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We numerically examine the influence of the viscosity on the relaxation process of localized clouds in
thermally unstable two-phase media, which are locally heated by cosmic ray and cooled by radiation. Pulselike
stationary solutions of the media are numerically obtained by a shooting method. In one-dimensional direct
numerical simulations, localized clouds are formed during the two-phase separation and sustained extraordi-
narily. Such long-lived clouds have been recently observed in interstellar media. We demonstrate that the
balance of the viscosity with a pressure gradient remarkably suppresses the evaporation of the clouds and
controls the relaxation process. This balance fixes the peak pressure of localized structures and then the
structure is attracted and trapped to one of the pulselike stationary solutions. While the viscosity has been
neglected in most of previous studies, our study suggests that the precise treatment of the viscosity is necessary
to discuss the evaporation of the clouds.
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I. INTRODUCTION

Structures, especially spatially localized ones such as in-
terfaces, shocks, and pulses, play a crucial role in under-
standing elementary processes, dynamical nature, and even
statistics of widespread nonlinear phenomena �e.g., �1–6��.
In some cases, these structures are represented by stationary
or steady even periodic solutions, e.g., heteroclinic orbit that
is a front connecting two states and homoclinic orbit corre-
sponding to a pulse.

In this paper, we try to apply this approach to the forma-
tion process of interstellar clouds that are cold dense struc-
tures surrounded by warm phase in thermally bistable media.
This type of structures is often observed in nature: interga-
lactic clouds �7� and plasmas in tokamaks �8� �see also ref-
erences in the work of Meerson �9��. These cold structures
have attracted much attention in recent years in astrophysical
contexts such as star formation processes �e.g., �10–12��.

Researches on interstellar clouds so far have focused on
localized structures but have not systematically dealt with
stationary solutions and also their role in the formation pro-
cess of clouds. This is partially because such solutions are
not stable and do not survive in direct numerical simulations.
However, unstable solutions can play a crucial role, e.g.,
traveling waves and unstable periodic orbits in turbulent pro-
duction of channel flow turbulence �3–6�. We, therefore, try
to obtain homoclinic orbits that are spatially localized sta-
tionary solutions of the governing equations and to describe
the evolution of neutral and thermally bistable interstellar
media by them.

Our main concern is the effect of viscosity on both for-
mation of and saturation to localized structures, although the
viscous effect has been neglected or at most implicitly in-
cluded as numerical viscosity because of its expected small-
ness in interstellar scales. In fact, in the studies so far, such
structures are generally lost during the separation process
�13,14�. However, as shown later, by including the viscous

effect the evaporation time of the localized clouds is length-
ened extraordinarily, where they are trapped close to station-
ary solutions. Physically speaking, the balance between the
viscosity and the pressure gradient at a higher order controls
the saturation process. This might be related with recently
observed tiny long-lived clouds �15–17�.

Here, we will shortly review localized structures in inter-
stellar neutral media. For homogeneous and stationary cases,
radiative-equilibrium states are attained through the balance
of radiative effects at each point in space: heating due to
cosmic ray and radiative cooling �18�. Field et al. �19� found
that three of such states exist for a range of pressure and only
two of them are linearly stable with respect to spatial distur-
bances. If the system is initially in the unstable state, i.e.,
thermally unstable one �20�, due to the spatial instabilities
the system spontaneously separates into regions of stable
states called the warm neutral media and the cold neutral
media.

For one-dimensional cases, cold structures are transiently
formed during the separation process. Some of them merge
or evaporate, and finally few clouds survive. They are sur-
rounded by fronts connecting two stable radiatively equilib-
rium states. Zel’dovich and Pikel’ner �hereafter ZP� �21�
studied the single-front dynamics in terms of steady solu-
tions with one front in a plane-parallel geometry under an
isobaric condition. The front is a traveling wave but station-
ary only when pressure takes a certain value called saturation
pressure. This nature seems to resemble two-phase systems
described by complex Ginzburg-Landau equations. However,
it should be noted that even in the stationary state, the system
is sustained by thermal flux compensating excesses of local
energy budgets. In this sense, the system is essentially ther-
mally nonequilibrium.

From the view of structures, most of the succeeding stud-
ies are based on fronts. Elphick et al. �13� extended the ZP
solutions to a multifront case with an open boundary condi-
tion. In their numerical simulation, young cold clouds are
merged and a uniform state is finally realized. However, rigid
boundary conditions �14� changed the destination of cold
clouds. A single system-size cold cloud constituted by two*sanmaya@kyoryu.scphys.kyoto-u.ac.jp
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fronts was sustained. The conservation of mass in the nu-
merical domain governs the final state.

For two- or three-dimensional cases, localized structures
with symmetries as well as plane-wave fronts have been in-
vestigated. Graham and Langer �22� obtained spherically
symmetric steady solutions under an isobaric condition. The
expanding spherical front, i.e., condensing cold cloud, as-
ymptotically coincides with the ZP solution as the radius
goes to infinity. Nagashima et al. �17� also calculated the
three-dimensional spherically symmetric flow by solving the
equations numerically with an open boundary condition.
They obtained the stationary spherical clouds only when the
clouds have critical radii depending on pressure, otherwise
the curvature effect cannot balance the thermal effects. In
order to compare the spherical clouds to relatively long-lived
tiny interstellar clouds observed recently, they estimated the
evaporation and condensation timescales for contracting
�evaporating� and expanding �condensing� spherically sym-
metric fronts of the cold clouds, respectively, and concluded
that the estimated timescales are consistent with the observa-
tions.

This paper is organized in the following way. Section II
provides governing equations and some important physical
quantities. Pulselike stationary solutions are numerically ob-
tained in Sec. III. Section IV shows that the solutions are
confirmed in direct numerical simulations. Section V de-
scribes the effects of the viscosity and pressure gradient in
the dynamics of the localized clouds. We present summary,
discussion, and conclusion in Sec. VI.

II. GOVERNING EQUATIONS

Consider an optically thin neutral media with external
heating and radiative cooling. Self-gravitation, magnetic
field, and other body forces are neglected. The fluids are
described through the following basic equations which in-
clude the laws of mass, momentum, and energy conserva-
tion, together with a perfect-gas equation of state:
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where �, v, E, and P are density, velocity, total-energy den-
sity, and pressure, respectively. The thermal conductivity, the

specific-heat ratio, and the viscosity coefficient are denoted
by K, �, and �, respectively. In general the thermal conduc-
tivity is a function of temperature but for simplicity we set it
as a constant. mH is the molecular mass of hydrogen and kB
is the Boltzmann constant. L�T , P� is called a heating-
cooling function, which describes the total of thermal input
and output depending on temperature and pressure at each
point. Note that fluids can be locally heated and cooled in
this system since the fluids are sufficiently rarefied. Such
fluids are common particularly in astrophysical systems.

We use the following nondimensional equations derived
from the original Eqs. �1�–�6�:
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Here x̃j =xj /x0, ũj =uj /u0, �= t / �x0 /u0�, �̃=� /�0, T̃=T /T0, P̃

= P / P0, and L̃=L /L0, which are scaled by the correspond-
ing characteristic values denoted by a subscript zero, respec-
tively.

The characteristic length scale x0 is defined as follows:

x0 =
 KT0

�0L0
. �12�

This length is called Field length and represents the front
width between two phases �20�.

We set the characteristic velocity u0 to be proportional to
a sound speed,

u0 =
 kB

mH
T0. �13�

There are two nondimensional constants in the nondimen-
sional equations,

Pr =
�

� − 1

kB�

mHK
, �14�
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Ep =
1

�0L0

P0

t0
. �15�

Pr called Prandtl number. Ep represents the degree of thermal
contribution to dynamics in Eq. �9�. Larger Ep induces
slower dynamics in fluids.

In this paper, the following Ginzburg-Landau-type equa-
tion is adopted for the heating-cooling function �13,23,24�:

− �̃L̃�T̃, P̃� = F�T̃, P̃� = a�T̃ − 1� − b�T̃ − 1�3 − c ln P̃ .

�16�

We also tried the more realistic but complicated form of the
heating-cooling function �17� used in astrophysical contexts
�25,26�,

�L = − n	 + n2
�T� , �17�

	 = 2.0 � 10−26 erg s−1, �18�


�T�
	

= 1.0 � 107 exp�− 1.184 � 105/�T + 1000��

+ 1.4 � 10−2
T exp�− 92/T� cm3. �19�

It is found that both the stationary solutions and the results of
numerical simulations with the heating-cooling function �17�
are qualitatively similar to those with the simplified heating-
cooling function �16� �see Figs. 2, 4, 7, and 8�. Therefore, for
simplicity and for elucidation of fundamental mechanism,
the simplest form of the heating-cooling function defined by
Eq. �16� is adopted in this work.

In Fig. 1, we show a radiative-equilibrium curve on which

the heating-cooling function F�T̃ , P̃� is equal to zero. The S
shape of the curve is essential to two-phase separation—
supposed to a fixed pressure in a range with which the equa-
tion has three roots. Because two roots with high and low
temperatures among them satisfy condition �20�, they are
stable against small temperature �density� perturbations,

� �F

�T̃
�

P̃

� 0. �20�

In contrast, the root with an intermediate temperature satis-
fies condition �21�, and thus a small disturbance on the state
grows. This instability is called thermal instability �20�,

� �F

�T̃
�

P̃


 0. �21�

Fluid particles around the unstable branch in Fig. 1 finally
reach to each of stable branches with high or low tempera-
tures via heating or cooling processes.

III. PULSELIKE STATIONARY SOLUTIONS

First, we will obtain stationary localized solutions of Eqs.
�7�–�11�. These are homoclinic orbits.

A. Plane-parallel geometry

Supposed that a fluid is stationary �� /��=0 and ũi=0�, the
governing equations are simplified in a plane-parallel geom-
etry as follows:

F�T̃, P̃� +
�2T̃

� x̃2 = 0, �22�

� P̃

� x̃
= 0. �23�

Because the pressure P̃ becomes uniform via Eq. �23�, the
pressure works as a parameter in the temperature Eq. �22�.
Here for simplicity and for keeping the temperature positive,
we set the parameters a, b, and c of F as 1, 2, and 1, respec-
tively. However, note that transforming the variables as x̃

=
a�, T̃−1=
a /bT̂, and P̃= P̂
ab/c, the parameters can be
eliminated from Eq. �22�.

We impose the following boundary conditions in the
semi-infinite space �0� x̃���:

�T̃

� x̃
= 0 �x̃ = 0, x̃ → �� . �24�

Since Eq. �22� is a second-order ordinary differential equa-
tion with respect to x̃, the two boundary conditions in Eq.

�24� uniquely determine the solution T̃�x̃� if it exists. Simul-
taneously, the values of temperature at the boundaries, i.e.,

T̃0= T̃�x̃=0� and T̃�= T̃�x̃→��, are given. We numerically
solve Eq. �22� with the boundary conditions in Eq. �24� by

means of a shooting method, and we obtain T̃�x̃� and also T̃0

and T̃� for various values of pressure. In Fig. 2, we show the

density profiles �̃�x̃�= P̃ / T̃�x̃� of the solutions for three val-

ues of pressure P̃=1.1, 1.01, and 1.001. By the reflection
symmetry of Eq. �22� the solutions are extended to x̃�0.
These localized cold solutions are called pulselike stationary
solutions, hereafter. Figure 3 shows the peak density �̃0
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FIG. 1. �Color online� Radiative-equilibrium curve �thick curve�
of the Ginzburg-Landau-type heating-cooling function �16� in the

T̃P̃ plane. The heating-cooling function F equals zero on the curve.
a, b, and c in Eq. �16� are set to 1.0, 2.0, and 1.0, respectively. The
two arrows schematically denote that a small perturbation on an
unstable state grows, and one of the stable two-phase states with
lower or higher temperature on the radiative-equilibrium curve is
finally realized.
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= P̃ / T̃0 and the density at infinity �̃�= P̃ / T̃� as a function of

pressure P̃. Note that the peak densities are always lower
than the density of the stable equilibrium state and apart

from the radiative-equilibrium curve �F=0� when P̃
1. As

P̃→1+, the peak density asymptotically approaches one of
the stable radiative equilibriums, and the pulselike solution
becomes the ZP solution �front solution�.

We also obtained pulselike stationary solutions using the
realistic but complicated form of heating-cooling function.
The solutions are shown in Fig. 4. With the respect that the
solutions are also homoclinic orbits, they are qualitatively
similar to those obtained with simplified heating-cooling
function �16� as shown in Fig. 2. This supports the use of the
simplified heating-cooling function �16�.

B. Axisymmetric and spherically symmetric geometry

We also obtain pulselike stationary solutions in multidi-
mensional systems as in the one-dimensional case. We sup-
pose that the systems are axisymmetric in two-dimensional
cases and spherically symmetric in three-dimensional cases.
These symmetries make the governing equations simpler as
follows:

F�T̃, P̃� +
d − 1

r̃

�T̃

� r̃
+

�2T̃

� r̃2 = 0, �25�

� P̃

� r̃
= 0, �26�

where r̃ and d are the radial coordinate and the space dimen-
sion, respectively. The boundary conditions are imposed as
follows:

�T̃

� r̃
= 0 �r̃ = 0, r̃ → �� . �27�

These equations are numerically solved by means of the
shooting method. As in the case of the one-dimensional sys-

tem, we obtain a localized solution �̃�r̃�= P̃ / T̃�r̃� with peak
density �̃0 at the origin and density at infinity �̃� at r̃→�.
The two densities are dependent only on pressure. Figure

5�a� shows �̃0 and �̃� as a function of pressure P̃ for the
two-dimensional and three-dimensional solutions. As pres-

sure increases from the saturation pressure P̃=1, the peak
density leaves away from the radiative-equilibrium curve.
Note that by the curvature effect represented by the second
term in the left-hand side of Eq. �25�, the peak density in-
creases along with the radiative-equilibrium curve as pres-
sure increases, unlike the one-dimensional solution in Fig. 3.

We define the size of the localized structures as a radius

r̃c, which satisfies T̃�r̃c�= �T̃0+ T̃�� /2. Figure 5�b� shows the

radii as a function of pressure. When P̃→1+, the radii go to
infinity. Since the curvature term of Eq. �25� asymptotically
approaches zero in the limit, the localized solutions then lead
to the ZP front solution in a plane-parallel geometry. The
dependence of the cloud size on pressure qualitatively agrees
with the results of Nagashima et al. �17�.

C. Bubble solutions

Warm, rarefied, and localized structures surrounded by
cold dense media are also numerically obtained in the same
way as the cold structures obtained in Sec. III B. The density

profiles of the solutions for the three values of pressure P̃
=0.9, 0.99, and 0.999 are shown in Fig. 6�a�. These struc-

tures are realized only when P̃�1. Figure 6�b� shows the
peak densities �̃0 and densities at infinity �̃� as a function of

pressure P̃. As in the case of the cold structures, the peak
densities are apart from the radiative-equilibrium curve when
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pressure gets smaller than the saturation pressure P̃=1. In

the limit that P̃→1−, the solutions approach the one-
dimensional ZP front solution corresponding to a plane-
parallel and localized warm structure of an infinity size.
These localized warm solutions are called “bubbles” �9,14�
and have been frequently referred in astrophysical contexts
�9�.

IV. RELAXATION PROCESS OF LOCALIZED
COLD STRUCTURES

We investigate the role of the cold pulselike stationary
solutions in the formation of localized structures by direct
numerical simulations. Equations �7�–�11� are numerically
solved in a plane-parallel geometry with 8192 grids and a
periodic boundary condition. We use a high-accuracy pseu-
dospectral method partially dealiased and a fourth-order
Runge-Kutta method. As initial conditions, pressure is set to

the saturation pressure and velocity is zero, that is, P̃=1 and
ũ=0. Density is a small random disturbance consisting of
only low wave-number modes �k�16� added to a homoge-
neous state �̃=1 that is on the unstable branch of the
radiative-equilibrium curve �see Fig. 1�. We set nondimen-
sional constants Ep and Pr to 1.0�102 and 1.0, respectively.
Koyama and Inutsuka �27� used Ep�64 in a realistic situa-
tion so that Ep=100 seems to be a feasible value. The
specific-heat ratio � is set to 5/3.

Figure 7 shows a formation process of localized struc-
tures. The initial density disturbance rapidly grows and
evolves into warm and cold regions due to a thermal insta-
bility. Some of the cold regions merge successively and some
of them evaporate in the evolution. Several localized cold
structures finally survive in warm media, and then these
structures persist for a long time. Because most of the kinetic
energy in the whole system is lost during the two-phase sepa-
ration, the cold structures are almost stationary.
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For comparison, we also have numerically calculated the
two-phase separation with the realistic but complicated form
of heating-cooling function �17� and original astrophysical
Eqs. �1�–�6�. Some of the results are shown in Fig. 8. The
relaxation process is qualitatively similar to that with simpli-
fied heating-cooling function �16� shown in Fig. 7. Some of
the cold regions merge and evaporate, and some localized
structures finally survive in the process.

To examine the decaying process of localized structures
in detail, we focus on two typical localized cold structures.
One with a longer lifetime is seen around x�60 in Fig. 7.
The peak density of this localized structure does not yet
attain the value of the density in the radiative equilibrium
�F=0�. However, as seen in Fig. 9, the localized cold struc-
ture is quite similar in form to a pulselike stationary solution
with the value of pressure at the peak of the localized struc-
ture. The values of pressure at the peak of localized struc-
tures are called peak pressure. Note that in Fig. 9 the value
of pressure is subtracted by 1.000 042 5 so that the pres-
sure variation around the peak of the localized structure is

negligible and does not affect the estimation of the peak
pressure.

The peak density of the localized structures decreases
slowly and monotonically by evaporation and they finally
disappear. We estimate the characteristic time of the decay-
ing process, i.e., the evaporation time of the localized struc-
tures. In Fig. 10, we show the evolution of the peak density
of the localized structures obtained in two runs under the
same conditions except for the initial condition: one with a
longer lifetime is called LS1 and the other LS2 hereafter. The
evolution is separated into two periods: the fast transient one
and the slow decay one. We call the latter a quasistationary
state. The transient period finishes at around �=2.0�103.
This time corresponds to a sound crossing time defined as a
time during which a sound wave passes through the system.
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zontal lines represent the densities of the states of the radiative
equilibrium at the saturation pressure.
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The decay curves of the peak density after attaining the
quasistationary state are well fitted by a double-exponential
function A exp
−B exp���−�0� /�c�� as shown in the inset of
Fig. 10; the values of the fitting parameters of LS1 are A
=3.27, B=1.24�10−2, �0=45 000, and �c=2.91�105 for
4.5�104���1.6�105; those of LS2 for 4.5�104��
�1.1�105 are A=2.95, B=1.07�10−2, �0=45 000, and �c
=2.21�104. The latter case shows that the late decaying
process is faster than a double-exponential function, but the
characteristic time estimated is shorter than the period of the
saturation process 1.2�105. In this sense, the characteristic
time gives a good estimate of the evaporation time of the
localized structure.

It should be noted that the relaxation times �c are much
longer than the sound crossing time. In Sec. V, we discuss
the details of this decaying process of the peak density.

V. PERSISTENCE OF PULSELIKE
CLOUDS WITH VISCOSITY

Why can the localized cold structures be sustained ex-
tremely longer than expected? Here we focus on viscosity,
although the viscosity has been omitted in most of the pre-
vious studies. Since we have performed numerical simula-
tions with a high-accuracy spectral scheme, we can deal with
the viscosity more precisely than the previous studies.

Figure 11 shows the viscosity term and the pressure-
gradient term of the kinetic Eq. �8� around the localized
structure in the quasistationary state �=165 000. While the
pressure is almost uniform because of the mixing by sound
waves, a weak pressure gradient is maintained around local-
ized structures �see also Fig. 9�. Moreover, the weak pressure
gradient almost coincides with the viscosity. This balance
between the viscosity and the pressure gradient causes the
persistence of the localized structure. To see this in detail, we
rewrite the basic Eqs. �7� and �8� in a plane-parallel geom-
etry as follows:

D�̃

D�
= −

3

4
�̃�̃ , �28�

D�̃

D�
+

3

4
�̃2 = �4

3

1

�̃

�

� x̃
−

4

3

1

�̃2

� �̃

� x̃
��� − 1

�

Pr

Ep

��̃

� x̃
−

� P̃

� x̃
� ,

�29�

where D /D�=� /��+ ũ� /�x̃ is a Lagrangian derivative. �̃
=4 /3��ũ /�x̃� is a viscous stress, which represents the degree
of compressibility.

Figure 12 shows that the viscous stress �̃ exponentially
grows in the quasistationary state. Hence, the Lagrangian
time derivative D�̃ /D� can be written as ��̃, where the
growth rate is ��10−6. The very small growth rate is just
caused by the small difference between the viscosity and the
pressure gradient in Eq. �29� when the nonlinear term in the
left-hand side is negligible. In fact �̃���̃��̃2 since the
viscous stress �̃ is the order of 10−8 as seen in Fig. 12. The
slow exponential growth of the viscous stress finally leads to
the double-exponential decay with a long relaxation time via
Eq. �28�.

In this relaxation process, as shown in Fig. 13, the local-
ized structures remain close to pulselike stationary solutions.
The balance fixes the peak pressure of the localized structure.
Then the structure is attracted and trapped to one of the
pulselike stationary solutions with the corresponding pres-
sure value that seems to behave similar to a saddlelike fixed
point in the phase space. The deviation of the localized struc-
ture from the pulselike stationary solution induces both the
small pressure gradient and viscous effect �see Fig. 11�. Fi-
nally the two effects induced balance to each other and then
this balance suppresses the induction of flow that transfers
heat and material from localized structures.

The one-dimensional Eqs. �28� and �29� can be extended
to multidimensional equations as follows:

D�̃

D�
= − �div ũ��̃ , �30�

D�div ũ�
D�

+
� ũj

� x̃i

� ũi

� x̃j

= �1

�̃

�

� x̃i

−
1

�̃2

� �̃

� x̃i
��� − 1

�

Pr

Ep

��̃ij

� x̃j

−
� P̃

� x̃i
� .

�31�

These equations suggest that the balance between the viscos-
ity and the pressure gradient plays a crucial role in the relax-
ation of the multidimensional localized structures through
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FIG. 11. �Color online� The viscosity term and the pressure-
gradient term of the kinetic Eq. �8� in the quasistationary state with
Prandtl number Pr=1.0 for LS1 at �=165 000.
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the divergence of velocity. Therefore, the viscosity should be
considered as well as the pressure gradient regardless of the
dimension of the system.

VI. DISCUSSION AND CONCLUDING REMARKS

We have investigated localized cold structures in ther-
mally unstable two-phase fluids. The two-phase separation is
induced by thermal instability via local heating and cooling
described by the Ginzburg-Landau-type heating-cooling
function. We have numerically obtained pulselike stationary
solutions of which the peak densities are not in the states of
the radiative equilibrium in one-dimensional, two-
dimensional axisymmetric, and three-dimensional spheri-
cally symmetric systems using a shooting method. Our solu-
tions differ from the solutions obtained in the previous
studies which consider bistable media and fronts connecting
the two stable states �13,14,28�. The size of the solutions
depends only on pressure, and the relationship between the
size and the pressure qualitatively coincides with the results
of Nagashima et al. �17�.

We have carried out direct numerical simulations of the
thermally unstable fluids with a small random density pertur-
bation using a high-accuracy spectral method. During the
two-phase separation, many cold clouds are formed, and
some of them merge or evaporate. Finally, several cold
clouds are left in the warm media and persist for a long time.
The pulselike stationary solutions obtained by the shooting
method are actually observed in the direct numerical simula-
tions. Such small and long-lived clouds have been observed
in interstellar media and might be related with the long-lived
localized clouds we have found �15–17�.

We have shown that the viscosity balances with the pres-
sure gradient in the quasistationary state at higher order. The
balance remarkably suppresses the evaporation of the local-
ized clouds. Note that the viscous and the pressure-gradient
effects are very weak but play a crucial role in the persis-
tence of the structures. In contrast, most of the previous stud-
ies have neglected the viscous effect �e.g., Refs
�13,14,17,28,29�.�. Our results strongly suggest that the vis-
cosity changes the relaxation process and suppresses the

evaporation of the cold clouds. We, therefore, expect that
multidimensional clouds, which are also pulselike as the one-
dimensional clouds, have a long relaxation time because of
the viscosity.

Although the pulselike stationary solutions are obtained
under constant pressure, the pressure is a dependent variable
in direct numerical simulations. However, the balance be-
tween the viscosity and the pressure gradient tends to keep
the pressure nearly constant �pressure saturation�. In this
situation, one of the pulselike stationary solutions is selected
and attracts the localized structure. This solution behaves
similar to a saddlelike fixed point in phase space. Figure 14
shows the evolution of peak values of the localized structures
LS1 and LS2 in density-pressure space. The peak pressure
and density of the localized structure approach those of the
pulselike stationary solution. After a long stay around there,
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it quickly leaves from there to the lower equilibrium state.
Note that the leaving process of LS1 is not seen in Fig. 14. In
this final escaping process, the profile of the localized struc-
ture quickly deviates from the pulselike stationary solution
with the same pressure value as the peak pressure of the
localized structure �see Fig. 13�. By this picture of the relax-
ation process, the relaxation time might be dependent on the
approaching process along with a stable manifold of the
pulselike stationary solution. When similar to the case of
LS2, the pressure saturation is not sufficient, that is, local-
ized structures are not close enough to the stable manifold of
one of the pulselike stationary solutions, the localized struc-
tures seem to approach a part of a manifold formed by the
pulselike stationary solutions rather than a single one, i.e., a
fixed point. Anyway, the dynamical system approach will
help us understand the formation process of localized clouds.

In the future, we plan to perform direct numerical simu-
lations in two-dimensional axisymmetric and three-
dimensional spherically symmetric systems in order to con-

firm the persistence of the multidimensional localized
structures with the viscosity. In addition, we will employ
two-dimensional full numerical simulations in order to inves-
tigate multidimensional effects such as interface dynamics.
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