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Stochastic differential equation approach for waves in a random medium
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We present a mathematical approach that simplifies the theoretical treatment of electromagnetic localization
in random media and leads to closed-form analytical solutions. Starting with the assumption that the dielectric
permittivity of the medium has delta-correlated spatial fluctuations, and using Ito’s lemma, we derive a linear
stochastic differential equation for a one-dimensional random medium. The equation leads to localized wave
solutions. The localized wave solutions have a localization length that scales as L~ w2 for low frequencies

whereas in the high-frequency regime this length behaves as L~ w
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Since the original prediction by Anderson [1] that a ran-
dom medium supports localized wave solutions, an intense
interest has been generated in observing and predicting the
behavior of these waves. The effect is difficult to observe in
a solid-state electronic system, however, it has been observed
with electromagnetic waves [2]. Both weak and strong local-
izations of light have been observed [3-5] supported by the-
oretical work that predict their properties [6—10]. The litera-
ture contains a wide range of theoretical approaches to this
problem. For example, in Ref. [6] John uses a field-theoretic
method. Another common method involves discretizing the
problem, using a transfer-matrix approach to propagate a
wave through a sequence of discrete perturbations, and aver-
aging the expression over the ensemble of possible perturba-
tions [7-9]. With this approach, the final result is either ob-
tained by numerical estimation of the averages, or an
approximation is obtained in some limiting cases. In Ref. [9],
De Raedt uses numerical simulation to obtain the localiza-
tion length. Independent of the theoretical approach taken,
the mathematical treatments of wave propagation in random
media tend to be complicated and, in most cases, evade a
closed-form solution. To obtain the relevant behavior, the
analytical treatments must be followed by numerical simula-
tions.

In this paper, we report a theoretical approach to electro-
magnetic localization in random media that is surprisingly
simple. We show that by using a modified form of Ito’s
lemma [11], a stochastic calculus technique popular in the
world of mathematical finance, we can obtain a stochastic
differential equation for waves in a one-dimensional random
medium that readily leads to closed-form analytical solu-
tions. To the best of our knowledge, the only other stochastic
differential equation approach we are aware of is for the
Schrédinger equation by Dawson ef al. [12]. Our approach
allows the permittivity of the material to attain negative val-
ues and therefore model a certain “metallic” component in
the medium. Our approach leads to localized waves with
localization length that scales with frequency as L~ w™2, at
low frequency, a behavior well established by other ap-
proaches [13,14]. In the high-frequency regime, the localiza-
tion length scales as L~ w23,

We begin by considering the electric and magnetic field
equations in a one-dimensional medium with inhomogenous
dielectric permittivity,
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where E,H are the electric and magnetic field and u,e the
magnetic and electric permittivities and Ae(x) =g {(x) is the
random permittivity perturbation. The parameter o dictates
the magnitude of the random spatial variations of the permit-
tivity. For simplicity, the medium is assumed to be loss-less
although the approach is capable of taking losses into ac-
count. The usual effect of losses is that they make localiza-
tion more difficult to observe [2]. We would like to solve the
above equations for a random function {(x) that is delta cor-
related in space,

(L)L) = olx = x'). (2)
The function (x) (units are cm™"? since the delta function
has units cm™!) describes fluctuation in the permittivity and
can obtain both positive and negative values. This correlation
function represents zero correlation length and allows us to
invoke Ito’s lemma. The resulting delta-correlated permittiv-
ity is an approximation that is valid when the solution varies
slowly over distances of the correlation length a. When the
spatial variation of the solution approaches the correlation
length our solutions are no longer appropriate as the exact
functional form of the correlation function becomes impor-
tant at these length scales.

For wavelengths that are large relative to the correlation
length, the delta function correlation approximation produces
no error. Therefore, since the form of the correlation function
is not critical in the low-frequency regime, the solutions ob-
tained for delta function correlation should agree with those
based on finite correlation length. However, for wavelengths
comparable or smaller than the correlation length, the spe-
cific form of the correlation function does matter. The delta
correlation solution that we present here will thus deviate
from solutions that have a finite correlation length when it
comes to describing high-frequency waves. Examples where
calculations are made for high-frequency waves for specific
forms of the correlation function are presented in [7]. The
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authors there show that different assumptions regarding the
correlation function give solutions with different high-
frequency behavior.

Integrating Egs. (1a) and (1b) we obtain,

o JH
E(x,t)—E(x’,t)=—,uf dx”;, (3a)
i oE Y 9E
H(x,t) - H(x',t) =— ij, dx”; - O'SJ;, Eg(x")dx”.
(3b)

We now define a new stochastic variable, Z(x)= [{{(x")dx’
(has units cm'/?), that captures the random permittivity in Eq.
(3b), and consider the dependence of electric and magnetic
fields on it: E=E[x,t,Z(x)] and H=H[x,t,Z(x)]. We assume
that the higher moments of the random variable {(x) are such
that the function dZ(x)={(x)dx is a Gaussian distributed
variable with E(dZ*)=dx and therefore Z(x) is a Brownian
motion random variable [11]. In this case the differentials of
the functions E,H can be expressed using Ito’s lemma (see
Appendix),

dE="24 (&E L7 )d L iz, @
"o\ o T 20200 )T vzt . @

dH——d (’?H L 70 )d 17, (4b)
- ox T 202200) Tz

The reason the second-order derivative appears in the linear-
expansion stems from the fact that E(dZ*)=dx and therefore
second-order changes in the variable Z(x) converge to a first-
order change in the variable x. A term by term comparison of
Eqgs. (4a) and (4b) with Egs. (3a) and (3b) gives the follow-
ing four equations:

JE oH
—=—pu_, (5a)
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Combining Egs. (5a)-(5d) we obtain two equations for the
magnetic field,

aH 1 #H 1 JH (6a)
ax 2azz(x) oaz(x) 4
_IH oH (6b
axazx) M )

Once the magnetic field is calculated the electric field is
then obtained through Eq. (3a). Substituting the solution
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H[t,x,Z(x)]=ﬁ(w,k,)\)exp[—jwt+jkx+j)\Z(x)] in Egs. (6a)
and (6b) we obtain

jk—(1/2)\>= j(M o), (7a)

k\ = 0’ peo. (7b)

With the substitution k/k,=jA (where k= w’ue) we can ob-
tain dimensionless equations where the dimensionless pa-
rameter k,0” controls the solution,

A3+ A-(12)k,0? =0, (8a)
Nk,
; = ]; (8b)

If we consider the expectation value for the wave amplitude
we get (for x>0),

(expl— jwr + jkx + jAZ(x)]) = exp[— jot + j(N o)x], (9)

where we make use of the expectation value {exp[jAZ(x)])
=exp[—(1/2)\%x] and of Eq. (7a).

When (1/2)k,0?>1 Eq. (8a) has approximate solutions,
A=exp(j120°)(k,0?/2)"3 and A=exp(—j120°)(k,0°/2)"3,
or A=(k,0?/2)"3. Let us consider the implications of the
first two solutions. These along with Eq. (9) result in a solu-

tion [15],
_
k,x V3k,x
H « exp| — cos| wr — . (10)
204| 2/A]

This solution has the general form of a localized wave:

exp(—x/L)cos(wt—kex), with a particular dispersion rela-

tionship k(@) ~ w?? and a localization length L~ w 3.
The third and real solution for A [A= (k,0°/2)"] corre-

sponds to an exponentially increasing solution H o exp( ] <.
This is an unphysical solution since there is no energy source
in the problem that can make the wave amplitude grow and
we therefore reject it.

Similarly if we consider the limit (1/2)k,0%><1 the ap-
proximate solutions of Eq. (8a) are A=k,0°/2, A= *j
—k,0%/4. The two complex solutions give the localized
waves in that limit, with a localization length LE4/(k§0'2)
~ w? and an effective wave vector ky(w)=k,.

Physically, the localization length is an average length
over which refraction and reflection by the random index
will cause a propagating wave to acquire a 27 phase shift
with respect to an initial point, similar to the manner in
which an optical cavity produces destructive interference for
particular frequencies. In a random medium, interference of
the randomly refracted and reflected wave packets gives rise
to a localization of the wave energy over a length parameter
whose average equals the localization length derived above.

In Fig. 1 below we show the localization length and the
“effective wavelength” N =2/k.y for the localized wave
solution. The variation with respect to the dimensionless pa-
rameter (1/2)k,0? is plotted and all quantities are normalized
to the material wavelength \,=(27/k,).

The localized wave solution has a localization length that
scales with frequency as L~ w™%? at high frequencies and as
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FIG. 1. The localization length and the effective wavelength for
the wave solution is shown. All quantities are normalized to the
material wavelength.

L~ w2 at low frequencies. The “effective” wavelength does
not exhibit much of a change in the low-frequency regime, in
contrast with the behavior of the localization length. In the
high-frequency regime the effective wavelength and the lo-
calization length have a similar behavior.
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In summary, we have obtained a stochastic differential
equation for electromagnetic waves propagating in a random
medium with delta-correlated spatial fluctuations. In prac-
tice, materials have fluctuations of a finite correlation length
so our solution will model physical problems accurately
when it varies very slowly over length scales equal to the
correlation length of the problem. The solutions to our equa-
tion are localized waves and the localization length scales as
L~ ™% for low frequencies and as L~ w ?? in the high-
frequency regime.

APPENDIX

The Ito lemma gives the differential of a function of sto-
chastic variables of the form,

dy = a(y,x)dx + b(y,x)dZ(x), (A1)

where dZ(x) «<dx'? is a random process that follows Brown-
ian motion. For any continuously differentiable function
f(y,1) [11] for which the second derivative exists,
d d af b
df:b—de(x)+ (—f+a—f+——];>dx. (A2)
ay dx dy 2 0dy
To obtain Egs. (4a) and (4b) use this relation with a=0,
b=1, a condition that leads to dy=dZ.
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