-
ume), or

0A;
pi= Piz_- (6)
Ip;

Furthermore, the SPH particle free energy density A; may be
written as

Aj=- f pip)d(1/p;) + C, (7)

where C is an arbitrary integration constant. The particle
bulk free energy density A; depends only on the equation of
state, and it is a single-valued function of the particle density
p;- The force on each particle can be written as the gradient
of the modified total free energy F,

fl-=m,<dV,</dl‘= _V['F (83)

and
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where V; stands for the gradient with respect to the position
of particle i, i.e., V,=d/ Jx;, and this expression conserves the
total energy of the system. The density gradient at particle i
is given by

9w Jaw

(Vp);= E m;—e; and (Vp);= E m—ep. (9)
‘ or:: or;

j=1 rlj k=1 rjk

The corresponding gradient with respect to the position of
particle i is given by
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Here ® stands for the tensor product and I is the unit matrix.
By substituting Egs. (9) and (10) into Eq. (8b), and making
use of Eq. (6), we obtain the SPH particle equation of motion
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In Eq. (12), term 1 (on the right-hand side) is the thermody-
namic pressure contribution, and terms 2, 3, and 4 are related
to the gradient contribution. Comparison of Eq. (12) with Eq.
(2) used in the traditional SPH model indicates that the bulk
free energy density A; is the pressure work contribution to
the total free energy. The symmetry of Eq. (12) over indices
i and j also ensures conservation of the total momentum of
the SPH particle system. The effect of viscosity (in addition
to the intrinsic momentum diffusion contribution due to par-
ticle motion relative to the local continuum flow velocity)
can be easily incorporated by adding the corresponding vis-
cosity terms into Eq. (12). Finally, the modified SPH equa-
tion of motion and energy equation are

nij#0) 2 2
dv. 4 4 k|Vpl7  k|Vp|i\ | oW
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where U; is a modified total internal energy incorporating the
gradient contribution. u; is the traditional SPH internal en-
ergy obtained from Eq. (3) [if the system is not isothermal
and heat conduction is important, a corresponding tempera-
ture term should be included in Eq. (3)]. Particle motion,
governed by these two equations, conserves the total energy
U=3N,(U+3m;|v|?) of the SPH particle system. The SPH
implementation of Egs. (13) and (14) assures conservation of
the total energy U of the system and the correct density
gradient contribution to the particle dynamics, and hence the
correct fluid dynamics.
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To establish the connections to the continuum formulation
of the diffuse-interface model, we start from the free energy
functional

F=| [A(p)+kVpl/plpaV, (15)
Q

which is an integral over the entire problem domain (). The
Lagrangian of the system is given by

L=f [A(p)+k|Vp|2/p]pdV—,uf pdvV,  (16)
Q Q

where w is the chemical potential (per unit mass) and can be
interpreted as the thermodynamic grand potential. Using the
Euler-Lagrange equation, the Lagrangian is minimized when

w=A(p) + pdAldp—2kV?p. (17)

It follows from Noether’s theorem [27] that the capillary
stress tensor that satisfies the mechanical equilibrium condi-
tion V-T=0 is given by

T=(-p+2kpVp+klVp|H)I-2kVp® Vp. (18)
The driving force is then given by
dv V.-T \Y

N vu=-L kv (V). (19
e p p

The first term on the right-hand side of Eq. (19) is the hy-
drodynamic pressure gradient contribution and the second
term reflects the effect of the density gradient contribution on
the free energy. The connections between Eq. (19) and the
corresponding SPH particle acceleration [Eq. (12)] can be
established by SPH discretization of terms 1, 2, 3, and 4:
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III. RESULTS AND DISCUSSION

An equation of state is required to implement the SPH
simulation, and the van der Waals’s (vdW) equation of state
[28] is a popular and convenient choice for phase behavior
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FIG. 1. Schematic plot of the vdW equation of state [pressure p
vs mass density p, Eq. (24)] and the corresponding free energy
density A, [Eq. (25)]. The free energy minimum and maximum at
zero pressure p are denoted by p; and p,, respectively.

applications because its analytical form is motivated by
simple molecular concepts [29] and it produces an equation
of state that is similar to that of molecular liquids. The vdW
equation of state can be expressed in the form

pk  _
p=—"—-ap’, (24)
1-bp
where p is the pressure, p is the fluid density, and the param-
eters are defined as EszT/m, a=a/m?, and b=b/m. Here,
kg is the Boltzmann constant and m is the particle mass. The
vdW parameter a is a measure of the attractive force between
particles and b is an excluded volume resulting from the

short-range repulsive particle-particle interactions. The par-
ticle free energy density A obtained according to Eq. (7) is

A=—[ap+kin(1/p-b)]+C, (25)

where C is an arbitrary integration constant. The SPH par-
ticle free energy density can be computed easily from Eq.
(25), and hence the total free energy of the system can be
computed from Eq. (5). A schematic plot of the vdW equa-
tion of state is presented in Fig. 1, together with the free
energy density A, which is shown on the same plot. The
stable free energy density minimum at p;=p, corresponds to
the liquid phase. The free energy density maximum at p, is
an unstable stationary point. Both p; and p, correspond to
zero pressure. The surface tension (the excess free energy per
unit area of interface relative to the free energy density of a
homogeneous system with the same mass and average den-
sity, but with no interfaces) is given by

+o0 PL
=2k f (dpldx)dx = 2k f (dpldx)dp  (26)
Pg

-0

for a planar interface, where x is the coordinate along the
interface normal. The equilibrium equation obtained from
Eq. (19) is
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FIG. 2. Surface tension I" as a function of the energy gradient
constant k from one-dimensional simulations. The surface tension
was computed from the excess surface free energy with various
gradient constants k. The straight line (least squares fit to the data)
is [=0.36 k. All quantities are given in reduced units.

dv d d d*® 1d,

L_P_ 2kp—€ =0 or equivalently # -2

dx dx dx’ d pdp
(27)

where ®(p)=k(dp/dx)>. It follows from Eq. (27) that ®(p),
which depends only on the equation of state, is given by

(D(P)=f]%dp—ffp(p)d<lp>dp+ Cip+C,,

(28)

where C; and C, are two integration constants. The surface
tension is given by

L _ —
I'= (2[ \'(b(p)dp) Vk=CsVk (29)
Pg
and
PL —
C3=2] V@ (p)dp, (30)
Pg

which depends only on the equation of state. Since the total
free energy of the system is explicitly expressed by Egs. (5)
and (7), the stable particle configuration can be efficiently
obtained by determining the particle configuration (the
particle positions) that minimize the total free energy F. A
conjugate gradient algorithm was used to find a stable par-
ticle configuration at a free energy minimum. The one-
dimensional simulation results shown in Fig. 2 (obtained
with a SPH smoothing length of 2=1.4) support the scaling
law I'=C;Vk with C;~0.36, compared to the analytical
value C3=0.32 from Eq. (30) with the vdW parameters a

=22, b=0.5, k=1, m;=1 in reduced units. In SPH simula-
tions, the accuracy with which a field or function can be
represented depends on the particle density in much the same
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FIG. 3. Initial configuration with SPH particles on the nodes of
a 15X 15 square lattice and the final (minimum free energy)
configuration.

way that the accuracy depends on the density of grid ele-
ments in a finite element or finite difference simulation, and
this may be the origin of the deviation from the analytical
value [30]. Also, in SPH simulations, the overlapping
smoothing functions extend beyond the nominal boundary
and under-represent the fluid density and other intensive
fields just inside the nominal boundary. This results in a non-
zero surface integral when the divergence theorem is used to
compute the spatial derivatives of intensive fields and con-
tributes to the computation error.

Nugent and Posch [24] showed that standard SPH simu-
lations performed using a vdW equation of state, with no
gradient contribution, do not form stable liquid drops. They
were able to generate stable drops by increasing the smooth-
ing length of the attractive forces corresponding to the long-
range cohesive interactions in vdW fluids by a factor of 2.
However, this comes at the price of a substantially increased
computational effort. In other SPH simulations, pairwise
particle-particle interaction with short-range repulsive and
relatively long-range attractive interactions were added to
SPH simulations with an ideal gas equation of state to bring
about phase separation and generate surface tension [18].
Here we show that the diffuse-interface SPH model can be
used to simulate single-component multiphase fluids with
stable interfaces. Figure 3 shows that when the energy of 225
particles that initially formed a regular square array was
minimized a stable circular liquid drop formed due to the
surface tension generated by the gradient contribution to the
free energy gradient. It is quite likely that many configura-
tions lie at local energy minima, and both simulation of the
SPH particle equation of motion and energy minimization
may result in a local minimum configuration. In problems of
this type, involving a large number of particles, it is impos-
sible to find the global minimum (the minimization is non-
deterministic polynomial time (NP)-complete in the number
of particles), but the local minima are all very similar to the
global minimum. Figure 4 plots the density profile of the
equilibrium circular drop along the radial direction. The
pressure in circular drops can be computed from the virial
equation [31], and the surface tension can then be deter-
mined using the Young-Laplace equation I'=p,R, where p;, is
the pressure in the interior of the drop and R is the equilib-
rium radius of the liquid drop. Several liquid drops with
various radii from 6 to 11 (in units of 4) were obtained via
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FIG. 4. Density profile along the radial direction of the equilib-
rium liquid drop shown in Fig. 3. All quantities are given in reduced
units.

energy minimization. Figure 5 shows the variation of the
pressure p; with the droplet radius and a surface tension of
I'=0.41 was obtained from the Young-Laplace equation.

To validate the diffuse-interface SPH model, two-
dimensional SPH simulations of the small-amplitude oscilla-
tions of an inviscid vdW liquid drop were performed. At
each time step, the particle densities were calculated using
Eq. (1), and the corresponding particle pressures were com-
puted from the equation of state, Eq. (24). The particle ac-
celeration and internal energy U; were then computed from
Egs. (13) and (14), and the new particle velocities and posi-
tions were updated by time integration using the explicit “ve-
locity Verlet” algorithm with a time step of Ar=0.001. The
surface tension can be computed using [24]

T T T T T T T
0.10 4 s -
0.08 4 4
£
2]
7]
[
=
(s
0.06 H B
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0.04 T T T T T T T T T T T T
0.10 0.12 0.14 0.16 0.18 0.20 0.22

I/R

FIG. 5. Dimensionless fluid pressure at liquid droplet center for
droplets of various radii. A linear fit shows an equivalent surface
tension of I'=0.41 from the Young-Laplace equation. All quantities
are given in reduced units.
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FIG. 6. Time evolution of the principal radii of an elliptic vdW
liquid drop during a small-amplitude oscillation simulation. All
quantities are given in reduced units.
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where 7 is the period of oscillation and p is the average fluid
density. An equilibrium circular drop (225 particles prepared
by free energy minimization) was first deformed into an el-
liptic shape using a density-conserving affine transformation
(cf. [24]), and then the ensemble of SPH particles was al-
lowed to oscillate by running a dynamics simulation with
zero viscosity. Figure 6 shows the time evolution of the di-
ameters (R, and R,) measured along the principal axes of the
drop. From the measured period, 7=94, a surface tension of
I'=0.409 was obtained, in good agreement with the result
from the Young-Laplace equation. There is a small momen-
tum diffusion viscosity due to the particle nature of the
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model, which dampens oscillations, but does not change the
oscillation frequency. Compared to the standard SPH
method, several additional terms (Vp, |Vp|?, and S;j) need to
be computed in the SPH particle equation of motion [Eq.
(12)]. Since these terms can be computed within the loop in
which the neighbors of each SPH particle are found, there is
only a slight increase of the computation time in comparison
with the standard SPH method.

IV. CONCLUSION

The diffuse-interface theory was applied to the solute pre-
cipitation and dissolution problem [32] and to the no slip
boundary conditions in dissipative particle dynamics [33] in
our previous study. In this paper, we show that diffuse-
interface theory can be combined with smoothed particle hy-
drodynamics to provide a simple model for multiphase fluid
dynamics. One- and two-dimensional simulations based on
the diffuse-interface SPH model were shown to be in good
agreement with analytical results obtained from the vdW
Cahn-Hilliard model. The model provides a simple easily
implemented way of simulating liquid-vapor systems with-
out the need of interface tracking. We expect that extension
to multicomponent multiphase systems and three-
dimensional systems will be straightforward.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of En-
ergy, Office of Science Scientific Discovery through the Ad-
vanced Computing Program. The Idaho National Laboratory
is operated for the U.S. Department of Energy by the Battelle
Energy Alliance under Contract No. DE-AC07-05ID14517
and the Pacific Northwest National Laboratory is operated
for the U.S. Department of Energy by Battelle under Con-
tract No. DE-AC06-76RL01830.

[1] J. D. van der Waals, Verh.-K. Ned. Akad. Wet., Afd. Natuurkd.,
Eerste Reeks 1, 8 (1893).
[2]J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).
[3]J. W. Cahn, J. Chem. Phys. 30, 1121 (1959).
[4] P. C. Hohenberg and B. 1. Halperin, Rev. Mod. Phys. 49, 435
(1977).
[5] D. Jacqmin, J. Fluid Mech. 402, 57 (2000).
[6] A. Karma and W. J. Rappel, Phys. Rev. E 57, 4323 (1998).
[7] D. M. Anderson, G. B. McFadden, and A. A. Wheeler, Physica
D 135, 175 (2000).
[8]J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 31, 688 (1959).
[9] L. Gréndsy, J. Non-Cryst. Solids 162, 301 (1993).
[10] L. Gréndsy, Europhys. Lett. 24, 121 (1993).
[11] L. Granésy, J. Chem. Phys. 104, 5188 (1996).
[12] D. M. Anderson, G. B. McFadden, and A. A. Wheeler, Annu.
Rev. Fluid Mech. 30, 139 (1998).
[13] D. Jacgmin, J. Comput. Phys. 155, 96 (1999).
[14] L. B. Lucy, Astron. J. 82, 1013 (1977).
[15] R. A. Gingold and J. J. Monaghan, Mon. Not. R. Astron. Soc.

181, 375 (1977).

[16] J. J. Monaghan, Annu. Rev. Astron. Astrophys. 30, 543
(1992).

[17]7J. J. Monaghan, J. Comput. Phys. 110, 399 (1994).

[18] A. Tartakovsky and P. Meakin, Phys. Rev. E 72, 026301
(2005).

[19] A. M. Tartakovsky and P. Meakin, J. Comput. Phys. 207, 610
(2005).

[20] C. Thieulot, L. P. B. M. Janssen, and P. Espanol, Phys. Rev. E
72, 016713 (2005).

[21] M. B. Liu et al., Comput. Fluids 32, 305 (2003).

[22] P. Espanol, M. Serrano, and H. C. Ottinger, Phys. Rev. Lett.
83, 4542 (1999).

[23] P. W. Randles and L. D. Libersky, Comput. Methods Appl.
Mech. Eng. 139, 375 (1996).

[24] S. Nugent and H. A. Posch, Phys. Rev. E 62, 4968 (2000).

[25] P. W. Cleary and J. J. Monaghan, J. Comput. Phys. 148, 227
(1999).

[26] H. T. Davis and L. E. Scriven, Adv. Chem. Phys. 49, 357

036702-6



DIFFUSE-INTERFACE MODEL FOR SMOOTHED PARTICLE... PHYSICAL REVIEW E 79, 036702 (2009)

(1982). [30] G. R. Liu and M. B. Liu, Smoothed Particle Hydrodynamics: A
[27] H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Meshfree Particle Method (World Scientific, Singapore, 2003).

MA, 1980). [31] M. P. Allen and D. J. Tildesley, Computer Simulation of Lig-
[28] M. Kac, P. C. Hemmer, and G. E. Uhlenbeck, J. Fluid Mech. uids (Oxford University Press, Oxford, 2001).

4, 216 (1963). [32] Z. Xu and P. Meakin, J. Chem. Phys. 129, 014705 (2008).
[29] J. L. Lebowitz and O. Penrose, J. Math. Phys. 7, 98 (1966). [33] Z. Xu and P. Meakin (unpublished).

036702-7



