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In the present work experimental, numerical, and theoretical investigations of a normal drop impact onto a
liquid film of finite thickness are presented. The dynamics of drop impact on liquid surfaces, the shape of the
cavity, the formation and propagation of a capillary wave in the crater, and the residual film thickness on the
rigid wall are determined and analyzed. The shape of the crater within the film and the uprising liquid sheet
formed upon the impact are observed using a high-speed video system. The effects of various influencing
parameters such as drop impact velocity, liquid film thickness and physical properties of the liquids, including
viscosity and surface tension, on the time evolution of the crater formation are investigated. Complementary to
experiments the direct numerical simulations of the phenomena are performed using an advanced free-surface
capturing model based on a two-fluid formulation of the classical volume-of-fluid �VOF� model in the frame-
work of the finite volume numerical method. In this model an additional convective term is introduced into the
transport equation for phase fraction, contributing decisively to a sharper interface resolution. Furthermore, an
analytical model for the penetration depth of the crater is developed accounting for the liquid inertia, viscosity,
gravity, and surface tension. The model agrees well with the experiments at the early times of penetration far
from the wall if the impact velocity is high. Finally, a scaling analysis of the residual film thickness on the wall
is conducted demonstrating a good agreement with the numerical predictions.
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I. INTRODUCTION

Splashing of drops on liquid layers is encountered
frequently in nature and leads to various phenomena such as
air bubble formation during heavy rain, formation of a
crownlike liquid sheet with detaching secondary droplets,
and ejection of a liquid jet from the region of impact. Inves-
tigations of drop impact onto liquid films have also impor-
tance in various ecological and engineering fields: soil ero-
sion, dispersion of seed and microorganisms, spray coating
and cooling, paint spraying and internal combustion engines
with direct fuel injection, where the fuel is sprayed into en-
gine cylinders in the form of small droplets which splash on
the inner walls oil films of cylinders.

The phenomena involved in drop impact onto various sur-
faces were the subject of experimental, numerical, and also
theoretical studies, a comprehensive review can be found in
�1�. The sequence of events which occurs during the impact
of single drops onto films or pools of various depths has been
described in �2�. Much research has been conducted to un-
derstand the evolution of the maximum crater depth in rela-
tion to the crown formation, splashing, the Worthington jet
height, and bubble entrainment during single drop impact
onto thin and deep liquid pools. Less attention, however, has
been paid to the phenomena taking place below the surface,
in particular the evolution of the impact crater in shallow
pools �3–5�, which is important for spray cooling.

An interesting phenomenon, which appears at almost ev-
ery drop impact onto a shallow or deep pool, is the formation
of a capillary wave after impact. This concentric capillary

ripple travels along the crater sidewall and changes the shape
of the crater from hemispherical for deep pools or from ob-
late for shallow pools to a conical shape. In �6–8� the origin
of this traveling capillary wave was related to the strong
surface disturbance immediately after the initial contact of
the impacting drop with the undisturbed liquid surface. For
deep pools, several authors found that when this capillary
wave reaches the bottom of the crater at a certain time in-
stant, its crest closes concentrically to trap an air bubble
�7,9,10�. The inertia dominated capillary waves on a nearly
planar liquid, radially expanding lamella resulting from drop
impact are well understood. The analysis of such waves can
be found in �11�. Some other capillary waves resulting from
drop impact on films were reported in �12�, which even lead
to the ejection of jet.

Rapid advances in computer hardware and developments
of numerical algorithms have enabled a broader use of com-
putational methods for investigating the drop impact phe-
nomena. Numerical simulations provide a detailed database
comprising not only the dynamics of the drop surface with
respect to its position and form but also the temporal behav-
ior of entire velocity and pressure fields, the latter being
beyond the reach of the existing experimental methods. Be-
cause of their importance, numerous computational studies
of these flows have been reported in the literature. We men-
tion here only some relevant publications �13–15�

The main subject of the present study is the experimental,
numerical, and theoretical investigations of a normal drop
impact onto a liquid film of a finite thickness. The formation
and evolution of the crater formed within the film upon the
impact are investigated for various film thicknesses, drop
impact velocities, and using three different liquids. The study
focuses on the description of the crater penetration, expan-
sion, formation of the residual film on the substrate, as well
as on the emergence and propagation of a sharp-edged axi-
symmetric capillary wave leading to the crater retraction.
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II. EXPERIMENTAL INVESTIGATIONS

Experimental measurements were performed using the ex-
perimental setup shown in Fig. 1. Drops are generated using
a syringe pump with a constant preset flow rate. The drop is
formed at the tip of the needle and grows until its weight
exceeds the surface tension force.

After the drop detaches from the needle it falls and passes
a light barrier before reaching the center of a cylindrical dish
of 90 mm diameter made of plexiglas. The cylinder is large
enough to avoid effects of wave reflections from the sides
with the impact process. The light barrier activates an elec-
tronic delay circuit that triggers the imaging system, consist-
ing of two charge-coupled device �CCD� cameras, one back-
lit by a stroboscope and the other by a particle image
velocimetry �PIV� laser.

In order to investigate the influence of liquid properties on
the crater evolution, three liquids were used: distilled water,
isopropanol, and a glycerin-water mixture consisting of 70%
glycerin and 30% water. The fluid of the drop and the film is
the same in all experiments.

Comparison of different cases is enabled by the use of the
nondimensional numbers governing the impact process: We-
ber number We=�U2D /� giving the relation of inertial to
surface tension forces, Ohnesorge number Oh=� / ���D�1/2

giving the relation of viscous to surface tension forces, Rey-
nolds number Re=UD /� giving the relation of inertial to
viscous forces, Froude number Fr=U2 / �gD� giving the rela-

tion of inertial forces to gravity, dimensionless film thickness

H̄=H /D, and dimensionless time t̄= tU /D. In the above ex-
pressions �, �, and � are dynamic viscosity, surface tension
coefficient, and density of the liquids used, D and U are the
diameter and the impact velocity of the drop, and H is the
initial film thickness. One of the parameters characterizing
splashing threshold is the well-known K=We /Oh0.4 param-
eter �16�. This parameter can be represented as a combina-
tion of the Weber and Reynolds numbers. Nevertheless, this
parameter is added in the description of the results in order to
characterize the impact parameters with respect to the splash-
ing threshold. The initial drop diameter is 2.9 mm for dis-
tilled water, 2.14 mm for isopropanol, and 2.67 mm for
glycerin-water mixture. The drop impact velocity �velocity
just before the drop reaches the film surface� is calculated
from a distance measurement and a preset time delay be-
tween subsequent exposures. Thus, for distilled water the
impact velocity varied from 1.68 m /s to 2.91 m /s, for iso-
propanol from 1.7 m /s to 2.83 m /s and for glycerin-water
mixture from 1.81 m /s to 3.25 m /s. The liquid film thick-
ness was varied for all liquids, yielding the nondimensional
film thickness of 0.5 to 2. The film thickness is held constant
by means of the push-pull syringe pump, which sucks the
same amount of liquid from the film as is added by the
impacting drops, with an error in thickness of 3% to 7% for
distilled water, 2% to 10% for isopropanol, and 1% to 5% for
the glycerin-water mixture.

The physical properties of liquids and ranges of the non-
dimensional numbers are given in Table I.

III. THEORETICAL MODEL FOR THE PENETRATION
DEPTH AT THE INITIAL STAGE

In most of the existing theoretical studies of drop impact
into a deep pool the cavity penetration is described using the
energy balance approach �4,17–19�, where the shape of the
crater is approximated by an expanding sphere. Such ap-
proximation is based on the assumption that the cavity ex-
pands equally in all directions.

In this section we develop a theoretical model for the
cavity penetration in a semi-infinity liquid based only on the
linear momentum balance of the liquid around the cavity.

Consider the penetration of the cavity shown schemati-
cally in Fig. 2, and a spherical coordinate system �r ,� ,��
with the origin fixed at the point of impact at the initial film
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FIG. 1. �Color online� Experimental setup.

TABLE I. Physical properties of the liquids used �at 20 °C� and the ranges of nondimensional
numbers.

Distilled water Isopropanol Glycerin water mixture

Density, � �kg /m3� 999 805 1179

Viscosity, � �Ns /m2� 9.9�10−4 2.3�10−3 18.57�10−3

Surface tension, � �N /m� 7.27�10−2 2.36�10−2 6.68�10−2

Ohnesorge number 0.0021 0.0112 0.0409

Weber number 113–312 189–644 151–505

Reynolds number 4744–8587 1200–2010 299–561

K parameter 1331–3675 1101–3883 524–1814
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level. The penetration depth of the crater is denoted ycr and
the penetration speed is denoted Ucr= ẏcr.

Since the impacting drop deforms during penetration, the
penetration depth can be roughly approximated by the posi-
tion of the drop and/or film interface at the impact axis. The
penetration depth initially increases with almost constant ve-
locity, which is approximately half of the impact velocity and
depends only weakly on the surface tension, viscosity, or
film thickness. The velocity of high-speed jet penetration
whose density equals the density of the target, Ucr�1 /2U is
well known in penetration mechanics �see, for example, the
study on the penetration jets generated by shaped charges
�20� or eroding metal projectile into an elastic-plastic target
�21��. The corresponding penetration depth is ycr�Ut /2. The
duration of this stage is finite, t=2D /U. It is determined by
the rate of the drop erosion, which is proportional to U
−Ucr.

At the times t�2D /U the cavity propagates only due to
the inertia of the flow in the liquid film and decelerates. In
order to estimate the flow in the film at this stage we ap-
proximate the shape of the crater as a spherical cavity with
the center coinciding with the origin of the coordinate system
fixed at the point of impact. This flow is similar to the flow
induced by a single spherical bubble changing in size, pro-
duced by an underwater explosion �22�. If the penetration
depth is much smaller than the initial film thickness, the flow
around the cavity can be approximated by a potential veloc-
ity field in the semi-infinite space. The velocity field in liquid
in that case is given by �22�

vr =
R2

r2 Ṙ, v� = v	 = 0, �1�

and the corresponding velocity potential by

� = −
R2

r
Ṙ �2�

where R=R�t� is the expanding radius of the cavity and Ṙ
=dR /dt is the radial velocity of propagation of cavity sur-
face.

If the Froude number is much higher than unity the effect
of gravity at the initial stage of cavity expansion is negligibly
small. If the penetration depth is much smaller than the cap-
illary length, the deviation of the cavity shape from the

sphere can also be neglected. The expression for the pressure
field p�r , t� in the liquid can be obtained from the Bernoulli
equation in the following form:

��

�t
+

1

2
vr

2 +
p

�
= f�t� , �3�

where f�t� is a function of time only. It can be shown that
f�t�=0 since the liquid velocity vanishes at r→
. Substitut-
ing the expressions for the liquid velocity �1� and potential
�2� in the equation �3� yields the following expression for the
pressure distribution at the cavity surface �r=R�:

pcr = �R̈R + �
3Ṙ2

2
. �4�

It should be noted that this pressure field is valid even if
the viscosity of the liquid is significant. The viscous part of
the radial component of the stress tensor at the cavity surface

is of order 4�Ṙ /R, the pressure jump associated with the
surface tension is 2� /R, and the hydrostatic pressure is �gR.
These terms are negligibly small in comparison with the in-
ertial stresses expressed in Eq. �4� if the Reynolds, Weber,
and Froude numbers are much higher than the unity. In this
case the equation of the cavity penetration and expansion can
be obtained form the condition that the pressure in the liquid
vanishes at the cavity surface.

Moreover, in our model the penetration depth ycr of the
crater is equal to the cavity radius R �see Fig. 2�. The
asymptotic equation for the crater penetration can be written
with the help of Eq. �4� in the following dimensionless form:

ȳcr = −
3ẏ̄cr

2

2ȳcr

. �5�

Equation �5� has the form similar to the equation of rising
of a spherical-cap bubble �22�.

We should emphasize that this equation for the crater pen-
etration is valid only for the initial stage of crater penetration
when the deformation of the shape of the spherical cavity
due to the gravity and capillary effects is negligibly small.

The corresponding analytical solution for the crater depth
is

ȳcr = 2−4/5�5t̄ − 6�2/5, t̄ � 2. �6�

In Fig. 3 the experimental data from �17,23� for the pen-
etration depth of the crater is compared with the theoretical
predictions. In the case of high impact Weber and Froude
numbers the asymptotic formula �6� agrees very well with
the experiments. In the case of relatively smaller impact ve-
locity the influence of the gravity, viscosity and surface ten-
sion become significant leading to some deviation form the
asymptotic solution and even to the damping of the penetra-
tion by gravity and capillary forces which are not accounted
for in the approximate solution �6�.

It should be noted that the receding of the cavity diameter
can differ significantly from the receding of the cavity in the
axial direction, leading to a decrease of the cavity penetra-
tion length. In this stage the shape of the cavity changes
significantly due to occurrence of capillary waves. Moreover,

r
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θ

R (t)

Ur

ϕ

FIG. 2. Sketch of the penetrating cavity.

DROP IMPACT ONTO A LIQUID LAYER OF FINITE… PHYSICAL REVIEW E 79, 036306 �2009�

036306-3



in some cases when the cavity diameter recedes while the tip
continues to penetrate, the impact leads to the formation of
bubble entrainment �23�. The cavity form at this stage cannot
be approximated by the simple shape of a sphere. Therefore,
the theory is not valid for the receding phase of the cavity
expansion. The asymptotic solution �6� for the penetration
depth agrees well with the experimental data at the initial
stage of penetration if the Reynolds and Weber numbers are
high.

The experimental data for the crater penetration length for
various impact parameters and initial film thicknesses is
shown in Fig. 4 in comparison with the theoretical predic-
tions. The deviation from Eq. �6� is determined by the initial
film thickness, or more precisely, by the vicinity of the crater
tip to the rigid substrate. For example, the case with We

=315 corresponds to H̄=2 whereas the case with We=328

corresponds to H̄=1 leading to earlier deviation from the
theory developed for deep pool. These results also demon-
strate that wall effects may be significant already at the initial
stages of drop impact. The most reliable way to predict such
phenomena is using the direct numerical simulations of the
flow.

IV. NUMERICAL PREDICTIONS

A. Mathematical model

Complementary to the experiments, numerical simula-
tions of the cases studied were performed. The process of
drop impact is generally difficult to simulate because of its
highly transient nature. The length scales the thin free sheets
and thin wall films produced by drop impact are often sev-
eral orders smaller than the initial drop diameter. Therefore,
a reliable simulation of the drop impact phenomena requires
an extremely fine numerical mesh.

The physics of this phenomenon dictates that there are
several competitive effects influencing the flow field during
impact and the final outcome after the impact: gravity, vis-
cous, inertial, and surface tension forces. For example, when
the crater has reached maximum diameter and depth, inertia
becomes less significant and surface tension governs the re-
ceding motion of the crater. Capillary effects are responsible
for the formation of the rim at the edge of a free liquid sheet
�24� or propagation of capillary waves.

In the conventional volume-of-fluid �VOF� method �25�,
the transport equation for an indicator function, representing
the volume fraction of one phase, is solved simultaneously
with the continuity and momentum equations,

� · U = 0, �7�

��

�t
+ � · �U�� = 0, �8�

���U�
�t

+ � · ��UU� = − �p + � · T + �fb, �9�

where U represents the velocity field shared by the two fluids
throughout the flow domain, � is the phase fraction, T is the
deviatoric viscous stress tensor �T=2�S−2��� ·U�I /3, with
the mean rate of strain tensor S=0.5��U+ ��U�T� and I
��ij�, � is density, p is pressure, and fb are body forces per
unit mass. In VOF simulations the latter forces include grav-
ity and surface tension effects at the interface. The phase
fraction � can take values within the range 0�1, with
the values of zero and one corresponding to regions accom-
modating only one phase, e.g., �=0 for gas and �=1 for
liquid. Accordingly, gradients of the phase fraction are en-
countered only in the region of the interface.

Two immiscible fluids are considered as one effective
fluid throughout the domain, the physical properties of which
are calculated as weighted averages based on the distribution
of the liquid volume fraction, thus being equal to the prop-
erties of each fluid in their corresponding occupied regions
and varying only across the interface,

� = �l� + �g�1 − �� , �10�

� = �l� + �g�1 − �� , �11�

where �l and �g are densities of liquid and gas, respectively.
One of the critical issues in numerical simulations of free

surface flows using the VOF model is the conservation of the
phase fraction. This is especially the case in flows with high
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density ratios, where small errors in volume fraction may
lead to significant errors in calculations of physical proper-
ties. Accurate calculation of the phase fraction distribution is
crucial for a proper evaluation of surface curvature, which is
required for the determination of surface tension force and
the corresponding pressure gradient across the free surface.
The interface region between two phases is typically smeared
over a few grid cells and is therefore highly sensitive to grid
resolution.

It is not a simple task to assure boundedness and conser-
vativeness of the phase fraction. Various attempts have been
made in order to overcome these difficulties �26–29�. Fur-
thermore, the definition of velocity by which the free surface
is advanced, as a single velocity being shared by both
phases, is misleading, e.g., no conclusion can be made as to
what extent the velocity of each particular phase contributes
to the velocity of the effective fluid.

In the present study a modified approach similar to one
proposed in �30� is used, with an advanced model formulated
by OpenCFD Ltd. �31�, relying on a two-fluid formulation of
the conventional volume-of-fluid model in the framework of
the finite volume method. Its systematic derivation is out-
lined below. In this model an additional convective term
originating from modeling the velocity in terms of a
weighted average of the corresponding liquid and gas veloci-
ties is introduced into the transport equation for phase frac-
tion, providing a sharper interface resolution. The model
makes use of the two-fluid Eulerian model for two-phase
flow, where phase fraction equations are solved separately
for each individual phase �32�; hence the equations for each
of the phase fractions can be expressed as

��

�t
+ � · �Ul�� = 0, �12�

��1 − ��
�t

+ � · �Ug�1 − ��� = 0, �13�

where the subscripts l and g denote the liquid and gaseous
phase, respectively. Assuming that the contributions of the
liquid and gas velocities to the evolution of the free surface
are proportional to the corresponding phase fraction, and de-
fining the velocity of the effective fluid in a VOF model as a
weighted average �33�,

U = �Ul + �1 − ��Ug, �14�

Eq. �12� can be rearranged and used as an evolution equation
for the phase fraction �,

��

�t
+ � · �U�� + � · �Ur��1 − ��� = 0, �15�

where Ur=Ul−Ug is the vector of relative velocity, desig-
nated as the “compression velocity.”

Accordingly, the equation governing the volume fraction
�Eq. �15�� contains an additional convective term, referred to
as the “compression term” keeping in mind its role to “com-
press” the free surface towards a sharper one �it should be
noted that the wording compression represents just a denota-
tion and does not relate to compressible flow�. In comparison

to Eq. �8�, this term appears as an artificial contribution to
convection of the phase fraction, but since the derivation of
Eq. �15� relies on the velocity defined by Eq. �14�, a strong
coupling between the classical VOF and a two-fluid model is
achieved. The additional convective term contributes signifi-
cantly to a higher interface resolution, thus avoiding the need
to devise a special scheme for convection, such as CICSAM
�34�. This term is active only within the interface region and
vanishes at both limits of the phase fraction. Therefore it
does not affect the solution outside this region. Moreover if
the free surface is defined in a theoretical sense as having an
infinitesimally small thickness, the �relative� velocity Ur van-
ishes and the expression �15� reduces to the conventional
form �8�.

In addition to properly reflecting the physics of the flow,
the main advantage of such formulation is in the possibility
of capturing the interface region much more sharply in com-
parison to the classical VOF approach. Numerical diffusion,
unavoidably introduced through the discretization of convec-
tive terms, can be controlled and minimized through the dis-
cretization of the compression term, thus allowing sharp in-
terface resolution. The details of its numerical treatment are
given in Sec. IV B 2. To our knowledge, this is the first ap-
plication of such a free-surface resolving model to the drop
impact onto a liquid film.

The momentum equation, Eq. �9�, is modified in order to
account for the effects of surface tension. The surface tension
at the liquid-gas interface generates an additional pressure
gradient resulting in a force, which is evaluated per unit vol-
ume using the continuum surface force �CSF� model �35�,

f� = �� � � . �16�

where � is the mean curvature of the free surface, determined
from the expression

� = − � · 	 ��


��
� . �17�

Equation �16� is only valid for the cases with constant
surface tension, as considered here. In the case of variable
surface tension, e.g., due to nonuniformly distributed tem-
perature, surface tension gradients are encountered, generat-
ing an additional shear stress at the interface, which should
be taken into account.

Both fluids are considered to be Newtonian and incom-
pressible �� ·U=0�, and the rate of strain tensor is linearly
related to the stress tensor, which is decomposed into a more
convenient form for discretization,

� · T = ���U + ��U�T� = � · �� � U� + ��U� · �� .

�18�

In a single pressure system as considered for the present
VOF method, the normal component of the pressure gradient
at a stationary nonvertical solid wall, with no-slip condition
on velocity, must be different for each phase due to the hy-
drostatic component �g when the phases are separated at the
wall, i.e., if a contact line exists. In order to simplify the
definition of boundary conditions, it is common to define a
modified pressure as
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pd = p − �g · x , �19�

where x is the position vector. It can be easily shown that the
gradient of modified pressure pd consists of the static pres-
sure gradient, the body force due to gravity and an additional
contribution originating from the density gradient. In order to
satisfy the momentum equation, the pressure gradient is ex-
pressed using Eq. �19� whereas the momentum equation is
rearranged to read �30�

���U�
�t

+ � · ��UU� − � · �� � U� − ��U� · ��

= − �pd − g · x � � + �� � � . �20�

Body forces due to pressure gradient and gravity are im-
plicitly accounted for by the first two terms on the right-hand
side of the Eq. �20�. Summing up, the present mathematical
model is given by the continuity equation, Eq. �7�, phase
fraction equation, Eq. �15�, and momentum equation, Eq.
�20�.

The model is closed by supplying an appropriate expres-
sion for the compression velocity Ur. In order to ensure that
this velocity does not bias the solution in any way, it must act
only in the perpendicular direction to the interface. Further-
more, by inspection of Eq. �15� it is evident that only the
values of Ur on the grid cell faces will be used, being in
accordance with the discretization of the convective term.
The model for Ur is described in detail in Sec. IV B 2.

B. Computational method

1. Numerical setup and discretization

All computations are performed using the code Open-
FOAM �36�, an open source computational fluid dynamics
�CFD� toolbox, utilizing a cell-center-based finite volume
method on a fixed unstructured numerical grid and employ-
ing the solution procedure based on the pressure implicit
with splitting of operators �PISO� algorithm for coupling be-
tween pressure and velocity in transient flows �37�. The so-
lution domain is subdivided into a number of cells with com-
putational points placed at cell centroids. Each two cells
share exactly one cell face, on which a face surface normal
vector is defined, as shown in Fig. 5.

The flow domain considered in the present simulations
has the form of an axisymmetric slice with only one cell in

the azimuthal direction, Fig. 6. Hereby, the symmetry in azi-
muthal direction is presumed in accordance with the experi-
mental observations. The dimensions of the solution domain
are 45 mm�45 mm in the vertical plane, yielding the corre-
sponding normalized lengths of 15D�15D for distilled wa-
ter, 21D�21D for isopropanol and 17D�17D for glycerin-
water mixture. The grid is adaptively refined in the region of
the crater development.

It could be observed in experiments, as well as in the
previous calculations on coarser grids, that the liquid film
was not significantly affected at radial distances greater than
approximately one third of the radial length of the solution
domain, since the process of drop impact occurs very fast.
Therefore the grid was appropriately refined only in this re-
gion of the solution domain, where the process of drop im-
pact takes place.

The equations are discretized following the finite volume
technique. The transient and source terms are discretized us-
ing the midpoint rule and integrated over cell volumes. Time
derivative terms are discretized using an implicit Euler
scheme. The terms comprising spatial derivatives, as diffu-
sion and convective terms, are converted into integrals over
surfaces bounding each cell using Gauss’ theorem. The inte-
gration is performed by summing values at cell faces, ob-
tained by interpolation. For the evaluation of gradients a lin-
ear face interpolation is used.

In order to account for the nonorthogonal contribution, a
correction term is included in the calculation of gradients at
cell faces, evaluated by interpolating cell center gradients. In
the discretization of the convective terms, boundedness of
the solution is assured by using a face interpolation based on
normalized variable diagram �NVD�. A high resolution dif-
ferencing scheme was used �38�, with a limiter evaluated
based on the ratio between volume flux gradients calculated
at adjacent cell faces and cell centers. The interpolated face
value � f of a variable �, which is calculated at computa-
tional points P and N in Fig. 5, is obtained from the expres-
sion

� f = ���P − �N� + �N, �21�

where � is a weighting factor calculated using flux limiter
�blending factor� � from the limited scheme �38� and weight-
ing factor fd of a linear interpolation scheme,

FIG. 5. Discretization of the solution domain.
FIG. 6. Computational grid.
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� = �fd + �1 − ����U f · S f� . �22�

where fd= fN / PN, and the operator ��U f ·S f� is a switch,
which accounts for the flow direction defined as

��U f · S f�=�1, for U f · S f � 0 �the flow is from P to N�
0, for U f · S f � 0 �the flow is from N to P� .


�23�

2. Discretization of the “compression term”

For the discretization of the compression term in Eq. �15�
the relative velocity at cell faces, formulated based on the
maximum velocity magnitude at the interface region and its
direction, is determined from the gradient of phase fraction
as follows:

Ur,f = nf min�C�


�


S f


,max	 
�


S f


�� , �24�

where � is face volume flux, and nf is face unit normal flux,
calculated at cell faces in the interface region using the phase
fraction gradient at cell faces,

nf =
���� f


���� f + �n

· S f . �25�

In the normalization of the phase fraction gradient in Eq.
�25� and Eq. �17�, a stabilization factor �n is used, which
accounts for nonuniformity of the grid,

�n =
�

	�
N

Vi

N
�1/3 , �26�

where N is the number of computational cells and � is a
small parameter, set to 10−8 here.

The model is relatively simple and robust, relying basi-
cally on the definition of the velocity in Eq. �14�. If there is
a small bulk motion of the gaseous phase in the vicinity of
the free surface, the relative velocity will be close to the
velocity of the liquid phase. If the velocities of both phases
are of the same order of magnitude, the intensity of the free
surface compression is controlled by the constant C�, which
yields no contribution if set to zero, a conservative compres-
sion if the value is one �as used in the present study�, and
enhanced compression for values greater than one �39�. It
should be noted that the face volume flux in Eq. �24� is not
evaluated using the face interpolation of the velocity, but is
determined as a conservative volume flux resulting from the
pressure-velocity coupling algorithm.

3. Adaptive time step control

In order to ensure stability of the solution procedure, the
calculations are performed using a self-adapting time step
which is adjusted at the beginning of the time iteration loop
based on the Courant number defined as

Co =

U f · S f

d · S f

�t , �27�

where d is a vector between calculation points of control
volumes sharing the face, i.e., d= PN and �t is time step.
Using values for U f and �t from previous time step, a maxi-
mum local Courant number Coo is calculated and the new
time step is evaluated from the expression

�tn = min�Comax

Coo �to,	1 + �1
Comax

Coo ��to,�2�to,�tmax ,

�28�

where �tmax and Comax are prescribed limit values for the
time step and Courant number, respectively.

According to this prescription the new time step will de-
crease if Coo overshoots Comax and increase otherwise. To
avoid time step oscillations that may lead to instability, the
increase of the time step is damped using factors �1 and �2,
according to the conditions in Eq. �28�.

It was found by experience in test calculations that the
limit value for the Courant number should not exceed
Comax�0.2, which is the value also used in this study, and
values for damping factors are �1=0.1 and �2=1.2. Using
the above prescription, the time step is adjusted smoothly,
keeping the maximum local Courant number nearly equal to
the prescribed limit value.

However, at the startup of the simulation, usually some
very small initial time step �tinit is used, which could lead to
a very small maximum local value of the Courant number
and a new time step that would be too large for the start, and
vice versa. Therefore, at the beginning of the calculation an
intermediate value for the initial time step is calculated as

�t
init
* = min	Comax�tinit

Coo ;�tmax� . �29�

This intermediate value is than used as �to in Eq. �28� pro-
viding the value of Coo for the first time step to be close to
the prescribed limit value Comax. The size of the time steps
was varying during calculations between values on the order
of 10−7 s to 10−5 s.

4. Temporal subcycling

It is common in VOF-based methods that the convergence
and stability of the solution procedure are very sensitive with
respect to the equation for phase fraction. Bounded discreti-
zation schemes for divergence terms and time step control
are both used to overcome these difficulties and, although it
is generally recommended to keep the maximum local Cou-
rant number much below unity, it is beneficial to solve the
phase fraction equation in several subcycles within a single
time step. The time step to be used in a single time subcycle
is set by dividing the global time step by the preset number
of subcycles,

�tsc =
�t

nsc
. �30�

After the phase fraction � in each subcycle is updated, a
corresponding mass flux Fsc,i through cell faces is calculated.
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The total mass flux F corresponding to the global time step,
which is needed in the momentum equation, is then obtained
from

F = �U f · S f = �
i=1

nsc �tsc

�t
Fsc,i. �31�

In addition to providing a more accurate solution of the
phase fraction equation, this algorithm also enables the glo-

bal time step size to be greater for the solution of other
transport equations, thereby considerably speeding up the so-
lution procedure.

5. Initial and boundary conditions

At the initial time �before the impact occurs�, the distri-
bution of volume fraction is prescribed throughout the do-
main, defining the position and the shape of the interface
�consisting of the drop surface and the film surface� at the
beginning of the calculation. In order to minimize the initial-
ization errors, the pressure within the drop is set equal to
capillary pressure corresponding to the drop diameter. The
shape of the drop in experiments just before the impact de-
viated negligibly from that of a sphere. Therefore, the drop in
simulations is placed at a small initial distance from the film
surface corresponding to a nondimensional time of tU /D
=0.2, thus allowing several time steps to be computed and
the flow to develop before the first contact of the drop with
the surface. Since the distance is very small the velocity
change due to the gravity and drag is negligibly small. The
initial drop velocity is thus set equal to the drop impact ve-
locity from experiments.

In addition to the axial symmetry, the no-slip condition is
prescribed at the bottom and on the right side boundary of
Fig. 6. The top boundary is open with prescribed total pres-
sure consisting of static and dynamic pressure, thus allowing
the static pressure to be adjusted according to the calculated
velocity field. At the walls a zero gradient is set for the
modified pressure, which is in accordance to the definition in
Eq. �19�.

Since the contact region of the crater with the bottom of
the dish could not clearly be observed in the experiments, it
was not possible to discern whether the bottom surface re-
mained wetted or became completely or partially dry. There-
fore, wall adhesion was not taken into account and corre-
spondingly a zero-gradient condition for the volume fraction
equation is set.

V. RESULTS AND DISCUSSION

A. Validation of the advanced algorithm

For the purpose of the comparison between the classical
VOF approach and the advanced model used presently, the
simulations of a selected drop impact case using both models
are performed. The case in question corresponds to the

glycerin-water mixture and impact parameters H̄=1, We
=329, and Re=428. The results obtained are contrasted in
Fig. 7. The interface region is situated between black lines
indicating the region of the free surface, corresponding to the
values of phase fraction equal to 0.1 and 0.9. All details
describing the case considered with respect to the computa-
tional mesh, initial and boundary conditions, dimensionless
numbers, and physical properties are equal in both simula-
tions. It can be clearly seen that the interface region captured
using the advanced model exhibits much higher resolution
during all stages after impact. This can be observed even at
the time corresponding to the first contact between drop and
the film, where the interface already appears more smeared

(a) (b)

FIG. 7. �Color online� Time evolution of the crater shape for the

impact of a glycerin-water mixture drop, H̄=1, We=329, Re=428,
K=1182: results obtained by �a� the conventional VOF model and
�b� advanced model. The time sequences from top to bottom corre-
spond to tU /D=0,0.99,2.47,9.89,19.76,28.67.
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(a) (b)

FIG. 8. �Color online� Time evolution of the crater shape for the

impact of an isopropanol drop, H̄=2, We=392, Re=1730,
K=2364: �a� experiment and �b� simulations. The time sequences
from top to bottom correspond to tU /D
=0,1.08,2.71,10.84,21.68,31.44.

(a) (b)

FIG. 9. �Color online� Time evolution of the crater shape for the

impact of a distilled water drop, H̄=2, We=215, Re=6750,
K=2533: �a� experiment and �b� simulations. The time sequences
from top to bottom correspond to tU /D
=0,1.21,4.03,8.06,16.13,20.97.
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in the case of the conventional VOF method. The solution at
later stages becomes nonphysical, as can be seen for instance
at tU /D=28.67. On the other hand the application of the
advanced model leads to a physically plausible solution and
a much sharply resolved free surface. Accordingly, all com-
putational results displayed in the reminder of the manuscript
and discussed along the experimental database have been
obtained using the advanced algorithm.

B. Penetration and expansion of the crater

First comparison between experiments and simulations re-
lates to the time evolution of the crater shape. Figure 8 and
Fig. 9 show the crater shape at different time instants for the

flow configuration corresponding to H̄=2 for isopropanol
and distilled water, respectively. Immediately upon impact, a
small circumferential free liquid jet is ejected upward. The
geometry of this free jet �its height, shape, and width� de-
pends on the drop impact velocity, liquid properties, and liq-
uid film thickness. Inside the liquid film the drop impact
leads to the formation of a cavity �crater�, which penetrates
into the film and simultaneously expands radially. During the
spreading period inertial forces are dominant over viscous
and capillary forces since the Weber number is much higher
than unity.

After reaching the maximum diameter, the crater begins a
receding motion driven by capillary forces. It can be seen

that the crater shape changes from a spherical form in the
advancing motion to a conical one during the receding phase.
The results of simulations indicate also that during the first
stages of impact the cavity has a concave surface in its upper
part. Afterwards, the crater is fully formed until its bottom
becomes convex. This could not be observed in experiments
due to capillary rise of the liquid film meniscus at the side
walls of the dish where it was placed, and consequently, for
the purpose of comparison, the measured crater depth is re-
lated to the lowest point at the surface of the crater obtained
in the simulations. The present axisymmetric simulations are
not capable of describing precisely the three-dimensional na-
ture of the flow in the uprising jet leading to the rim insta-
bility and in some cases to splash. For capturing such effects
a full three-dimensional computational model would be re-
quired, accompanied by additional considerations of physical
perturbations leading to instability. Moreover, the exact
shape of this jet cannot be easily compared with the experi-
ments since the camera is focused on the crater, which is the
main object of the present study. Nevertheless, the influence
of the three-dimensional effects on the dynamics of the crater
propagation is regarded to be small in the considered range
of the drop impact parameters. This assumption is further
confirmed by correctly capturing the generation and propa-
gation of the capillary wave in the falling jet.

For the purpose of a quantitative analysis, crater depth
and diameter are made dimensionless through division by
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FIG. 10. Experimentally and computationally obtained dimen-
sionless crater diameter for the impact of an isopropanol drop.
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FIG. 11. Experimentally and computationally obtained dimen-
sionless crater depth for the impact of an isopropanol drop.
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FIG. 12. Experimentally and computationally obtained dimen-
sionless crater diameter for the impact of a distilled water drop.
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FIG. 13. Experimentally and computationally obtained dimen-
sionless crater depth for the impact of a distilled water drop.
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drop diameter, and the measured values are compared to pre-
dicted ones. In the experiments the depth is measured at the
lowest point of the crater observed in photographs, and the
diameter is determined at a half film thickness, i.e., for
y /H=0.5, where y is the vertical distance measured from the
free surface of the film. In simulations, depth and diameter
are determined using computational cells where volume frac-
tion becomes ��0.5.

Plots of dimensionless crater diameter and depth against
dimensionless time are shown in Fig. 10 and Fig. 11 for
isopropanol, in Fig. 12 and Fig. 13 for distilled water, and in
Fig. 14 and Fig. 15 for the glycerin-water mixture, respec-
tively. The agreement between the theoretical predictions and
the experimental data is rather good.

C. Residual thickness of the film between the crater
and the bottom

When the crater approaches the bottom the penetration
velocity decreases due to the wall effects. When the inertia of
the liquid flow is strong enough, the thickness of the film
below the cavity follows the remote asymptotic solution �11�
and decreases as the inverse of the time squared.

At some time instant the film thickness becomes compa-
rable with the thickness of the viscous boundary layer. The

flow in the film is damped by viscosity. The remaining thin
film thickness is much smaller than the initial thickness of
the liquid layer. This phase corresponds to the “plateau” re-
gion in graphs shown in Figs. 11, 13, and 15.

The value of the residual film thickness is rather impor-
tant for the modeling of heat transfer associated with drop or
spray impact and prediction of the film breakup. Unfortu-
nately, since the residual film thickness is much smaller than
the initial drop diameter and the initial film thickness, its
experimental evaluation is not an easy task. In the present
study this value is determined from the numerical simula-

tions. The predicted values of the residual film thickness h̄res
�=hres /D� are given in Table II for various impact param-
eters.

The dimensionless time t̄b at which the crater almost
reaches the bottom lies within the interval 12� t̄b�14 for

H̄=2 and 3� t̄b�5 for H̄=1. The thickness of the boundary

layer at this time instant is approximately h̄bl��t̄b /Re.
When the crater approaches the bottom, the film thickness

follows the remote asymptotic solution �11�. At larger times
after impact it can be written in the simplified form

h̄cr = H̄ − ȳcr � t̄−2, �32�

Ūcr =
dh̄cr

dt
� t̄−3. �33�

Therefore, the time instant at which the boundary layer
reaches the free surface of the cavity is t̄bl�Re1/5 and the

crater velocity at this instant is Ūcr�Re−3/5. The film thick-

ness h̄bl corresponding to the time instant t̄bl can be easily

estimated from Eq. �32� as h̄bl�Re−2/5.

The residual film thickness is smaller than h̄bl since the
inertia of the fluid at the time instant t̄= t̄bl is still significant.
The value of the residual film thickness is estimated assum-
ing the creeping flow in the film �40� in the following form:

h̄res =
h̄bl

9/14

	 1

h̄bl

+
14 Re Ūcr

15 �5/14 . �34�
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FIG. 14. Experimentally and computationally obtained dimen-
sionless crater diameter for the impact of a glycerin-water mixture
drop.
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FIG. 15. Experimentally and computationally obtained dimen-
sionless crater depth for the impact of a glycerin-water mixture
drop.

TABLE II. Residual film thickness predicted using the numeri-
cal simulations at various impact parameters.

Liquid We Re K H̄ h̄res

Isopropanol 384 1700 2238 1 0.01631

Isopropanol 189 1200 1101 2 0.05650

Isopropanol 392 1730 2364 2 0.04425

Distilled water 239 7240 2815 1 0.00449

Distilled water 113 4950 1331 2 0.02802

Distilled water 215 6750 2533 2 0.01796

Glycerin water mixture 329 428 1182 1 0.01534

Glycerin water mixture 157 320 564 2 0.09206

Glycerin water mixture 308 434 1106 2 0.08193
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Our scaling analysis leads to the following relation be-
tween the residual film thickness and the Reynolds number,

h̄res = A Re−2/5. �35�

The coefficient A depends on the dimensionless initial
film thickness, Weber and Froude numbers. However, the
dependency on We and Fr is weak if they are much larger
than the unity. Figure 16 displays the comparison of the nu-
merically predicted residual film thickness with the present
experimental data in terms of the impact Reynolds number.
The scaling relation �35� describes well the tendency of the
obtained results.

After some period of time the capillary forces become
significant and the crater starts to contract, leading to the
emergence of a central jet. The crater contraction starts ear-
lier at impact parameters corresponding to smaller Weber
numbers �for which the influence of the surface tension is
more significant�.

The evolution of the diameter of the crater first follows
the well-known square-root dependence law obtained from
the remote asymptotic solution �11�. At longer times its
propagation is governed by surface tension and gravity �41�.
The maximum crater diameter and the corresponding dura-
tion of the crater expansion and merging are mainly deter-
mined by the impact Weber number.

D. Pressure and velocity fields

Computationally obtained pressure and velocity fields for

impact of isopropanol drop at H̄=2, We=392, and Re
=1730 are shown in Fig. 17 and Fig. 18, respectively, at
several stages of the impact including the time instant corre-
sponding to the very beginning of the drop impingement
onto the film surface. For the sake of clarity, the velocity
vectors are plotted using randomly spaced tracers. The ex-
perimental data for these parameters cannot be easily col-
lected. On the other hand the knowledge about the pressure
magnitudes in the flow is rather important for the modeling
of the substrate erosion, splash, spray cleaning, drop impact
onto a porous or elastic target, etc. A detailed description of
the velocity field in the film initiated by drop impact is nec-
essary for the reliable modeling of hydrodynamics of spray
coating and spray cooling.
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FIG. 16. Computationally obtained residual film thickness under
the cavity as a function of the impact Reynolds number compared
to the present measurements.

FIG. 17. Predicted isocontours of the pressure field for the im-

pact of an isopropanol drop: H̄=2, We=392, Re=1730, K=2364.
The time instants from top to bottom correspond to tU /D
=0,2.71,5.42,16.26,21.68.
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The pressure distribution at various instants of time is
shown in Fig. 17. It can be seen that at the moment when the
drop touches the liquid film, a high pressure is formed in the
region of contact. As a consequence of this, the liquid is
ejected in a radially upward direction. As the drop penetrates
into the film, the liquid sheet straightens, driven by the local
velocity field and a small deviation of the inner part of the

sheet surface is observed. A relatively high pressure region
can be identified at the edge of the uprising sheet. This re-
gion with the relatively high curvature corresponds to the
formation of a rim �24�. The velocity of the rim differs from
the velocity of the sheet since its dynamics is determined
mainly by the capillary forces. The pressure in the rim is not
uniform despite the fact that the curvature of the rim surface
does not change significantly. The pressure gradient inside
the rim is caused by its acceleration in the downward direc-
tion. It is interesting to note that the pressure in the rim
remains almost constant even at the later stages of the sheet
motion when the radius of the rim cross section is relatively
high.

The velocity field confined to the region occupied by the
liquid at various time instants is shown in Fig. 18. At the
moment when the drop hits the liquid film the air velocities
near the free surfaces are also shown, indicating a high speed
flow of the air escaping from the space between the falling
drop and the liquid film. The vector plots and velocity mag-
nitudes at the initial stages upon the impact show a radially
outward oriented velocity distributions, with respect to the
origin coinciding with the point of impact, thereby resem-
bling closely the theoretically assumed potential flow in the
liquid near the cavity surface. This also confirms the assump-
tion of the velocity of the effective fluid in simulations as a
weighted average of liquid and gas velocities, and the as-
sumption that the evolution of the free surface is mainly
caused by the velocity of the liquid in the region near the
free surface. Furthermore, the reduction of the velocity mag-
nitude in time can be observed as the cavity is decelerating.
At later stages the velocity distribution becomes more com-
plex, including some vortexlike motions, and cannot be ap-
proximated using a simple velocity potential.

E. Initiation of the capillary wave

One of the most spectacular phenomena related to drop
impact onto a liquid film is the generation of a rather sharp
capillary wave on the surface of the crater. It is interesting
that once the wave is created, its outer corner is rather sharp,
indicating a strong local pressure drop. The wave propagates
along the cavity surface downwards, merging at the bottom
of the crater and finally leads to the creation of a central jet
�42�. Similar waves have been observed in many experi-
ments on drop impact onto a liquid layer or liquid pool
�7,9,10�. The mechanism of the formation of these capillary
axisymmetric waves and their propagation is not immedi-
ately clear.

Such a capillary wave is observed at the surface of the
crater in Fig. 8. It is created inside the uprising sheet and
travels downwards along the crater surface. This behavior is
clearly resolved in the simulations. The capillary wave is
observed here only when isopropanol is used, whereas it
could not clearly be seen in impacts of distilled water and
glycerin-water mixture. This is explained by the much lower
surface tension of isopropanol.

In the case shown in Fig. 17, the moment at which the
capillary wave can first clearly be seen corresponds to a di-
mensionless time of approximately 5.42. At this instant the

FIG. 18. Predicted velocity vectors �a� and isocontours of veloc-

ity magnitude �b� for the impact of an isopropanol drop: H̄=2,
We=392, Re=1730, K=2364. The time instants from top to bottom
correspond to tU /D=0,2.71,5.42,16.26,21.68.
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rim formed at the edge of the uprising sheet merges with the
liquid film. In this instant the pressure inside the rim is el-
evated. It corresponds to the curvature of the rim cross sec-
tion and its acceleration. The flow in the rim is directed
downwards. The capillary wave separates the high pressure
region above and the relatively lower pressure region below
the wave. The high pressure region above leads to the defor-
mation of the shape of the cavity behind the wave. Moreover,
the pressure difference ahead and behind the wave leads to
the liquid acceleration and enhances the wave propagation.

VI. CONCLUSIONS

In this paper the dynamics of the crater formed upon the
impact of a single drop onto a liquid film was investigated
using experimental measurements and numerical simula-
tions. The dynamics of drop impact on liquid surfaces is
analyzed, focusing on the evolution of the crater formed be-
neath the surface upon the impact.

A theoretical model is developed for the penetration of the
crater at the initial stage. The shape of the crater is approxi-
mated by a spherical cavity and the velocity field past the
propagating crater is approximated by the potential flow. The
equations of motion of the crater tip are obtained from the
pressure balance at this point. The asymptotic solution is
obtained by neglecting capillary, viscous, and gravity effects.
The agreement with the experimental data is very good.

An advanced model for the free surface capturing within
the numerical framework is used, based on a two-fluid for-
mulation of the conventional volume-of-fluid model and very
good agreement between experiments and simulations is ob-
tained. It is confirmed that increasing the impact velocity at a
constant film thickness has little to no effect on the crater
evolution in depth and on the time to reach maximum depth.

For lower impact velocities, the moment at which the crater
starts to retract is sooner and the collapse is faster. For larger
impact velocities, the value of the maximum diameter is
higher and it is reached at a later time instant. An increase in
the film thickness leads to a longer time needed for the crater
to reach the bottom. For the same film thickness, the crater
reaches the bottom at approximately the same time. The sur-
face tension has a clear influence on the receding motion of
the crater and the decrease in diameter, as for higher values
of surface tension the decrease starts earlier and is somewhat
steeper.

The numerical simulations demonstrate not only high
level of the predictive capabilities of the advanced model
resolving the free surface, they also help to better understand
the mechanisms of crater evolution. In particular the forma-
tion and propagation of the capillary wave along the cavity
surface could be explained using the results of the numerical
predictions of the pressure field in the liquid. Moreover, the
results of numerical predictions eventually help to under-
stand the flow in the liquid during the impact, since no de-
tailed experimental data for the distributions of pressure and
velocity is available.

Scaling relations for the residual film thickness have been
proposed based on the description of the film evolution and
development of the viscous boundary layer. This data can be
valuable in the modeling of spray cooling.

ACKNOWLEDGMENTS

The authors would like to acknowledge DAAD �Deut-
scher Akademischer Austauschdienst� for sponsoring E. Ber-
berović. The authors would also like to acknowledge the
German Scientific Foundation �DFG� for financial support in
the framework of the Collaborative Research Center 568
�Grant No. TP A1� and in the framework of research Grant
No. Tr 194/34.

�1� M. Rein, Fluid Dyn. Res. 12, 61 �1993�.
�2� A. L. Yarin, Annu. Rev. Fluid Mech. 38, 159 �2006�.
�3� J. Shin and T. A. McMahon, Phys. Fluids A 2, 1312 �1990�.
�4� A. I. Fedorchenko and A. B. Wang, Phys. Fluids 16, 1349

�2004�.
�5� W. C. Macklin and P. V. Hobbs, Science 166, 107 �1969�.
�6� H. N. Oguz and A. Prosperetti, J. Fluid Mech. 228, 417

�1991�.
�7� D. Morton, M. Rudman, and L. J. Leng, Phys. Fluids 12, 747

�2000�.
�8� Z. Mohamed-Kassim and E. K. Longmire, Phys. Fluids 16,

2170 �2004�.
�9� Q. Deng, A. V. Anilkumar, and T. G. Wang, J. Fluid Mech.

578, 119 �2007�.
�10� L. J. Leng, J. Fluid Mech. 427, 73 �2001�.
�11� A. L. Yarin and D. A. Weiss, J. Fluid Mech. 283, 141 �1995�.
�12� D. A. Weiss and A. L. Yarin, J. Fluid Mech. 385, 229 �1999�.
�13� M. Bussmann, S. Chandra, and J. Mostaghimi, Phys. Fluids

12, 3121 �2000�.
�14� N. Nikolopoulos, A. Theodorakakos, and G. Bergeles, J. Com-

put. Phys. 225, 322 �2007�.

�15� C. Josserand and S. Zaleski, Phys. Fluids 15, 1650 �2003�.
�16� C. Mundo, M. Sommerfeld, and C. Tropea, Atomization

Sprays 8, 625 �1998�.
�17� O. G. Engel, J. Appl. Phys. 38, 3935 �1967�.
�18� H. C. Pumphrey and P. A. Elmore, J. Fluid Mech. 220, 539

�1990�.
�19� A. Prosperetti and H. N. Oguz, Annu. Rev. Fluid Mech. 25,

577 �1993�.
�20� G. Birkhoff, D. P. MacDougall, E. M. Pugh, and G. Taylor, J.

Appl. Phys. 19, 563 �1948�.
�21� A. L. Yarin, M. B. Rubin, and I. V. Roisman, Int. J. Impact

Eng. 16, 801 �1995�.
�22� F. Batchelor, An Introduction to Fluid Mechanics �Cambridge

Universty Press, Cambridge, 1970�.
�23� P. A. Elmore, G. L. Chahine, and H. N. Oguz, Exp. Fluids 31,

664 �2001�.
�24� G. Taylor, Proc. R. Soc. London, Ser. A 253, 296 �1959�.
�25� C. W. Hirt and B. D. Nichols, J. Comput. Phys. 39, 201

�1981�.
�26� S. Muzaferija and M. Perić, in Nonlinear Water Wave Interac-

tion, edited by M. M. O. Mahrenholtz �WIT Press, Southamp-

BERBEROVIĆ et al. PHYSICAL REVIEW E 79, 036306 �2009�

036306-14



tion, UK, 1999�, pp. 59–100.
�27� R. Scardovelli and S. Zaleski, Annu. Rev. Fluid Mech. 31, 567

�1999�.
�28� S. Afkhami and M. Bussmann, Int. J. Numer. Methods Fluids

57, 453 �2008�.
�29� S. J. Cummins, M. M. Francois, and D. B. Kothe, Comput.

Struct. 83, 425 �2005�.
�30� H. Rusche, Ph.D. thesis, Imperial College of Science, Technol-

ogy and Medicine, London, 2002.
�31� OpenCFD Ltd., 2007, http://www.opencfd.co.uk/
�32� G. Černe, S. Petelin, and I. Tiselj, J. Comput. Phys. 171, 776

�2001�.
�33� OpenCFD, Technical Report No. TR/HGW/02, 2005 �unpub-

lished�.
�34� O. Ubbink and R. I. Issa, J. Comput. Phys. 153, 26 �1999�.
�35� J. U. Brackbill, D. B. Kothe, and C. Zemach, J. Comput. Phys.

100, 335 �1992�.
�36� H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, Comput.

Phys. 12, 620 �1998�.
�37� R. I. Issa, J. Comput. Phys. 62, 40 �1986�.
�38� H. Jasak, H. G. Weller, and A. D. Gosman, Int. J. Numer.

Methods Fluids 31, 431 �1999�.
�39� OpenCFD Ltd, OpenFOAM, The Open Source CFD Toolbox,

User Guide, OpenCFD Ltd., 2008, http://www.opencfd.co.uk/
openfoam/

�40� S. Bakshi, I. V. Roisman, and C. Tropea, Phys. Fluids 19,
032102 �2007�.

�41� I. V. Roisman, N. P. vanHinsberg, and C. Tropea, Phys. Rev. E
77, 046305 �2008�.

�42� F. H. Zhang and S. T. Thoroddsen, Phys. Fluids 20, 022104
�2008�.

DROP IMPACT ONTO A LIQUID LAYER OF FINITE… PHYSICAL REVIEW E 79, 036306 �2009�

036306-15


