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Important features associated with the segregration of particles in turbulent flow are investigated by consid-
ering the statistical distribution �phase-space number density� of particles subject to the combined effects of
straining flow and stochastic forcing. A Fokker-Planck model is used to obtain results for the phase-space
distributions of particles that are entrained into straining flow fields. The analysis shows that, in marked
contrast to the zero strain case, nonsingular steady-state distributions are generated, and also confirms that the
diffusional effect resulting from stochastic forcing is sufficient to offset the otherwise singular distributions that
would result from the indefinite accumulation of particles along stagnation lines. The influence of particle
inertia �Stokes number� on the form of the resulting distributions is considered and several significant results
are observed. The influence of strain rate on the attenuation of particle kinetic stresses is quantified and
explained. The development of large third-order velocity moments is observed for Stokes numbers above a
critical value. The mechanism underlying this phenomenon is seen to be a generic feature of particle transport
in flows where vortex structures induce local counterflows of particles. The system therefore provides an ideal
test for closure models for third-order moments of particle velocities, and here the standard Chapman-Enskog
approximation is assessed.
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I. INTRODUCTION

Vortex structures in turbulent flow play a dominant role in
the distribution and dispersal of aerosols. One important
transport mechanism associated with such structures is that
in which particulates are ejected from these regions of high
vorticity and are focussed within the intervortex regions of
high straining �Wang and Maxey �1�, Bec �2,3��. The impli-
cations of such effects on the formulation of Eulerian models
for particle transport are significant, and there have been sev-
eral recent works concerned with quantifying and developing
a deeper understanding of the interaction between the pro-
cesses involved. These include determination of fractal di-
mensions characterizing the structures developed within the
particle phase �Bec �2,3��, and the description of particle ve-
locity fields in terms of mesoscopic-Eulerian and quasi-
Brownian components that account for the decorrelations ob-
served in particle pair velocity structure functions �Février et
al. �4�, Reeks et al. �5��. In addition to such phenomena it is
also clear that the preferential accumulation of particles in
regions of high strain rate will influence rates of agglomera-
tion or coalescence, and that these effects may be further
compounded by a secondary transport mechanism induced
by fluctuations in the particle motion. These fluctuations
originate either from thermal effects �Brownian motion� or
the underlying turbulence. In order to build physically real-
istic models that capture, at some level, the influence of these
processes it is necessary to identify and quantify relevant
features, and it is the crucial interaction between the effects
of straining flow and fluctuating forcing on inertial �nonzero

Stokes number St� particles that is the subject of the work
presented here.

A key aspect of the models considered here is the white-
in-time nature of the stochastic forcing that induces the fluc-
tuations in particle motion, and we envisage two distinct re-
gimes in which this form of forcing is applicable: The first,
and most obvious, is the Brownian regime. Typically, this is
characterized by St�1, although it is worth noting that even
for St�1 the effects of thermally induced Brownian motion
may still be relevant at sufficiently high temperatures. One
important application in which this could be the case con-
cerns the release of aerosols or particulates from steam gen-
erators in nuclear reactor circuits; here the very high flow
temperatures mean that, even for relatively large particles,
the effects of Brownian diffusion can be significant and may
play a crucial role in deposition processes. The second re-
gime concerns relatively high-inertia particles in turbulent
flows when, typically, the effective Lagrangian time scale for
turbulent velocity fluctuations experienced by a particle is
small, and hence St�1; in addition, even for these Stokes
numbers, particle displacements induced by turbulent veloc-
ity fluctuations may still be non-negligible.

Both regimes are studied here, within this common white-
in-time framework, via the analysis of a suitably nondimen-
sionalized Fokker-Planck–type transport equation. In addi-
tion to the Stokes number St, another nondimensional
parameter R appears in this equation. This second parameter,
which is distinct from the usual Peclet number Pe, relates
characteristic flow to particle velocities and, together with St,
determines the relative importance of diffusive to inertial ef-
fects.

Estimates of St and R for Brownian motion in a laminar
flow �nanoparticle transport in the human respiratory tract�
and a turbulent flow �coagulation of water droplets in cumu-*d.c.swailes@ncl.ac.uk

PHYSICAL REVIEW E 79, 036305 �2009�

1539-3755/2009/79�3�/036305�11� ©2009 The American Physical Society036305-1

http://dx.doi.org/10.1103/PhysRevE.79.036305


lus clouds� suggest that diffusive transport is comparable to
inertial transport for nanoparticles whose diameter varies
from 10 to 100 nm �St�10−7–10−5�. Inertial transport domi-
nates �molecular� Brownian transport for St�1. These esti-
mates are only valid for transport in the absence of bound-
aries, diffusive motion becoming more significant in the
boundary layer. Hence, the theoretical analysis presented
herein is relevant to coupled inertial and Brownian motion
for small Stokes numbers, e.g., nanoparticle transport in mi-
croscale geometries. It is, also, relevant to low-Stokes num-
ber particle motion in turbulent flow. For example, Chun et
al. �6� studied the pair radial distribution function of inertial
particles for small, but nonzero, Stokes number. They con-
sidered their motion in a local linear flow field with a
stochastically-varying velocity gradient and acceleration, the
corresponding fluctuating forces modelled as Wiener pro-
cesses. On the other hand, particle diffusion due to turbulent
velocity fluctuations is estimated to be comparable to inertial
transport for St�1 as we argue in Sec. III. Since the com-
bined effect of straining flow and stochastic forcing on par-
ticle dynamics becomes more prominent for large Stokes
number we present numerical results for their effect on par-
ticle dynamics in a turbulent flow with St�1.

There have been a number of recent studies concerned
with the transport of particles dispersed in fluids that exhibit
macroscopic flow and uncorrelated velocity fluctuations
�7–18�. Furthermore, the motion of non-Brownian particles
in shear flows has also received considerable attention:
shear-induced self-diffusion of non-Brownian particles in
concentrated suspensions has been measured �19�, studied
numerically �20�, and theoretically �21�. More recently, a
transition from reversible to irreversible behavior of non-
Brownian particles in an oscillatory shear flow has been re-
ported and numerically simulated �22�. Whereas shear-
induced particle migration has been studied by Fokker-
Planck techniques �21� similar to those presented herein, the
physical phenomena involved are different: molecular or tur-
bulent particle diffusion versus fluid-mediated irreversible
interparticle interactions. Hydrodynamic interactions of two
spherical particles in a linear flow field, neglecting Brownian
motion, were first studied by Batchelor and Green �23�.

Primary interest in most of these studies has been the
influence of the flow on the statistical measures that charac-
terize the dynamics and spatial distribution of the particle
phase. Of particular importance in this regard are the particle
velocity correlation tensor and the diffusion tensor in the
associated convection-diffusion �Smoluchowski� equation.
Allied to this is the underlying issue of how the classical
fluctuation dissipation theorem that is invoked when model-
ling Brownian motion in macroscopically quiescent fluids
must be modified to accommodate the influence of the flow.
Most studies have considered linear �or linearly approxi-
mated� flow fields, with simple shear flows predominating
�7–12,18�, although pure rotational, pure shear �elongational�
and pure straining flows have also received some attention
�13–16�. While a range of linear flows have been treated in
considerable detail a notable exception is the case of a pure
straining �or symmetric shear� flow. Although transport in
this type of flow field has been addressed in the past, it has
not been studied to the same extent and detail as other linear

flows. It is this flow regime that is considered here, and Fig.
1 shows characteristic streamlines.

This fundamental flow can be considered representative
of the regions of high strain rate inherent in more complex
flows �including coherent structures in turbulent flows�, and
therefore provides an ideal system by which to study the
influence of such flow structures on the behavior of dispersed
particles being transported in the flow. Martin and Meiburg
�24� considered a model of this form in the context of their
work on the dispersion of particles in mixing layers, where
they used an array of vortices to model this type of layer. The
flow field depicted in Fig. 1 can be interpreted as represent-
ing a region at the interface of such vorticial structures which
can play a crucial role in particle accumulation.

From a slightly different perspective we can imagine the
flow depicted in Fig. 1 as representing the localized straining
component of the fluid velocity field as viewed from the
frame of reference of a moving particle, centered on x=0 in
this coordinate frame. This system can therefore also be used
to study the effect straining regions on particle agglomera-
tion, as in the seminal work of Saffman and Turner �25� on
droplet collision rates. In this context it is worth noting that,
as observed by Fernández de la Mora and Rosner �26�,
Brownian transport can play a crucial role in agglomeration
due to the existence of a Brownian sublayer in the vicinity of
a particle surface.

Another motivation for studying this type of flow is that it
can be used as a simple model for an impinging jet; the jet
corresponding to the flow in the upper half plane and the
horizontal axis representing the incident surface. By intro-
ducing particles sources symmetrically in the upper and
lower half planes we obtain a model in which we can inter-
pret this surface as one at which particles transported in the
jet undergo perfectly elastic collisions when impacting the
wall �Morrison �27��.

A feature common to many previous studies is that the
models considered describe systems in which all the particles
are imagined to be injected into the flow at some fixed in-
stant in time. The resulting statistical analysis then provides a
description of a transient particle phase generated as the par-
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FIG. 1. Streamlines in a 2D pure straining flow.
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ticles disperse from such an instantaneous source. In most
cases this does not lead to the development of a genuine
steady-state spatial concentration of particles �other than in-
finitely dilute�. However, in the context of developing Eule-
rian models and associated closure approximations for par-
ticle transport it is often the form of quasisteady, as opposed
to transient, features that are of interest. To this end two
distinct scenarios are considered here. In Sec. III we consider
the case in which particles are injected simultaneously into
the flow and allowed to disperse. We analyze the resulting
phase-space distribution of such particles. That is, the distri-
bution the particles in terms of their positions and velocities.
This analysis not only complements many previous studies
but also enables a subsequent analysis for the second sce-
nario, in which we imagine particles being entrained continu-
ously into the flow from distributed, far-field sources. By
allowing particles to be continuously injected in this way we
can investigate the potential of the system to develop non-
trivial steady-state phase-space distributions. Further, we can
assess the effect of such continuous sources on the resulting
forms of the corresponding particle statistics, and the conse-
quences of these for the construction of constitutive models
and closure approximations. This second scenario is exam-
ined in Sec. IV, where various fundamental and nontrivial
features exhibited by the particle phase-space distributions
are established, and the role of Stokes number in the devel-
opment of these features investigated. Of particular note is
the ability of the particle phase to form true, nonsingular
steady-state phase-space distributions. As we show, this is
made possible only through the subtle interaction between
the straining and the forcing. This result is in marked con-
trast to the zero strain case, where no steady-state is ob-
tained, and also confirms that the diffusional effect resulting
from stochastic forcing is sufficient to offset the otherwise
singular distributions that would result from the indefinite
accumulation of particles along stagnation lines. An analysis
of the resulting steady-states highlights several important
properties: We show how the straining flow affects the dif-
ferent components of the particle kinetic stresses, serving to
attenuate one normal stress component whilst augmenting
the other. Further, despite the imposed, uncorrelated Gauss-
ian nature of the underlying forcing, nonzero particle shear-
stresses and large third-order moments of the particle fluctu-
ating velocity can develop for Stokes numbers above a
critical value. The physical mechanisms behind these effects
are explained, and the implication of such features on the
formulation and application of appropriate constitutive mod-
els and moment closure approximations is illustrated by ref-
erence to the standard Chapman-Enskog approximation.

II. BASIC MODEL

A steady, incompressible, two-dimensional, pure straining
flow, as depicted in Fig. 1, is defined by a velocity field u
= �u1 ,u2� of the form

u = ��x1,− �x2� , �1�

where � defines the strain rate of the flow. Attention is con-
fined to the study of noninteracting particles transported in

such flows, with trajectories xp�t� governed by a stochastic
equation of motion of the form

ẍp = v̇p = ��u�xp� − vp� + f , �2�

where, consistent with the Stokes drag term in Eq. �2�, the
particle response rate is modeled as

� =
6��a

m
, �3�

� denotes the fluid viscosity, a the particle radius, and m the
particle mass. Fluctuations in particle acceleration due to sto-
chastic forcing are modeled in Eq. �2� via f�t�, which is taken
to be a zero-mean, delta-correlated Gaussian process with

�f�s�f�t�� = q2��s − t�I . �4�

The value of parameter q, which defines the intensity of the
fluctuating accelerations, is linked to fluid and particle prop-
erties and will depend on the nature of the system being
considered. In the case of thermally induced Brownian mo-
tion �as opposed to that originating from turbulent velocity
fluctuations� the simplest and most widely used model, based
on the classic fluctuation dissipation theorem, is given by

1

2
q2 =

�kT

m
. �5�

Here k denotes Boltzmann’s constant and T the absolute tem-
perature. This model for q �more precisely, the model for the
correlations �ff�� is based on equilibrium considerations in a
quiescent fluid ��=0�. Several previous works �Santamaría-
Holek et al. �9�, Miyazaki and Bedeaux �10�� have consid-
ered the validity of this model in the context of fluids exhib-
iting macroscopic flow. However, as noted by Drossinos and
Reeks �7�, provided the time scale of the Brownian driving
force is much shorter than that for the imposed flow the
effect of the flow on the Brownian correlations can be ne-
glected. Therefore, when considering Brownian motion, we
shall adopt the model given by Eq. �5�.

The second regime that we can consider to be modeled by
Eqs. �2� and �4� is that in which the stochastic motion of the
particles is induced by turbulent fluctuations u� of the fluid
velocity field. So that u is then to be interpreted as a mean
velocity field for the fluid. This model can be considered
appropriate for high-inertia particles, where a suitably de-
fined Lagrangian time scale 	 for turbulent velocity correla-
tions along particle trajectories is small compared to the in-
trinsic particle response time �−1. In this regime, following
Swailes and Reeks �28�, we then have

1

2
q2 =

�2	u2

1 + �	
, �6�

where u2 represents a characteristic local mean-square fluc-
tuating fluid velocity. Equations �5� and �6� define corre-
sponding mean-square fluctuation particle velocities
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V2 =
q2

2�
= �

kT

m
Brownian fluctuations,

�	

1 + �	
u2 turbulent fluctuations. 	 �7�

Typically, in the case of turbulent flow, we have �	�1. This
prompts the definition of particle Stokes number St=� /�. As
indicated in the introduction the thermally induced Brownian
motion regime is then normally characterized by St�1
while, for the turbulent flow interpretation, we should con-
sider St�1. In either case, the contribution of diffusive and
inertial effects to particle dynamics can be considered by
suitable interpretation of q �or V2� in Eq. �7�.

The components of the equation of motion defined by
Eqs. �1� and �2� are decoupled and can be written

ẍj + �ẋj 
 ��xj = q� �8�

with ��t� the standard, zero-mean, delta-correlated Gaussian
process. Here and throughout we interpret 
 as � when j
=1 and � when j=2. This decoupling and similarity in form
simplifies the analysis. Note that the x2 component of particle
motion can be interpreted in terms of a harmonic oscillator
that will be underdamped if �
4� �St� 1

4 �, in which case
the mean particle trajectories will oscillate about x2=0. If
St= 1

4 then the system will be critically damped, while if St



1
4 it will be overdamped.
Our interest is in transient and asymptotic features of the

disperse phase generated when particles governed by Eq. �2�
are released into the flow. We begin by reviewing the case
where this release takes the form of an instantaneous point
source of particles. This then provides the foundation for
studying other more complex scenarios involving continuous
sources.

III. INSTANTANEOUS PARTICLE SOURCE

In order to investigate and emphasize the influence of St
on particle dynamics it is convenient to introduce suitably
scaled, nondimensional variables. Specifically we take the
scalings t��−1t, x� lx and v�Uv where U=�l represents
the magnitude of a characteristic local fluid velocity. Then
the PDF p�x ,v , t 
x0 ,v0 , t0�, defining the joint distribution �in
terms of these scaled variables� of the particle position x and
velocity v at time t given that xp=x0 and velocity vp=v0 at
time t0
 t, satisfies the Fokker-Planck equation

St� �

�t
p +

�

�x
· vp� +

�

�v
· �� · x − v�p =

1

R

�2

�v2 p �9�

with initial �t= t0� condition p=��x−x0���v−v0�. In Eq. �9�
�=diag�1,−1� and R=U2 /V2=2 / �q2St�, with V2 defined by
one or other of the formulae in Eq. �7�, depending on con-
text, and with the nondimensional measure of the fluctuating
accelerations q2�q2 / ��U2�.

It is the analysis of the model given by Eq. �9� that allows
us to identify the relative contributions of inertial and diffu-
sive effects �as characterized by St and R� to the distribution
and transport of particles. The solution to this equation is
well-known and leads to the following general expressions

for the particle density �, mean velocity field v̄, and kinetic

stresses cc̄ �c=v− v̄� �Swailes and Darbyshire �29��

� =
1

2�
det��11�−1/2 exp
−

1

2
�x − x̂� · �11

−1 · �x − x̂�� ,

v̄ = v̂ + �21 · �11
−1 · �x − x̂� ,

cc = �22 − �21 · �11
−1 · �12. �10�

In the above expressions x̂= �xp�, v̂= �vp�, and the 2�2 ma-
trices �ij form the blocks of the particle phase-space cova-
riance matrix ��t�. The phase-space mean m= �x̂ , v̂� and co-
variance � are given by

m = exp�tA� · m0,

� = �
0

t

exp�sA� · B · exp�sA��ds , �11�

where m0= �x0 ,v0� and

A =
1

St
�0 StI

� − I
�, B =

2

StR
�0 0

0 I
� . �12�

For noncritically damped systems �St� 1
4 � Eq. �11� leads to

the following well-established expressions for the compo-
nents x̂j, v̂ j, of m and the components �mn

�j� of the covariance
matrix � �Risken �30��:

x̂j = c1
�j�e�1

�j�t + c2
�j�e�2

�j�t,

v̂ j = c1
�j��1

�j�e�1
�j�t + c2

�j��2
�j�e�2

�j�t, �13�


�11
�j� =

1

Rrj
2
�2

�j�e2�1
�j�t + �1

�j�e2�2
�j�t 
 4�1 − e−�1/St�t� +

1

St
� ,

�21
�j� = �12

�j� =
1

StRrj
2 �e2�1

�j�t + e2�2
�j�t − 2e−�1/St�t� ,

�22
�j� =

1

StRrj
2
�1

�j�e2�1
�j�t + �2

�j�e2�2
�j�t 
 4�1 − e−�1/St�t� +

1

St
� ,

�14�

with

c1
�j� =

1

rj
��2

�j�xj
0 − v j

0�, �1
�j� = −

1

2St
�1 + �1 
 4St� ,

c2
�j� = −

1

rj
��1

�j�xj
0 − v j

0�, �2
�j� = −

1

2St
�1 − �1 
 4St� ,

�15�

and rj =
1
St

�1
4St. It should be noted that the eigenvalues
�1

�1�, �2
�1� associated with motion in the x1 direction are both

real with �1
�1�
0 and �2

�1��0. In contrast �1
�2�, �2

�2�, which
relate to motion in the x2 direction, will be complex in the
underdamped regime, but in all cases the real parts of both
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�1
�2� and �2

�2� will be negative. These properties are central to
the large t asymptotic analysis.

The critically damped case is less well documented, but
evaluation of Eq. �11� in this case shows that Eqs. �13� and
�14�, with j=2, are replaced by

x̂2 = ��1 + 2t�x̂2
0 + tv̂2

0�e−2t,

v̂2 = �− 4tx̂2
0 + �1 − 2t�v̂2

0�e−2t, �16�

�11
�2� = +

1

8R
�2 − �1 + 4t�2e−4t� ,

�21
�2� = �12

�2� = −
1

4R
�1 − �4t�2�e−4t,

�22
�2� = +

1

2R
�2 − �1 − 4t�2e−4t� . �17�

Using the above expressions a detailed evaluation of the cor-

responding forms of �, v̄, and cc̄ as defined by Eq. �10� is
possible. This analysis shows that as t→� the particle den-
sity decays exponentially;

� � e−�2
�1�t. �18�

As we shall see when we come to consider the potential of
the system to generate genuine, nontrivial steady-state distri-
butions, the exponential form of this decay is critical. Further
asymptotic analysis shows that the mean particle velocity
field and kinetic stresses also approach limiting values. Spe-
cifically

v̄ → ��2
�1�x1,0� �19�

and

c1c1 →
2

�1 + �1 + 4St�R
, c2c2 →

1

R
. �20�

In view of the uncoupled component equations of motion
and the independent components of the stochastic forcing it
follows that c1c2�0 for all t. Consistent with the fluctuation
dissipation theorem, the asymptotic expression for c2c2 is the
standard result for the equilibrium fluctuating energy of a
damped harmonic oscillator �Titulaer �31��, and shows that
the fluid strain rate does not affect this component of the
particle kinetic stresses. However, it is significant that c1c1 is
attenuated by the straining. The physical mechanism for this
effect can be understood by considering the corresponding
kinetic stress transport equation �Swailes et al. �32��:

D

Dt
cc = −

1

�
� · �ccc − cc · �v̄ − �v̄� · cc +

2

St
� 1

R
I − cc� .

�21�

The Gaussian form of the phase-space distribution implies
that ccc�0. Further, since c1c2�0 and �for large time� v̄
= ��2

�1�x1 ,0�, it follows from Eq. �21� that the asymptotic

form of cc̄ satisfies

− cc ·
1

2
��v̄ + �v̄�� +

1

St
� 1

R
I − cc� = 0. �22�

Rearranging Eq. �22� for cc leads directly to the results given
by Eq. �20�. From Eq. �22� we see that the attenuation in c1c1
is attributable to the dissipation of the fluctuating kinetic
energy due to work done by the kinetic stresses. This dissi-
pation decreases with St. We also observe that, as in the case
of a simple shear �Drossinos and Reeks �7��, the particle
phase, considered as a continuum, cannot be treated in terms
of a Newtonian flow, since the particle pressure tensor �cc is
not linearly proportional to �v̄+�v̄�. By way of validating
the above results Fig. 2 shows the time evolution of the two
nonzero components of cc, as generated by an instantaneous
point source and as computed from the analytical solution,
together with corresponding simulation results obtained from
a simple particle tracking code. The predicted asymptotic
values, as defined by Eq. �20�, are also indicated in the fig-
ure, and these are seen to be reached in the large time limit.
To emphasize the attentuation in c1c1 we have taken St�1
and, consequently, have adopted the “turbulence” interpreta-
tion of q in Eq. �7�. Further, taking u�U /10 as typical for
turbulent root-mean-square velocities we have RSt�200
and, with U�1, this implies q�0.1. For this reason, in the
results we present we have fixed q=0.1 and RSt=200.

Allied to Eq. �19� we also find that v̂→ v̄�x̂�, showing that
�vp� does not asymptotically approach �u�xp�� as t→�. This
has implications for the construction of convection-diffusion
models for particle transport in this type of system: Using the
particle-phase continuity equation

�

�t
� +

�

�x
· �v̄ = 0 �23�

together with Eq. �10� we obtain the following generalized
Smoluchowski equation for the particle concentration �:

�

�t
� +

�

�x
· ��u + v̂ − � · x̂� =

�

�x
· D ·

�

�x
� , �24�

where the nondimensionalized time-dependent diffusion ten-
sor D is given by

D�t� = ��v* − u*�x*� = �21 − ��11. �25�

Here x*=xp− x̂, v*=vp− v̂, and u*=u�x*�. Equations �24�
and �25� are valid for any linear flow u=� ·x, �replacing �
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with ��. Since, in the flow considered here, v̂ does not con-
verge to u�x̂� in the large time limit, we see that this contri-
bution to the convective term on the left-hand side of Eq.
�24� cannot be neglected. This is in contrast to the simple
shear �Drossinos and Reeks �7��. The decoupling of the com-
ponent equations of motion Eq. �8� means that the diffusion
tensor D also has a diagonal form D=diag�d1 ,d2� and, using
Eq. �14�,

dj =
St

�1 
 4St�R
��1 + �2

�j�St�e2�1
�j�t + �1 + �1

�j�St�e2�2
�j�t

− 2�1 
 2St�e−�1/St�t + 1 
 4St� . �26�

The large time asymptotic forms of these nondimensional
diffusion coefficients are

d1 �
St�1 − �1 + 4St�

2R�1 + 4St�
e2�2

�1�t, d2 =
St

R
. �27�

Invoking Eq. �20� we see that, asymptotically, d2→Stc2c2 or,
converting back to unscaled variables, q2 /2�2. This agrees
with the familiar Stokes-Einstein diffusion coefficient ex-
pression. In contrast, the asymptotic value of the diffusion
coefficient d1 is seen to be negative. This is analogous to the
case of a simple shear �Drossinos and Reeks �7�, Reeks �16��.
However, for a simple shear the corresponding diffusion co-
efficient obtains a finite asymptotic value which is only nega-
tive for St��2 /3. Here, in contrast, d1 is always negative
and increases in magnitude without bound. This reflects the
focussing of the particles along the x1 axis and the reference
frame centered on x̂, v̂. At first sight this result seems at
variance with the expected behavior for small St—when we
anticipate d1�d2→St /R so that Eq. �24� reduces to the clas-
sical Smoluchowski equation appropriate for Brownian mo-
tion. The paradox is resolved by noting that, from Eq. �15�,
�1

�j��−1 /St, �2
�j�� 
1 as St→0. Consequently, in this re-

gime, we should write

dj �
St

�1 
 4St�R
��1 
 St�e−�2/St�t − 2�1 
 2St�e−�1/St�t

+ �1 
 4St�� + O�St2� . �28�

From this it follows that for St�1 we obtain, as expected,
dj→St /R as t→�. There are several important points to
note in connection with the results given by Eqs. �27� and
�28�. First, the classical Smoluchowski equation, with a
single scalar �Stokes-Einstein� diffusion coefficient is recov-
ered here for St�1 irrespective of the value of R. However,
this is not generally true since gradient diffusion usually re-
quires, in addition, that R�1 as a scaling analysis of the
momentum equation shows �33�. The reason why the value
of R does not play a role here is that the underlying flow field
is exactly linear and, consequently, the momentum transport
equation necessarily takes a gradient diffusion form when
considered in the frame moving with the mean particle coor-
dinates, see Eq. �24�, albeit with asymmetric diffusion coef-
ficients. Further, since we can identify a single scalar diffu-
sion coefficient when St�1, it is appropriate in this regime
to characterize the relative influence of inertia to diffusion
via the corresponding Peclet number. Specifically, in view of

the above result for St�1 we can define Pe=R /St. However,
when St�1 we see that it is inappropriate to introduce Pe,
since the system is no longer characterized by a single mean-
ingful diffusion coefficient, but must consider St and R inde-
pendently. Having established these results for the case of
particles released into the flow at some fix time, we now turn
our attention to the situation in which particles are released
continuously.

IV. CONTINUOUS PARTICLE SOURCES

The situation in which particles are introduced continu-
ously �at a fixed rate and with a fixed velocity v0� from
spatially distributed sources, models a system in which we
imagine particles being entrained into the localized straining
flow structure from a far-field reservoir of uniformly distrib-
uted particles. In particular we will consider line sources

x1

X1, x2= 
X2. By taking sources along both x2= +X2
and x2=−X2 we preserve the symmetry depicted in Fig. 1. It
is important to note that in the absence of stochastic forcing
�i.e., with q=0� all particle trajectories will converge asymp-
totically to the x1 axis; there will be a continual accumulation
of particles along this stagnation line and no steady-state will
be set up. Similarly, as we shall show, the continuous release
of particles into a fluid with zero mean velocity ��=0� does
not lead to true steady-state distributions. A natural question
therefore arises in the context of this system: Do the com-
bined effects of stochastic forcing and straining generate a
steady-state distribution of particles and, if so, how do the
statistical properties of this distribution differ from those
generated by the instantaneous sources considered in Sec.
III? To answer these questions we note that the PDF p�x ,v , t�
describing the phase-space distribution of such particles can
be constructed in terms of the PDF’s p�x ,v , t 
x0 ,v0 , t0� stud-
ied in the previous section: Since � and u are constant �in
time�, and � is statistically stationary and homogeneous in
time, we can write

p�x,v,t� = �
x0

��
0

t

p�x,v,s
x0,v0,0�dsdx0, �29�

where �=��x0� gives the spatial distribution of the points x0

from which the particles are released. For the line sources
described above

��x0� =
1

2X1
��x2

0 
 X2�, 
x1
0
 
 X1. �30�

With no loss of generality we have taken the constant rate of
particle release at each point x0 to be unity, and have omitted
explicit indication of the dependence of p on v0. From Eq.
�29� it follows that the particle statistics generated by a con-
tinuous, distributed source can be related in a similar fashion
to the corresponding statistics for the instantaneous point
source. Specifically

� = �
x0

��
0

t

��x,s
x0,0�dsdx0,
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�v̄ = �
x0

��
0

t

��x,s
x0,0�v̄�x,s
x0,0�dsdx0, �31�

with similar expressions for �vv and �vvv, etc. �Again we
omit indication of v0 dependence from the notation.� Evalu-
ation of these statistics is feasible since, from Eq. �10�, we
have closed form expressions for the integrands appearing in
the right-hand sides of Eq. �31�. We are particularly inter-
ested in the asymptotic �t→�� behavior of the statistics de-
fined by Eq. �31�. Crucial to form of this asymptotic behav-
ior is the corresponding behavior of the integrands in Eq.
�31�, and these have already been discussed in the previous
section.

The asymptotic form of the density ��x , t� defined by Eq.
�31� is determined by the limiting form of

��x,t
x0� = �
0

t

��x,s
x0,0�ds , �32�

as t→�. The density defined by Eq. �32� represents that
generated by a continuous point source—where particles are
released continuously, and at a constant rate, from the fixed
point x0. In the same way the asymptotic forms of the par-
ticle mean velocity, kinetic stresses, and third-order moments
are determined by time histories of corresponding statistics
generated from continuous point sources. Some features of
these asymptotic forms can be inferred from the underlying
transient behavior of the instantaneous point source statistics
forming the integrands in Eq. �31�. In the previous section
we noted that the density ��x , t 
x0 ,0� generated by an instan-
taneous point source decays exponentially at each point as
t→�. Of course we would expect the density generated by
an instantaneous point source into an unbounded shear flow
to decay to zero. However the exponential form of this decay
is crucial, since it ensures that the density, given by Eq. �32�,
approaches a steady-state value in this limit. This is in con-
trast to the singular case �=0 �no mean flow�: In this case it
is easy to show, using the corresponding form of �11, that
�� t−1. This means that the density generated from a con-
tinuous source in a statistically stationary fluid increases as
ln�t� for large t, and hence does not reach a true steady-
state—only a self-similar form. The instantaneous point
source density can be written as �=�1��2 where

�1 = �
x2

�dx2, �2 = �
x1

�dx1, �33�

are the marginal distributions of �, and represent the distri-
butions associated with the component equations of motion
Eq. �8�. Further, detailed analysis shows that, for large t,

�1 � e−�2
�1�t, �2 �

1
�2��

exp
−
x2

2

2�2� , �34�

with

�2 =
St

R
. �35�

From these asymptotic forms we deduce that the correspond-
ing component density �1 from a continuous point source

will reach a steady-state form, whereas �2 will be un-
bounded, but will approach the self-similar form in Eq. �34�
as t→�.

Figure 3 shows the steady-state particle density generated
by a continuous point source �CPS� of particles at x0

= �0.5,0.5�. The density contours, derived from the pdf solu-
tion, show how the distribution of particles is influenced by
the underlying flow.

In Fig. 3 the particle trajectories are underdamped �St
=1� and therefore �in the absence of stochastic fluctuations�
exhibit periodic oscillations about the x1 axis. This is re-
flected in the figure, which indicates that there is a significant
concentration of particles in the region x2
0, in accordance
with Eq. �35� which shows how the width of the distribution
increases with St. Following the discussion in the previous
section we note that, for St�1, we can write �2=1 /Pe. The
profiles of the marginal densities, �1 �2, presented in Fig. 3,
are validated by reference to the corresponding simulation
results ���.

By similar reasoning it follows, using Eqs. �18�–�20�, that

the mass flux �v and the second moments �vv̄ generated by
a continuous point source also approach finite limiting dis-
tributions as t→�. It is important to note that there are sev-
eral features of the steady-state statistics generated by a con-
tinuous particle source that are intrinsically different from
the corresponding forms for an instantaneous source: An in-
stantaneous source produces a particle mean velocity field
that is always linear in x, while the kinetic stresses are spa-
tially independent �and c1c2�0�. By contrast, and as illus-
trated in Figs. 4 and 5, these features do not necessarily hold
for a continuous source. The figures show steady-state par-
ticle statistics generated by a continuous release of particles
from the centre of the straining x=0. Figure 4 shows
asymptotic profiles of the components, v̄1, v̄2, of the particle
mean velocity along various lines of constant x1 and x2. The
essentially linear dependence of v̄1 on x1, and the near inde-
pendence from x2, is a consequence of the fact that the mean
velocity v̄1 in the integrand of Eq. �31� converges to the
limiting form given by Eq. �19� exponentially at a rate that is
greater than that at which the associated density increases
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from its initial zero value. Therefore the asymptotic mean
velocity field v̄1 is essentially the same for both an instanta-
neous and a continuous point source. The parameter value
St=1 used in Fig. 4 give �2

�1�= 1
2 ��5−1�=0.618 in agreement

with the graph. We also observe from these graphs the non-
linear spatial variations in v̄2.

Figure 5 depicts contours of the steady-state second-order
fluctuating velocity moments cicj, normalized by reference to
the asymptotic values given in Eq. �20�. In addition to the
fact that these statistics are inhomogeneous, and that c1c2 is
nonzero, we also note that c1c1 actually exceeds the corre-
sponding large time value given by Eq. �20�. This somewhat
counterintuitive effect is manifest in a more striking way in
the results obtained from the line sources x2

0= 
X2. Figures
6–9 depict various steady-state particle statistics generated
from these types of sources.

The graphs in Fig. 6 show steady-state densities � gener-
ated from the continuous distributed sources �CDS� defined
by Eq. �30� �X1=1, X2=1�, with St=0.1, 0.25, 1 �and StR
=200�. In the underdamped case �St=1� individual particle

trajectories exhibit damped oscillatory motion in the x2 com-
ponent. This is reflected in the trimodal distribution shown in
the Fig. 6�a�; the central peak, centered on x2=0, is a conse-
quence of the asymptotic form of the particle trajectories
focussed along the x1 axis, while the side peaks are generated
by the transient features of the trajectories and are influenced
by the turning points in the mean particle motion �where
�v2�=0�. This feature has been noted before; Martin and
Meiburg �24� observed bimodal concentration profiles in a
system similar to that considered here, but with a single line
source and no stochastic forcing.

Clearly we would not expect multimodal concentration
profiles to occur for overdamped particles �St
0.25�, and
this is confirmed by Fig. 6�c�, which shows the correspond-
ing distribution for St=0.1. Here, instead, we see that there is
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a relatively greater accumulation of particles in the region of
the stagnation point x=0 and, unlike the case St=1, the dis-
tribution is not independent of x1. The critically damped case
is shown in Fig. 6�b�, and a comparison of the x2 dependence
of these densities along the line x1=0 in Fig. 6�d�, which
illustrates that the focusing of particles along the x1 axis is
most pronounced at this critical Stokes number. This graph
includes data from particle tracking simulations that validate
the pdf generated profiles.

Figure 7 shows contours of the steady-state kinetic
stresses cicj for the case St=1. Again, these results have been
normalized by reference to the large time asymptotic values
given in Eq. �20� and, as with Fig. 5, we observe values in
excess of these asymptotic statistics. Figure 7�c� is particu-
larly striking in that it shows regions of extremely high val-

ues of the normal stress c2c2. Figure 7�d� shows the variation
of this stress component with x2, with simulation data ���
confirming the form of the profile. A physical explanation of
the source of this enhanced contribution to the fluctuating
kinetic energy comes from consideration of the form of the
velocity distribution �= p /� obtained for underdamped par-
ticle trajectories. Figure 8�a� shows this distribution of ve-
locities at the origin. The trimodal form of this distribution at
x=0 �or more generally along the x1 axis� is again a conse-
quence of the mean particle trajectories crossing the x1 axis:
Particles from the line source at x2=X2 contribute to the dis-
tribution of predominantly negative v2 values along the x1
axis, while the corresponding particles from the source at
x2=−X2 give the peak in the distribution centered on a posi-
tive velocity.

The interpretation of the stress c2c2 as the variance of the
distribution shown in Fig. 8�a� then accounts for the high
value of this moment. The symmetry of the velocity distri-
bution shown in Fig. 8�a� is a consequence of the fact that
this is observed on the x1 axis, where both line sources con-
tribute equally. Away from this axis the velocity profiles be-
come asymmetric. This is illustrated in Fig. 8�b� which com-
pares the distribution of v2 �for v1=0� at x=0 �as in Fig.
8�a��, with that at x= �0.0,0.5�. At this latter point the line
source at x2= +X2 dominates and so there is a bias in the
distribution towards negative values. The second, smaller
peak, generated by the other line source, then produces a
highly skewed velocity distribution.

A major consequence of this asymmetry is the resulting
generation of large third-order moments ccc of the fluctuat-
ing velocity, a feature that is not normally associated with
particles driven by uncorrelated Gaussian forcing. Third-
order moments are normally modeled via some form of clo-
sure approximation within the framework of mean-field
transport equations, e.g., Eq. �21�. Our model therefore pro-
vides a stringent test case for assessing such closures. To
compute these third-order moments we write them in terms
of the more directly determined velocity moments v̄, vv, and
vvv which can be computed from the corresponding mo-
ments generated by a point source. Figure 9 shows the spatial
distribution of the moments cicjck for St=1. These moments
have been normalized using the asymptotic values given by
Eq. �20�.

Significant here, and consistent with the results shown in
Fig. 8�b�, are the high values of c2c2c2 which reflect the
existence of highly skewed v2 velocity distributions away
from the stagnation line x2=0. As might be expected these
moments are less significant for smaller Stokes numbers.

The simplest closure approximation for these third-order
moments is the symmetry assumption ccc�0. The results
presented here clearly show that this approximation is un-
likely to be valid in situations in which particles are being
transported in flows exhibiting coherent structures. The alter-
native closure model that is often invoked is the Chapman-
Enskog approximation �Swailes et al. �32��

cicjck � −
1

3
St�cicr

�cjck

�xr
+ cjcr

�ckci

�xr
+ ckcr

�cicj

�xr
� . �36�

Since c2c2 is essentially independent of x1 Eq. �36� gives
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c2c2c2 � − Stc2c2
�c2c2

�x2
. �37�

To assess this approximation it is therefore necessary to
evaluate the third-order stress gradient tensor �cc generated
by a continuous source of particles. While these gradients
could be estimated numerically this would introduce unnec-
essary errors into the resulting data, and would also necessi-
tate the computation of cc over a grid of closely spaced
points. To avoid this we can again make use of the idea of
relating �cc to other gradient terms that can be evaluated
directly at any given point. We write

� � cc = ���vv� − ���v̄v̄� − ����cc , �38�

with

���vv� = �
0

�

�����v̄v̄ + cc� + ����v̄�v̄ + v̄ � v̄�ds , �39�

���v̄v̄� = ��
0

�

����v̄ + � � v̄ds�v̄ + v̄��
0

�

����v̄ + � � v̄ds

− �
0

�

� �dsv̄� , �40�

and

����cc = �
0

�

� �dscc . �41�

The gradients in integrands are obtained directly from Eq.
�10�. Specifically we get

�� = − ��11
−1 · �x − x̂� , �42�

�v̄ = �11
−1 · �12. �43�

These relationships have been used to compute the
asymptotic form of �cc generated by continuous line
sources, and hence assess the validity of the approximation
given by Eq. �37�. Figure 10 compares values for the expres-
sions on both sides of Eq. �37� �normalized as before�, and
again includes simulation results that validate the PDF gen-
erated values of c2c2c2.

The figure shows that this approximation also does not
perform well in the present context. Given that the approxi-
mation is based on perturbative corrections to Gaussian ve-
locities it is perhaps not surprising that the agreement is so
poor, but it does emphasize that even relatively simple
Brownian systems can require more sophisticated closures
than those that are commonly used.

V. CONCLUSIONS

Making use of a Fokker-Planck–type model we have ana-
lyzed the evolution of statistical properties of particles re-
leased, both instantaneously and continuously from distrib-
uted sources, into flows exhibiting a symmetrically strained
mean velocity field on which stochastic fluctuations are su-
perposed to model the effects of either Brownian or turbulent
motion. Several important features of the resulting particle
distributions have been observed which have consequences
for the modeling of such systems in terms of transport equa-
tions for the particle number density, mean velocity, and ki-
netic stresses. In particular, the role of Stokes number on the
attenuation of particle kinetic stresses by the straining flow
and the development of large third-order moments of the
particle fluctuating velocity have been investigated. More-
over, it is clear that the observed phenomenon of multimodal,
highly skewed velocity distributions is not limited to under-
damped particles in idealized symmetric straining flows, but
is a generic feature of particle transport in turbulent flows in
which vortex structures induce local counterflows of par-
ticles. The construction of improved closures for third-order
velocity moments is therefore of fundamental importance,
and the system considered here is seen to offer a simple but
critical test of such closure modeling. The construction of
such closure approximations is the subject of on-going study.
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