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The Debye series expansion expresses the Mie scattering coefficients into a series of Fresnel coefficients and
gives physical interpretation of different scattering modes, but when an infinite multilayered cylinder is ob-
liquely illuminated by electromagnetic plane waves, the scattering process becomes very complicated because
of cross polarization. Based on the relation of boundary conditions between global scattering process and local
scattering processes, the generalized Debye series expansion of plane wave scattering by an infinite multilay-
ered cylinder at oblique incidence is derived in this paper. The formula and the code are verified by the
comparison of the results with that of Lorenz-Mie theory in special cases and those presented in the literatures.
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I. INTRODUCTION

Many bodies of practical interest may be considered as or
closely approximated by infinite multilayered or radially in-
homogeneous cylinders, for example, biological media �1�,
graded-index polymer optical fiber �GI-POF� �2�, optofluidic
wave guides �3�, water-coated glass rod �4�, etc. The electro-
magnetic scattering and absorption characteristics of these
bodies are of great importance in many practical problems,
such as radar cross-section studies, microwave hazards,
chemical reactions, attenuation of microwave in forest, de-
tection of objects under earth, particle sizing, optofluidic
wave-guide measurement, etc. It is more commonplace that
the bodies are obliquely illuminated by electromagnetic
waves. The research on the interaction between infinite mul-
tilayered cylinders and oblique incident plane wave is par-
ticularly important in the study of the characteristics of such
objects. But when an infinite multilayered cylinder is ob-
liquely illuminated by electromagnetic plane waves, the scat-
tering process becomes complicated because of cross polar-
ization �5�.

Many researchers have been devoted to the scattering of
cylinders obliquely illuminated by plane waves. Wu has
treated the high-frequency scattering of a perfectly conduct-
ing circular cylinder by using geometrical optics �6�. By con-
sidering the creeping waves the cross section is expressed by
asymptotic expansion. Wait �7� first presented the exact so-
lution of interaction between infinite homogeneous cylinders
and oblique plane waves. In their literature, Kerker �8�, van
de Hulst �9�, Bohren and Huffman �10� also gave the exact
solution of light scattering by tilt infinite homogeneous cyl-
inders. Barabás �11� solved the problem of inhomogeneous
cylinders obliquely illuminated by plane waves, but his algo-
rithm was limited by the size and the layers of particles. In
order to solve the problem of large particles with many lay-
ers, Jiang et al. �2� introduced an improved algorithm. Lock
�5� employed the angular spectrum of plane waves to solve
the scattering of obliquely incident focused Gaussian beam
by an infinitely long homogeneous circular cylinder. Ren et

al. �12� and Mees et al. �13� studied the interaction between
Gaussian beam and infinite homogeneous cylinders at nor-
mal and oblique incidence, and they have introduced the lo-
calized approximation to accelerate the calculation of the
beam shape coefficients for cylinder. Barton �14� presented
the internal and near-surface electromagnetic field for an in-
finite cylinder illuminated by an arbitrary focused beam.

Whereas their solutions are all complicated combinations
of Bessel functions, and the mathematical complexity ob-
scures the physical interpretation of scattering. In these re-
searches only the total fields are given and there is no access
to the contribution of different modes. The Debye series ex-
pansion �DSE� �15� is an efficient technique to make explicit
the physical interpretation of different scattering modes
which is implicit in the Lorenz-Mie theory. After the DSE is
presented by Debye �15� in 1908 for the interaction between
electromagnetic waves and cylinders, the DSE for electro-
magnetic scattering by homogeneous �16�, coated �17�, mul-
tilayered spheres �18�, multilayered cylinders at normal inci-
dence �19�, homogeneous cylinder at oblique incidence �20�,
and spherical gratings �21� are studied. These theories have
been widely employed to analyze various phenomena, such
as rainbow �17,22�, glories �22,23�, multiple reflections and
attenuation of electromagnetic plane waves in a stratified sea
substratum �24�, transient radiation from a Hertzian dipole
antenna in a cavity in a medium �25�. However, the method
used in the DSE is, in our knowledge, not applicable to the
scattering of an infinite multilayered cylinder obliquely illu-
minated by plane waves because of cross polarization.

The generalized Debye series expansion �GDSE� employs
the matrix form to expand the global scattering process in a
series of local scattering processes, and has been employed
to the acoustic scattering of concentric and nonconcentric
multilayered cylinder �26–28� where the fields are scalar. But
up to now, the GDSE has not been used for the electromag-
netic scattering. Because of polarization, the process of elec-
tromagnetic scattering is more complicated than that of
acoustic scattering. This paper is devoted to the development
the GDSE of obliquely incident plane wave scattering by
infinite multilayered cylinders.
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This paper proceeds as follows: Section II derives the
GDSE for homogeneous cylinder, and in Secs. III and IV, the
GDSE is, respectively, extended to coated and multilayered
cylinders. A numerical algorithm is presented in Sec. V. Our
formula and code are verified by comparison to the presented
results in special cases in Sec. VI and results of the GDSE
are also presented. Section VII is devoted to the conclusions.

II. HOMOGENEOUS CYLINDER

In this section, after presenting the global scattering pro-
cess, we obtain the Fresnel coefficients according to two fic-
titious local scattering processes: Incoming-wave scattering
and outgoing-wave scattering. Finally, employing the rela-
tion between the matrix introduced by boundary conditions
for the global scattering process and that for the local scat-
tering processes, we obtain the GDSE formulation which ex-
pands the global scattering coefficients in a series of Fresnel
coefficients.

In this paper, Lock’s notations �5� � and � are used to
denote the polarization states. �-polarization corresponds to
the case that the magnetic field is perpendicular to the inci-
dent plane and �-polarization to that of the electric field is
perpendicular to the incident plane. It is necessary to point
out that in this paper the case for the �-polarization is de-
rived in detail, while the result for the �-polarization is given
directly for simplicity thinks to the similarity in the deriva-
tion for these two polarization cases.

A. Global scattering process

We consider first a homogeneous cylinder �region 1� of
radius a and refractive index m1 embedded in a medium
�region 2� of refractive index m2. The axis of the cylinder
coincides with the z axis of the Cartesian coordinate system,
and the incident waves are in the x−z plane. A monochro-
matic plane wave is incident on the cylinder making an angle
� with x axis. The time dependence of the incident waves is
exp�−i�t�. The geometry of the system is given in Fig. 1.

Suppose a �-polarized plane wave

�inc
� = �

n=−�

�

EnJn�x2� , �1�

is incident on the cylinder. Then the waves in both regions 1
and 2 can be expressed as

�1
� = �

n=−�

�

EnCn,1
� Jn�x1� , �2�

�1
� = �

n=−�

�

EnDn,1
� Jn�x1� , �3�

�2
� = �

n=−�

�

En�Jn�x2� − Bn,1
� Hn

�1��x2�� , �4�

�2
� = �

n=−�

�

EnQn,1
� Hn

�1��x2� , �5�

where Cn,1
� and Dn,1

� are the internal field coefficients, and
Bn,1

� and Qn,1
� are the scattering field coefficients. Dn,1

� and
Qn,1

� are coefficients of the cross polarization. The superscript
� and the subscript 1 of all coefficients, respectively, repre-
sent the polarization states and the number of layers. The
common factor En is defined by

En = �− i�ne−i�t−ihz+in�. �6�

Jn�x� is the Bessel function of the first kind, Hn
�1��x� and

Hn
�2��x� are, respectively, the first and the second kind Hankel

functions. For the sake of conciseness the following nota-
tions are used:

� j = �kj
2 − h2, �7�

kj = mjk0, �8�

xj = � jr , �9�

h = k0 sin � , �10�

where 	 and k0=2
 /	 are, respectively, the wavelength and
the wave number in free space, and mj the refractive index in
region j with j=1,2 for homogeneous cylinder. This index j
will extend to 3 for coated cylinder and to l+1 for l layered
cylinder in the following sections.

For convenience, we define also two parameters related to
the radius of each layer rj,

� j = � j+1rj , �11�

� j = � jrj . �12�

By using the relation

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �
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FIG. 1. Geometry of incident plane wave scattering by homo-
geneous cylinder at oblique incidence.
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Jn�x� = 1
2 �Hn

�2��x� + Hn
�1��x�� , �13�

Eq. �4� can be rewritten as

�2
� = �

n=−�

�

En�Hn
�2��x2� + Sn,1

� Hn
�1��x2�� , �14�

where

Sn,1
� = 1 − 2Bn,1

� . �15�

The scattering coefficients Bn,1
� can in return be written as

Bn,1
� = 1

2 �1 − Sn,1
� � . �16�

The first term in Eq. �16�, 1
2 , according to the analysis of

scattering coefficients by van de Hulst �9�, should be the
diffraction of incident waves around the particle, which is
independent of the characteristics of particles. The second
term corresponds to the incoming incident waves Hn

�2��k2r�
which are dependent of the characteristics of the particles.
Hereafter we will derive the coefficient Sn,1

� .

The electric and magnetic fields must satisfy the follow-
ing boundary conditions at r=a, namely their tangential
components must be continuous:

E�,
���

�r
+

inh

mk0r
�� = const, �17�

Ez,
m2k0

2 − h2

mk0
�� = const, �18�

H�, m
���

�r
−

inh

k0r
�� = const, �19�

Hz, �m2k0
2 − h2��� = const. �20�

By institution of Eqs. �2�, �3�, �5�, and �14�, into Eqs.
�17�–�20�, and by taking into consideration of Eq. �13�, we
can obtain the following equation system:

D1x1
� = hext,1

� , �21�

where

D1 = �
inh

k2a
Hn

�1���� 2
inh

k1a
Jn��� 2�1Jn���� �2Hn

�1�����

�2
2

m2
Hn

�1���� 2
�1

2

m1
Jn��� 0 0

m2�2Hn
�1����� 2m1�1Jn���� − 2

inh

k0a
Jn��� −

inh

k0a
Hn

�1����

0 0 2�1
2Jn��� �2

2Hn
�1����

� , �22�

x1
� = �Sn,1

� 1
2Cn,1

� 1
2Dn,1

� Qn,1
� �T, �23�

hext,1
� = 	 inh

k2a
Hn

�2����
�2

2

m2
Hn

�2���� m2�2Hn
�2����� 0
T

. �24�

To conserve the conventional notations for homogeneous
cylinder we use here � and � which are related to the nota-
tions in this paper by �=�2a=�1 and �=�1a=�1.

The vector x1
� in Eq. �21� contains scattering coefficients

to be determined. hext,1
� is the �-polarized excitation imposed

to the cylinders �external excitation�. D1 is the specific op-
erator introduced by the boundary conditions �global opera-
tor�, and it is independent of the excitation. Generally speak-
ing, the solution of a scattering problem in a separable
geometry consists in finding the solution of such linear sys-
tem obtained from the boundary conditions. The operator D1
being reversible, the solution can be written as

x1
� = D1

−1hext,1
� . �25�

For �-polarized wave incidence, we can obtain the similar
equation:

x1
� = D1

−1hext,1
� �26�

with

x1
� = �Qn,1

� 1
2Dn,1

� 1
2Cn,1

� Sn,1
� �T �27�

and

hext,1
� = 	�2Hn

�2����� 0 −
inh

k0a
Hn

�2���� �2
2Hn

�2����
T

.

�28�

Therefore, the complete solution to the global scattering pro-
cess is given by Eqs. �25� and �26�. In order to develop the
scattering process into Debye series we study in the follow-
ing section the local scattering process.
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B. Fresnel coefficients

The Fresnel coefficients are obtained by two fictitious lo-
cal scattering processes corresponding to incoming and out-
going waves. The outgoing wave is related to the wave that
penetrates into the cylinder and locally interacts with the
internal interface. Because of the cross polarization, there
are, respectively, two polarizations for outgoing and incom-
ing waves. Therefore, in order to obtain the GDSE, we must
take into consideration of four fictitious local scattering pro-
cesses: �-polarized incoming wave, �-polarized outgoing
wave, �-polarized incoming wave, and �-polarized outgoing
wave.

1. �-polarized incoming waves

When �-polarized incoming wave in region 2 encounters
the interface, it is partially reflected with � polarization
�R��

212� and � polarization �R��
212�, and partially transmitted

with � polarization �T��
21 � and � polarization �T��

21 �. The first
and second subscripts of all Fresnel coefficients represent,
respectively, the polarization states of waves before and after
interaction with interface. Figure 2 depicts the geometry of
such fictitious process. Then the complete waves in two re-
gions are given by

�1
� = �

n=−�

�

EnT��
21 Hn

�2��x1� , �29�

�1
� = �

n=−�

�

EnT��
21 Hn

�2��x1� , �30�

�2
� = �

n=−�

�

En�Hn
�2��x2� − R��

212Hn
�1��x2�� , �31�

�2
� = �

n=−�

�

EnR��
212Hn

�1��x2� . �32�

The boundary conditions lead to the following equation sys-
tem,

DL,1fin,1
� = hin,1

� , �33�

where

DL,1 = �
inh

k2a
Hn

�1����
inh

k1a
Hn

�2���� �1Hn
�2����� �2Hn

�1�����

�2
2

m2
Hn

�1����
�1

2

m1
Hn

�2���� 0 0

m2�2Hn
�1����� m1�1Hn

�2����� −
inh

k0a
Hn

�2���� −
inh

k0a
Hn

�1����

0 0 �1
2Hn

�2���� �2
2Hn

�1����

� , �34�

fin,1
� = �R��

212 T��
21 T��

21 R��
212�T, �35�

hin,1
� = 	 inh

k2a
Hn

�2����
�2

2

m2
Hn

�2���� m2�2Hn
�2����� 0
T

. �36�

The four Fresnel coefficients R��
212. T��

21 , T��
21 , and R��

212

can be obtained from Eq. �33� by using Cramer’s rules
and are given in Appendix A. It is necessary to point out that
DL,1 is an operator introduced by local boundary conditions

and is independent of the excitation. Therefore, DL,1 is the
same for �-polarized incoming wave, �-polarized outgoing
wave, �-polarized incoming wave, and �-polarized outgoing
wave.

T 21
µε

ψµ

R212
µµ

R212
µε

T 21
µµ

m2
m1

FIG. 2. Geometry of fictitious problem corresponding to
�-polarized incoming waves.
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2. �-polarized outgoing waves

When �-polarized outgoing wave hits the interface, it is
partially reflected with � polarization �R��

121� and � polariza-
tion �R��

121�, and partially transmitted with � polarization
�T��

12 � and � polarization �T��
12 �. Figure 3 depicts the geometry

of such fictitious process. Then the complete waves in the
two regions are

�1
� = �

n=−�

�

En�Hn
�1��x1� − R��

121Hn
�2��x1�� , �37�

�1
� = �

n=−�

�

EnR��
121Hn

�2��x1� , �38�

�2
� = �

n=−�

�

EnT��
12 Hn

�1��x2� , �39�

�2
� = �

n=−�

�

EnT��
12 Hn

�1��x2� . �40�

The boundary conditions lead to the following system:

DL,1fout,1
� = hout,1

� , �41�

where

fout,1
� = �T��

12 R��
121R��

121 T��
12 �T, �42�

hout,1
� = 	−

inh

k1a
Hn

�1���� −
�1

2

m1
Hn

�1����

− m1�1Hn
�1����� 0
T

. �43�

All the Fresnel coefficients T��
12 . R��

121. R��
121, and T��

12 are ob-
tained from Eq. �41� by using Cramer’s rules and listed in
Appendix A.

3. ε-polarized incoming and outgoing waves

For the �-polarized incoming and outgoing-waves scatter-
ing, the system of boundary conditions is similar to the case
for �-polarized waves and are expressed as follows.

For �-polarized incoming waves

DL,1fin,1
� = hin,1

� �44�

with

fin,1
� = �R��

212 T��
21 T��

21 R��
212�T, �45�

hin,1
� = 	− �2Hn

�2����� 0 −
inh

k0a
Hn

�2���� �2
2Hn

�2����
T

.

�46�

For �-polarized outgoing waves

DL,1fout,1
� = hout,1

� �47�

with

fout,1
� = �T��

12 R��
121 R��

121 T��
12�T, �48�

hout,1
� = 	− �1Hn

�1����� 0
inh

k0a
Hn

�1���� − �1
2Hn

�1����
T

.

�49�

The Fresnel coefficients T��
12 , R��

121, R��
121, T��

12, R��
212, T��

21, T��
21 ,

and R��
212 are also listed in Appendix A.

C. Generalized Debye series expansion

This section is devoted to the derivation of GDSE that
expresses the global scattering process in a series of local
scattering processes, namely expresses the Mie scattering co-
efficients in a series of Fresnel coefficients.

In order to employ the above fictitious local scattering
processes to expand Mie scattering coefficients in terms of
Fresnel coefficients, it is necessary to isolate the internal out-
going waves Hn

�1���� and local operator DL,1 from the opera-
tor D1. By using the relations �13�, the operator D1 expressed
in Eq. �22�, which contains the incoming waves Hn

�2����, out-
going waves Hn

�1���� and Hn
�1����, can be separated as

D1 = DL,1 − Hint,1, �50�

where DL,1 is the local operator given by Eq. �34� and con-
tains the incoming waves Hn

�2���� and outgoing waves
Hn

�1���� and Hint,1
� contains only the outgoing waves Hn

�1����.
Because of the cross polarization, there are two kinds of
outgoing waves Hn

�1���� with different polarizations, so Hint,1
consists of two parts. The 4
4 matrix Hint,1 is composed of
two operators hout,1

� and hout,1
� defined by Eqs. �43� and �49�

as

Hint,1 = �0,hout,1
� ,hout,1

� ,0� . �51�

By inserting Eqs. �41� and �47� in Eq. �50�, we can write

D1 = DL,1�I − Fint,1� , �52�

I is the identity matrix and Fint,1 is defined by

Fint,1 = �0,fout,1
� ,fout,1

� ,0� . �53�

By means of Eqs. �21�, �33�, and �52�. the solution of the
problem is finally expressed by

x1
� = �I − Fint,1�−1fin,1

� �54�

which can then be developed in series form,

T 12
µε

m1m2

ψµ

R121
µµ

R121
µε

T 12
µµ

FIG. 3. Geometry of fictitious problem corresponding to
�-polarized outgoing waves.
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x1
� = �

p=0

�

�Fint,1�pfin,1
� . �55�

Equation �55� is the GDSE of problem concerning the
�-polarized incident waves. The term of mode p, as in DSE,
corresponds to the wave which has penetrated in the scatterer
and has been submitted to p local interactions before leaving
the scatterer. By solving Eq. �54�, the scattering coefficients
can be expressed in Fresnel coefficients,

Sn,1
� = R��

212 +
1

DC
�T��

12 �1 − R��
121� + R��

121T��
12 �T��

21

+
1

DC
�T��

12 �1 − R��
121� + T��

12 R��
121�T��

21 , �56�

Cn,1
� =

1

DC
��1 − R��

121�T��
21 + R��

121T��
21 � , �57�

Dn,1
� =

1

DC
��1 − R��

121�T��
21 + R��

121T��
21 � , �58�

Qn,1
� = R��

212 +
1

DC
�T��

12 �1 − R��
121� + �T��

12R��
121��T��

21

+
1

DC
�T��

12�1 − R��
121� + �R��

121T��
12 ��T��

21 , �59�

with

DC = �1 − R��
121��1 − R��

121� − R��
121R��

121. �60�

For the case of �-polarized wave incidence, we can obtain
the solution with the similar way written as

x1
� = �I − Fint,1�−1fin,1

� �61�

or developed in series form

x1
� = �

p=0

�

�Fint,1�pfin,1
� . �62�

Here again, each term presents the contribution of a single
mode.

By solving Eq. �61�, we can obtain the final scattering
coefficients

Sn,1
� = R��

212 +
1

DC
�T��

12�1 − R��
121� + R��

121T��
12 �T��

21

+
1

DC
�T��

12 �1 − R��
121� + T��

12R��
121�T��

21 , �63�

Dn,1
� =

1

DC
��1 − R��

121�T��
21 + R��

121T��
21� , �64�

Cn,1
� =

1

DC
��1 − R��

121�T��
21 + R��

121T��
21 � , �65�

and

Qn,1
� = R��

212 +
1

DC
�T��

12 �1 − R��
121� + T��

12 R��
121�T��

21

+
1

DC
�T��

12 �1 − R��
121� + R��

121T��
12 �T��

21 . �66�

In the case of normal incidence, h=0, the results of Lock
�20� are recovered.

III. COATED CYLINDER

Consider now a coated cylinder embedded in a medium
�region 3� of refractive index m3 illuminated by a plane wave
which propagates in x−z plane and makes an angle � with
positive x axis. The radius and refractive index of the core
�region 1� are, respectively, r1 and m1, and the radius and
refractive index of the coating �region 2� are r2 and m2.

When the plane wave interacts with the cylinder, the total
waves in each region are expressed as

�3
� = �

n=−�

�

En�Hn
�2��x3� + Sn,2

� Hn
�1��x3�� , �67�

�3
� = − �

n=−�

�

EnQn,2
� Hn

�1��x3� , �68�

�2
� = �

n=−�

�

En�En,2
� Hn

�2��x2� − Gn,2
� Hn

�1��x2�� , �69�

�2
� = �

n=−�

�

En�Fn,2
� Hn

�2��x2� − Hn,2
� Hn

�1��x2�� , �70�

�1
� = �

n=−�

�

EnCn,2
� Jn�x1� , �71�

�1
� = �

n=−�

�

EnDn,2
� Jn�x1� , �72�

where En,2
� ,Gn,2

� ,Fn,2
� ,Hn,2

� are the internal coefficients in the
coating. The fields must be matched at each of the two
boundaries r=r1 and r=r2. Applying the boundary condi-
tions, we can obtain

D2x2
� = hext,2

� , �73�

where

LI, HAN, AND REN PHYSICAL REVIEW E 79, 036602 �2009�

036602-6



D2 = 	 DL,2
�1� Hint,2

�1�

Hint,2
�2� DL,2

�2� 
 , �74�

x2
� = �Sn,2

� En,2
� Fn,2

� Qn,2
� Gn,2

� 1
2Cn,2

� 1
2Dn,2

� Hn,2
� �T, �75�

hext,2
� = 	 inh

k3r2
Hn

�2���2�
�3

2

m3
Hn

�2���2� m3�3Hn
�2����2� 0 0 0 0 0
T

�76�

with

DL,2
�1� = �

inh

k3r2
Hn

�1���2�
inh

k2r2
Hn

�2���2� �2Hn
�2����2r2� �3Hn

�1����2�

�3
2

m3
Hn

�1���2�
�2

2

m2
Hn

�2���2� 0 0

m3�3Hn
�1����2� m2�2Hn

�2����2� −
inh

k0r2
Hn

�2���2� −
inh

k0r2
Hn

�1���2�

0 0 �2
2Hn

�2���2� �3
2Hn

�1���2�

� �77�

DL,2
�2� = �

inh

k2r1
Hn

�1���1� 2
inh

k1r1
Jn��1� 2�1Jn���1� �2Hn

�1����1�

�2
2

m2
Hn

�1���1� 2
�1

2

m1
Jn��1� 0 0

m2�2Hn
�1����1� 2m1�1Jn��1� − 2

inh

k0r1
Jn��1� −

inh

k0r1
Hn

�1���1�

0 0 − 2�1
2Jn��1� − �2

2Hn
�1���1�

� , �78�

Hint,2
�1� = �

−
inh

k2r2
Hn

�1���2� 0 0 − �2Hn
�1����2�

−
�2

2

m2
Hn

�1���2� 0 0 0

− m2�2Hn
�1����2� 0 0

inh

k0r2
Hn

�1���2�

0 0 0 − �2
2Hn

�1���2�

� , �79�

Hint,2
�2� = �

0 −
inh

k2r1
Hn

�2���1� − �2Hn
�2����1� 0

0 −
�2

2

m2
Hn

�2���1� 0 0

0 − m2�2Hn
�2����1�

inh

k0r1
Hn

�2���1� 0

0 0 �2
2Hn

�2���1� 0

� , �80�

D2 is the global operator introduced by the global boundary
conditions and is separated into four parts. DL,2

�1� is the opera-
tor of local interactions at the first interface �interface be-
tween regions 2 and 3� which contains the incoming waves
Hn

�1���2� and outgoing waves Hn
�2���2�, while DL,2

�2� is the op-

erator of the global interaction at the second interface �inter-
face between regions 1 and 2�. Hint,2

�1� is the operator of the
internal excitations at the first interface which contains the
outgoing waves Hn

�1���2�. Hint,2
�2� is the operator of the internal

excitation at the second interface which contains incoming
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waves Hn
�2���1�. Then D2 can be separated as follows:

D2 = DL,2 + Hint,2, �81�

where

DL,2 = 	DL,2
�1� 0

0 DL,2
�2� 
 , �82�

Hint,2 = 	 0 Hint,2
�2�

Hint,2
�1� 0


 . �83�

The local interaction between the external excitation and the
first interface is contained in hin,2

� which has similar defini-
tion as hin,1

� , and given by the equation system

DL,2fin,2
� = hin,2

� . �84�

fin,2
� is the vector of “primary interaction” and contains the

response of the first interface to the external excitation ex-
pressed by the external reflection and transmission coeffi-
cients. It can be obtained from Eq. �33�,

fin,2
� = �R��

323 T��
32 T��

32 R��
323 0 0 0 0�T, �85�

where the Fresnel coefficients R��
323, R��

323, T��
32 , and T��

32 are
similar to those for a homogeneous cylinder given in Appen-
dix A.

The equation system for excitations in region 2 is

DL,2
� F2

� = − Hint,2
� , �86�

where F2
� is an operator containing all local internal reflec-

tion and transmission coefficients at the first interface and all
coefficients describing the global scattering process of the
core to the excitations in region 2. So the excitations in re-
gion 2 can be divided into two parts: One is the internal
excitations to the first interface, and the other is the global
excitations to the core. Therefore, the operator F2

� can be
obtained from two fictitious scattering processes: Internal ex-
citation to first interface, excitations imposed to the core.

The equation system for scattering of internal excitations
is

DL,2
� F2

��1� = − Hint,2
��1�, �87�

where

Hint,2
��1� = �hout,2

� 0 0 hout,2
� � . �88�

F2
��1� contains all the local internal reflection and transmis-

sion coefficients at the first interface, and can be obtained by
replacing Eqs. �41� and �47� in Eq. �87�,

F2
��1� = �fout,2

� 0 0 fout,2
� � , �89�

hout,2
� , hout,2

� , fout,2
� , and fout,2

� have similar definition with
hout,1

� , hout,1
� , fout,1

� , and fout,1
� .

The excitations imposed to the core is written as

DL,2
� F2

��2� = − Hint,2
��2�, �90�

where

Hint,2
��2� = �hext,1

� 0 0 hext,1
� � . �91�

F2
��2� contains the response of the core to the excitations, and

can be obtained by replacing Eqs. �21� and �26� into Eq.
�90�,

F2
��2� = �0 x1

� x1
� 0� . �92�

The comparison of Eq. �92� with Eqs. �23� and �27� shows
that F2

��2� gives the effect of the core to whole coated cylin-
der scattering �18,19�. Then, the operator F2

� is finally ob-
tained from Eqs. �89� and �92�,

F2
� = 	 0 F2

��1�

F2
��2� 0


 . �93�

Employing the similar derivation, we can obtain the final
GDSE for coated cylinders as follows:

x2
� = �I − F2

��−1fin,2
� �94�

or

x2
� = �

p=0

�

�F2
��pfin,2

� . �95�

For the case of �-polarized wave incidence, the GDSE is
expressed as

x2
� = �I − F2

��−1fin,2
� �96�

or

x2
� = �

p=0

�

�F2
��pfin,2

� �97�

with

x2
� = �Qn,2

� Fn,2
� En,2

� Sn,2
� Hn,2

� 1
2Dn,2

� 1
2Cn,2

� Gn,2
� �T,

�98�

fin,2
� = �R��

323 T��
32 T��

32 R��
323 0 0 0 0�T, �99�

F2
� = F2

�. �100�

Equations �94�–�97� give the GDSE for coated cylinder scat-
tering, on the basis of which the GDSE for multilayered
cylinder scattering is derived in the next section.

IV. MULTILAYERED CYLINDER

An l-layered cylinder can be considered as a coated cyl-
inder whose coating is the layer l and whose core is the l
−1 layered cylinder �18,19�, so we can obtain the GDSE for
multilayered cylinder scattering on the basis of GDSE for a
coated one. For �-polarized wave incidence, the GDSE is
expressed as

xl
� = �I − Fl

��−1fin,l
� �101�

or developed in series form
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xl
� = �

p=0

�

�Fl
��pfin,l

� , �102�

where

xl
� = �Sn,l

� En,l
� Fn,l

� Qn,l
� Gn,l

� 1
2Cn,l

� 1
2Dn,l

� Hn,l
� �T,

�103�

Fl
� = 	 0 Fl

��1�

Fl
��2� 0


 , �104�

Fl
��1� = �

T��
l,l+1 0 0 T��

l,l+1

R��
l,l+1,l 0 0 R��

l,l+1,l

R��
l,l+1,l 0 0 R��

l,l+1,l

T��
l,l+1 0 0 T��

l,l+1
� , �105�

Fl
��2� = �0 xl−1

� xl−1
� 0� , �106�

fin,l
� = �R��

l+1,l,l+1 T��
l+1,l T��

l+1,l R��
l+1,l,l+1 0 0 0 0�T.

�107�

The superscript l represents that the cylinder is l layered.
Fl

��1� is an operator containing all the local internal reflection
and transmission coefficients at the interface between layers l
and l+1 �surrounding�. Fl

��2� contains the response of the
core to the excitations imposed to the core. fin,l

� contains the
response of the interface between layer l and l+1 to the
external excitations. The Fresnel coefficients are similar to
those for a homogeneous cylinder scattering. All scattering
coefficients can be expressed as the Fresnel coefficients ac-
cording to Eq. �101�,

Sn,l
� = R��

l+1,l,l+1 +
1

Ds
���Qn,l−1

� Qn,l−1
� − Sn,l−1

� Sn,l−1
� ��R��

l,l+1,lT��
l,l+1

− T��
l,l+1R��

l,l+1,l� − T��
l,l+1Sn,l−1

� − Qn,l−1
� T��

l,l+1�T��
l+1,l

+ ��Sn,l−1
� Sn,l−1

� − Qn,l−1
� Qn,l−1

� ��T��
l,l+1R��

l,l+1,l − R��
l,l+1,lT��

l,l+1�

− Qn,l−1
� T��

l,l+1 − T��
l,l+1Sn,l−1

� �T��
l+1,l� , �108�

Qn,l
� = R��

l+1,l,l+1 +
1

Ds
���Qn,l−1

� Qn,l−1
� − Sn,l−1

� Sn,l−1
� ��R��

l,l+1,lT��
l,l+1

− T��
l,l+1R��

l,l+1,l� − Qn,l−1
� T��

l,l+1 − T��
l,l+1Sn,l−1

� �T��
l+1,l

+ ��Qn,l−1
� Qn,l−1

� − Sn,l−1
� Sn,l−1

� ��T��
l,l+1R��

l,l+1,l − T��
l,l+1R��

l,l+1,l�

− T��
l,l+1Qn,l−1

� − Sn,l−1
� T��

l,l+1�T��
l+1,l� , �109�

En,l
� =

1

Ds
��− 1 + R��

l,l+1,lQn,l−1
� + R��

l,l+1,lSn,l−1
� �T��

l+1,l

+ �− Sn,l−1
� R��

l,l+1,l − R��
l,l+1,lQn,l−1

� �T��
l+1,l� , �110�

Fn,l
� =

1

Ds
��− R��

l,l+1,lSn,l−1
� − R��

l,l+1,lQn,l−1
� �T��

l+1,l

+ �R��
l,l+1,lSn,l−1

� + R��
l,l+1,lQn,l−1

� − 1�T��
l+1,l� , �111�

Gn,l
� =

1

Ds
���Sn,l−1

� Sn,l−1
� − Qn,l−1

� Qn,l−1
� �R��

l,l+1,l − Sn,l−1
� �T��

l+1,l

+ ��Qn,l−1
� Qn,l−1

� − Sn,l−1
� Sn,l−1

� �R��
l,l+1,l − Qn,l−1

� �T��
l+1,l� ,

�112�

Cn,l
� =

1

Ds
���Cn,l−1

� Qn,l−1
� − Sn,l−1

� Dn,l−1
� �R��

l,l+1,l + �Cn,l−1
� Sn,l−1

�

− Qn,l−1
� Dn,l−1

� �R��
l,l+1,l − Cn,l−1

� �T��
l+1,l + ��Qn,l−1

� Dn,l−1
�

− Sn,l−1
� Cn,l−1

� �R��
l,l+1,l + �Sn,l−1

� Dn,l−1
� − Cn,l−1

� Qn,l−1
� �R��

l,l+1,l

− Dn,l−1
� �T��

l+1,l� , �113�

Dn,l
� =

1

Ds
���Fn,l−1

� Qn,l−1
� − Sn,l−1

� En,l−1
� �R��

l,l+1,l

+ �Fn,l−1
� Sn,l−1

� − Qn,l−1
� En,l−1

� �R��
l,l+1,l − Fn,l−1

� �T��
l+1,l

+ ��Qn,l−1
� En,l−1

� − Sn,l−1
� Fn,l−1

� �R��
l,l+1,l

+ �Sn,l−1
� En,l−1

� − Fn,l−1
� Qn,l−1

� �R��
l,l+1,l − En,l−1

� �T��
l+1,l� ,

�114�

Hn,l
� =

1

Ds
���Qn,l−1

� Qn,l−1
� − Sn,l−1

� Sn,l−1
� �R��

l,l+1,l − Qn,l−1
� �T��

l+1,l

+ ��Sn,l−1
� Sn,l−1

� − Qn,l−1
� Qn,l−1

� �R��
l,l+1,l − Sn,l−1

� �T��
l+1,l� ,

�115�

Ds = �1 − �Sn,l−1
� R��

l,l+1,l − 1��R��
l,l+1,lSn,l−1

� − 1� − �Qn,l−1
� R��

l,l+1,l

− 1��Qn,l−1
� R��

l,l+1,l − 1� + R��
l,l+1,lQn,l−1

� Qn,l−1
� R��

l,l+1,l

+ Sn,l−1
� Sn,l−1

� R��
l,l+1,lR��

l,l+1,l� �116�

and they can be calculated by the upward recurrence.
For the �-polarized wave incidence, the GDSE is written

as

xl
� = �I − Fl

��−1fin,l
� , �117�

or

xl
� = �

p=0

�

�Fl
��pfin,l

� , �118�

where

xl
� = �Qn,l

� Fn,l
� En,l

� Sn,l
� Hn,l

� 1
2Dn,l

� 1
2Cn,l

� Gn,l
� �T,

�119�

Fl
� = 	 0 Fl

��1�

Fl
��2� 0


 , �120�

Fl
��1� = �

T��
l,l+1 0 0 T��

l,l+1

R��
l,l+1,l 0 0 R��

l,l+1,l

R��
l,l+1,l 0 0 R��

l,l+1,l

T��
l,l+1 0 0 T��

l,l+1
� , �121�
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Fl
��2� = Fl

��2�, �122�

fin,l
� = �R��

l+1,l,l+1 T��
l+1,l T��

l+1,l R��
l+1,l,l+1 0 0 0 0�T.

�123�

The notations Fl
��1�, Fl

��2�, and fin,l
� have the similar meaning

with that used for the �-polarized wave incidence. All scat-
tering coefficients are expressed in Fresnel coefficients ac-
cording to Eq. �117�,

Sn,l
� = R��

l+1,l,l+1 +
1

Ds
���Qn,l−1

� Qn,l−1
� − Sn,l−1

� Sn,l−1
� ��R��

l,l+1,lT��
l,l+1

− T��
l,l+1R��

l,l+1,l� − Qn,l−1
� T��

l,l+1 − T��
l,l+1Sn,l−1

� �T��
l+1,l

+ ��Sn,l−1
� Sn,l−1

� − Qn,l−1
� Qn,l−1

� ��T��
l,l+1R��

l,l+1,l − R��
l,l+1,lT��

l,l+1�

− T��
l,l+1Sn,l−1

� − Qn,l−1
� T��

l,l+1�T��
l+1,l� , �124�

Qn,l
� = R��

l+1,l,l+1 +
1

Ds
���Qn,l−1

� Qn,l−1
� − Sn,l−1

� Sn,l−1
� ��R��

l,l+1,lT��
l,l+1

− T��
l,l+1R��

l,l+1,l� − Qn,l−1
� T��

l,l+1 − T��
l,l+1Sn,l−1

� �T��
l+1,l

+ ��Qn,l−1
� Qn,l−1

� − Sn,l−1
� Sn,l−1

� ��R��
l,l+1,lT��

l,l+1 − T��
l,l+1R��

l,l+1,l�

− Qn,l−1
� T��

l,l+1 − T��
l,l+1Sn,l−1

� �T��
l+1,l� , �125�

Fn,l
� =

1

Ds
��− 1 + R��

l,l+1,lQn,l−1
� + R��

l,l+1,lSn,l−1
� �T��

l+1,l

+ �− R��
l,l+1,lQn,l−1

� − Sn,l−1
� R��

l,l+1,l�T��
l+1,l� , �126�

En,l
� =

1

Ds
��− R��

l,l+1,lQn,l−1
� − R��

l,l+1,lSn,l−1
� �T��

l+1,l

+ �R��
l,l+1,lSn,l−1

� + R��
l,l+1,lQn,l−1

� − 1�T��
l+1,l� , �127�

Hn,l
� =

1

Ds
���Sn,l−1

� Sn,l−1
� − Qn,l−1

� Qn,l−1
� �R��

l,l+1,l − Sn,l−1
� �T��

l+1,l

+ ��Qn,l−1
� Qn,l−1

� − Sn,l−1
� Sn,l−1

� �R��
l,l+1,l − Qn,l−1

� �T��
l+1,l� ,

�128�

Dn,l
� =

1

Ds
���En,l−1

� Sn,l−1
� − Qn,l−1

� Fn,l−1
� �R��

l,l+1,l + �En,l−1
� Qn,l−1

�

− Sn,l−1
� Fn,l−1

� �R��
l,l+1,l − En,l−1

� �T��
l+1,l + ��Sn,l−1

� Fn,l−1
�

− En,l−1
� Qn,l−1

� �R��
l,l+1,l + �Qn,l−1

� Fn,l−1
� − Sn,l−1

� En,l−1
� �R��

l,l+1,l

− Fn,l−1
� �T��

l+1,l� , �129�

Cn,l
� =

1

Ds
���Fn,l−1

� Sn,l−1
� − Qn,l−1

� En,l−1
� �R��

l,l+1,l + �Fn,l−1
� Qn,l−1

�

− Sn,l−1
� En,l−1

� �R��
l,l+1,l − Fn,l−1

� �T��
l+1,l + ��Sn,l−1

� En,l−1
�

− Fn,l−1
� Qn,l−1

� �R��
l,l+1,l + �Qn,l−1

� En,l−1
� − Sn,l−1

� Fn,l−1
� �R��

l,l+1,l

− En,l−1
� �T��

l+1,l� , �130�

En,l
� =

1

Ds
���Qn,l−1

� Qn,l−1
� − Sn,l−1

� Sn,l−1
� �R��

l,l+1,l − Qn,l−1
� �T��

l+1,l

+ ��Sn,l−1
� Sn,l−1

� − Qn,l−1
� Qn,l−1

� �R��
l,l+1,l − Sn,l−1

� �T��
l+1,l� .

�131�

It is noticeable that when �=0 the cylinders are normally
illuminated by plane waves. By the relations

h = k0 sin � = 0, �132�

and

� j = �kj
2 − h2 = kj , �133�

all scattering coefficients for the cross polarization Qn,l
� and

Qn,l
� are 0, and all other scattering coefficients and Fresnel

coefficients are the same as those for normal incidence �20�,
as expected.

V. NUMERICAL ALGORITHM

In principle, the scattering problem has been solved in the
above sections and we can calculate all the fields with these
formulas. But in numerical simulation, two pitfalls will be
met in the calculation of Fresnel coefficients. First, when the
imaginary part of x is very large. Hn

�1��x� will overflow. Sec-
ond, when n� 
x
, the upward recurrence algorithm will be
unstable �2,29�. In order to overcome such pitfalls, an im-
proved algorithm is presented.

First, we define the logarithmic derivatives of Hankel
functions as �2,19,20�

Dn
�1��x� =

Hn
�1���x�

Hn
�1��x�

, �134�

Dn
�2��x� =

Hn
�2���x�

Hn
�2��x�

. �135�

The logarithmic derivatives can be well calculated by the
following recurrence algorithm:

An�x� = 1/��n − 1�/x − An−1�x�� − n/x , �136�

where An�x� stands for Dn
�1��x� or Dn

�2��x�. The initial values
of Dn

�1��x� or Dn
�2��x� are, respectively,

D0
�1��x� = H0

�1��x�/H1
�1��x� − 1/x

and

D0
�2��x� = H0

�2��x�/H1
�2��x� − 1/x .

All Fresnel coefficients are expressed in terms of logarithmic
derivatives, and listed in Appendix B.

From Appendix A, we find that all transmission coeffi-
cients Tij

21�i , j=� ,�� have the ratio of Hankel functions of
second kinds Hn

�2��x2� /Hn
�2��x1�, and all Tij

12 have the ratio of
Hankel functions of first kinds Hn

�1��x1� /Hn
�1��x2�. When n is

larger than the parameter of Hankel functions, both the ratios
Hn

�2��x2� /Hn
�2��x1� and Hn

�1��x1� /Hn
�1��x2� diverge quickly and

cannot be calculated directly. By consideration of the physi-
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cal scattering process and of Eqs. �108�–�116� and �124�–
�131�, we find that transmission coefficients Tij

21 and Tij
12 exist

together in all scattering coefficients. Therefore, we define Tn
as the product of Hn

�2��x2� /Hn
�2��x1� and Hn

�1��x1� /Hn
�1��x2�,

Tn =
Hn

�2��x2�
Hn

�1��x2�
Hn

�1��x1�
Hn

�2��x1�
. �137�

The ratios Hn
�2��x2� /Hn

�2��x1� and Hn
�1��x1� /Hn

�1��x2� can then be
obtained by the ratio Hn

�1��z� /Hn
�2��z� �z=x2 or x1�, which can

be calculated by the following recurrence relation:

Hn
�1��z�

Hn
�2��z�

=
Hn−1

�1� �z�
Hn−1

�2� �z�
Dn

�2��z� + n/z
Dn

�1��z� + n/z
�138�

with initial value H0
�1��z� /H0

�2��z�. The numerical evaluation
by this equation is stable.

VI. FAR-FIELD SCATTERED INTENSITY

When all scattering coefficients are obtained, we can cal-
culate the far-field scattered intensity according to the fol-
lowing formulas:

I��
l ��� = 
S��

l ���
2, �139�

I��
l ��� = 
S��

l ���
2, �140�

I��
l ��� = 
S��

l ���
2, �141�

I��
l ��� = 
S��

l ���
2, �142�

where I��
l , I��

l , I��
l , and I��

l are, respectively, the scattered
intensities corresponding to the �-polarization-preserving
scattering, �-polarization-preserving scattering, and cross-
polarization scatterings. Sl’s are the corresponding scattering
amplitudes written as

S��
l = B0

� + 2�
n=1

�

Bn,l
� cos�n�� , �143�

S��
l = B0

� + 2�
n=1

�

Bn,l
� cos�n�� , �144�

S��
l = 2i�

n=1

�

Qn,l
� sin�n�� , �145�

S��
l = 2i�

n=1

�

Qn,l
� sin�n�� . �146�

Because the scattering amplitudes for the two cross-
polarization channels differ only in sign, namely S��

l =−S��
l

�30�, the scattered intensities for two channels are the same
�I��

l = I��
l �.

To verify our algorithm and code, the GDSE is first em-
ployed to the study of the simplest case, namely homoge-
neous cylinders obliquely illuminated by plane waves. Liou

�31� calculated the far-field scattered intensities. We compare
our results of GDSE with theirs. Figure 4 depicts the far-field
scattered intensities for absorbing homogeneous ice cylin-
ders obliquely illuminated by plane waves with different tilt
angles that correspond to Figs. 4 and 6 of Ref. �31�. The
parameters used are a=10 �m, 	=10 �m, m=1.152
−0.0413i, and �=5°, 45°, and 85°, respectively. We find that
our results are in good agreement with that of Liou. It is
worth to note that the cross-polarized intensity �Fig. 4�c�� is
very important in oblique-cylinder scattering and is absent in
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FIG. 4. Far-field scattered intensity for absorbing homogeneous
ice cylinders obliquely illuminated by plane waves with different
tilted angles �a=10 �m, 	=10 �m, m=1.152−0.0413i�. The log
scale is to the base 10.
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sphere scattering and normal-cylinder scattering.
For the case of multilayered cylinder scattering, the

GDSE is employed to the simulation of far-field scattered
intensities for a doubly clad image-transmitting fiber ob-
liquely illuminated by plane waves which is studied by
Barabás �11� using Mie theory. Figure 5 depicts the far-field
scattered intensity for a doubly clad image-transmitting fiber
�solid line for TM polarization, dashed line for TE one� that
correspond to Figs. 6�a� and 6�c� of Ref. �11�. The radii and
refractive indices of the three-layered cylinder are r1
=5.6 �m, m1=1.62, r2=6.3 �m, m2=1.505, r3=7.0 �m, and
m3=1.56. The wavelength of incident waves is 	=633 nm,
and the tilt angle is �=45°. The scattering intensity distribu-

tion in Fig. 5 is in agreement with that of Barabás.
The DSE can be employed to simulate single-mode con-

tributions easily and conveniently. Lock �20� employed the
DSE to analyze the first-order rainbow produced in scatter-
ing of obliquely incident plane wave by homogeneous cylin-
ders. The one-internal-reflection portion of the partial-wave
scattering amplitudes is

Bn,1
� = − 1

2 �T��
21 R��

121T��
12 + T��

21 R��
121T��

12 + T��
21 R��

121T��
12

+ T��
21 R��

121T��
12 � , �147�

Bn,1
� = − 1

2 �T��
21R��

121T��
12 + T��

21 R��
121T��

12 + T��
21R��

121T��
12

+ T��
21 R��

121T��
12 � , �148�

Qn,1
� = − 1

2 �T��
21 R��

121T��
12 + T��

21 R��
121T��

12 + T��
21 R��

121T��
12

+ T��
21 R��

121T��
12� . �149�

For the verification of our code, we show in Figs. 6�a� and
6�b� the one-internal-reflection scattered intensity obtained
by our code in the same case as for Fig. 4 of Ref. �20� for a
homogeneous cylinder with refractive index m=1.484, size
parameter 2
a /	=1000.0 and �=45.0° and 50.72°, respec-
tively. The scattered intensity associated with the complete
partial-wave scattering amplitudes of Eqs. �56�, �59�, and
�63� is shown in Fig. 7 which correspond to of Fig. 6 of Ref.
�20�. Because of symmetry only the part between 170° and
180° is given while the part between 180° and 190° is ne-
glected. We find that the agreement of scattered intensity
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FIG. 6. One-internal-reflection portion of the scattered intensity
for homogeneous cylinder with m=1.484 and 2
a /	=1000.0. The
log scale is to the base 10.
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FIG. 7. Scattered intensity for homogeneous cylinder with m
=1.484 and 2
a /	=1000.0. The log scale is to the base 10.
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FIG. 5. Far-field scattered intensity for a doubly clad image-
transmitting fiber obliquely illuminated by plane waves with tilted
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distribution calculated by our code with that of Lock is ex-
cellent. It is necessary to point out that when all modes are
taken into account, the results obtained by GDSE is identical
to that of Mie theory.

DSE permits to identify the contributions of each mode of
rays, and can be employed to the research on electromagnetic
scattering by homogeneous and multilayered spheres, cylin-
ders at normal incidence, and homogeneous cylinders at ob-
lique incidence. But when cylinder is obliquely illuminated
by plane waves, the DSE is not applicable. GDSE is just
developed to such problem and it provides an efficient tool to
study the contribution of different scattering modes. Multiple
first-order rainbows formed by a multilayered cylinder is a
typically example �4,17�.

When a coated cylinder is illuminated by plane waves,
twin first-order rainbows can be observed. Adler et al. �4,17�
experimentally studied the twin primary rainbows when a
water-coated glass rod is normally illuminated by plane
waves. When the rod is obliquely illuminated by plane

waves, we can also observe twin first-order rainbows, but the
twin primary rainbows is more complicated than that for the
normal incidence. Figure 8 depicts typical twin first-order
rainbows produced by a water-coated glass rod obliquely il-
luminated by plane waves of wavelength 	=632.8 nm. The
refractive indices of the core and the coating are m1=1.5 and
m2=1.33. The corresponding diameters are d1=0.485 mm
and d2=0.505 mm. The refractive index of the surrounding
is 1.0. The tilt angle is �=10°. GDSE is employed to the
research of such twin first-order rainbows. Figure 9 illus-
trates the rays of the first-order rainbows, denoted � and
�, each of which undergoes one internal reflection on one of
the two surfaces of the cylinder. Figure 10 depicts the
polarization-preserving component of twin first-order
rainbows produced by � ray and � ray with Bn,2

�

=− 1
2T��

32 T��
21 R��

121T��
12 T��

23 and Bn,2
�

=− 1
2T��

32 T��
21 T��

12 R��
232T��

21 T��
12 T��

23 . The scattered intensities
produced by single rays of � ray or � ray are also given in
Fig. 10. From the comparison of Fig. 8 and 10, we can find
that the main bows between 155° and 158.5° and those be-
tween 159° and 162° are produced, respectively, by � ray
and � ray, while the high frequency or ripple structure is due
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FIG. 8. Scattered intensities of twin first-order rainbows by a
coated cylinder. The wavelength of the incident plane wave is 	
=632.8 nm. The refractive indices for the core and the coating are,
respectively, 1.5 and 1.33. The corresponding diameters are d1

=0.485 mm and d2=0.505 mm. The tilt angle is �=10°.
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FIG. 9. Debye model for the formation of twin first-order rain-
bows of a coated cylinder.
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FIG. 10. Polarization-preserving component of twin first-order
rainbows simulated by GDSE.
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to the interference between these rays and the reflection rays.
When the rod is obliquely illuminated, there exists also

the cross polarization. The cross-polarized intensity for
twin primary rainbows produced by � ray with Bn,2

�

=− 1
2T��

32 T��
21 R��

121T��
12 T��

23 and � ray with Bn,2
�

=− 1
2T��

32 T��
21 T��

12 R��
232T��

21 T��
12 T��

23 is considered as an example.
Figure 11 depicts the cross-polarization component of first-
order rainbows produced by such two rays. By comparison
of Fig. 10 and 11. we can find that the polarization-
preserving intensity and the cross-polarization one have
same angular positions, but the magnitude of polarization-
preserving intensity is much greater than that of the cross-
polarization one.

It is necessary to point out that the cross-polarized inten-
sity is very sensitive to tilt angles. Figure 12 gives the cross-
polarized intensities of twin first-order rainbows with various
tilt angles �10°, 15°, and 20°�. When tilt angles become
larger, both first-order rainbows move toward larger scatter-
ing angles, and the magnitude of intensities becomes more
important.

VII. CONCLUSION

The generalized Debye series expansion �GDSE� for elec-
tromagnetic scattering is derived on the basis of the GDSE
for acoustic scattering by using the relationship of boundary
conditions between global scattering process and local scat-
tering processes for the scattering of infinite multilayered
cylinders obliquely illuminated by plane waves. The GDSE
expresses the Mie scattering coefficients in a series of
Fresnel coefficients, and gives the physical interpretation of
scattering modes. An improved numerical algorithm is pre-
sented which permits the simulation for plane-wave scatter-
ing of cylinders of large size parameters and great number of
layers. The formula and code are verified by comparison of
our results with that presented in the literatures, and good
agreements are obtained. GDSE is employed, as an example,
to the study of the twin primary rainbows produced by
coated cylinders obliquely illuminated by plane waves.

APPENDIX A: FRESNEL COEFFICIENTS

By solving corresponding equations using Cramer’s rules,
we can find all Fresnel coeffiecents as follows:

R��
212 =

1

DL�
�U�Hn

�2�����2 − �1
2�2

2U22V12� , �A1�

R��
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FIG. 12. Cross-polarization component of twin first-order rain-
bows vs tilt angle.
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Uij =
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APPENDIX B: REFORMED FRESNEL COEFFICIENTS
USING LOGARITHMIC DERIVATIVES

Using logarithmic derivatives, we can obtain reformed
Fresnel coefficients as follows:
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