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Contribution of Reynolds stress distribution to the skin friction in compressible turbulent
channel flows
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An exact relationship for the local skin friction is derived for the compressible turbulent wall-bounded flow
(channel, pipe, flat plate). This expression is an extension of the compressible case of that derived by Fukagata
et al. [Phys. Fluids 14, L73 (2002)] in the case of incompressible wall-bounded flows. This decomposition
shows that the skin friction can be interpreted as the contribution of four physical processes, i.e., laminar,
turbulent, compressible, and a fourth coming from the interaction between turbulence and compressibility.
Compressible numerical simulations show that, even at Mach number M =2, the main contribution comes from

the turbulence, i.e., the Reynolds stress term.
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I. INTRODUCTION

The Reynolds number effects on the mean and statistical
turbulence quantities have to be investigated to clarify the
mechanism of wall-bounded compressible turbulent flows
for engineering and industrial applications. For example, in
the channel flows, it is well established that an increase of
the turbulence intensity leads to an increase of the drag fric-
tion. Indeed, the frictional drag of a turbulent flow is usually
much higher than that of a laminar one, leading to an in-
creasing interest in near-wall turbulence control. This obser-
vation is explained by the dynamics of the near-wall vortical
structures and the associated autonomous cycle [1]. Hence,
many attempts have been made to reduce skin friction drag
by controlling turbulence in wall-bounded flows. Most of
these works have focused on suppressing or counteracting
the near-wall coherent structures which are mainly respon-
sible for the turbulence production. Numerous strategies
have been adopted for incompressible flows, such as, for
example, magnetic fluxes [2], active wall motions [3], trans-
verse traveling waves [4], and polymer additives [5].

From a statistical point of view and in the incompressible
case, Fukagata et al. [6] have derived a relation between the
skin friction coefficient and the Reynolds stress tensor. This
nonlocal splitting of the skin friction provides a deep insight
into the physical mechanisms responsible for drag produc-
tion in turbulent flows, and therefore makes it possible to
optimize near-wall dynamics manipulation strategies.

The quantitative effect of compressibility on skin friction
production remains to be analyzed in the same way. Indeed,
we can find an abundant literature on compressible channel
flows, e.g., Refs. [7-9]. But, most of these papers deal with
budget equations coming from momentum and energy equa-
tions, and evaluate all the contributive terms. Nevertheless, a
relationship between the skin friction and the statistical prop-
erties of the turbulence has not yet been written in the
compressible case.

In the present paper, a direct relation between the Rey-
nolds stress tensor and the skin friction coefficient for com-
pressible channel flow is derived. Then, all the contributive
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terms to the drag are evaluated, for the compressible turbu-
lent channel flows, at Mach number up to M =2.

II. EXACT RELATIONSHIP FOR SKIN FRICTION

First, we derive several dimensionless quantities and av-
eraging operators. The drag coefficient C; is the ratio be-
tween the boundary mean shear stress (7,) and the mean
kinetic energy per unit volume,
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With nondimensionalized quantities, this can be written as
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where Re= pil(];j)a is the bulk Reynolds number, & is the chan-

nel half-width, p, is the initial uniform density, U, is the
channel flow bulk velocity, and u(T,) is the molecular vis-
cosity at the wall temperature T,

For a compressible turbulent flow, we need to define two
averaging operators, namely the Favre {-} and the Reynolds
(), defined as {f}={pf)/{p). The Favre average permits us to
transform the mean of a product into the product of a mean
as noted by Huang et al. [7,8]. In the case of the channel
flow, described in Fig. 1, the Reynolds operator consists in
averaging on x,y space variables and on 7 time variable. The
single prime and the double prime denote the turbulent fluc-
tuations with respect to Reynolds and Favre averages, re-
spectively. The difference between the Reynolds- and the
Favre-averaged quantities can be written as
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FIG. 1. Flow geometry.
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The difference between Reynolds- and Favre-averaged quan-
tities is mainly relevant in the near-wall region as shown by
Huang er al. [8] by using direct numerical simulation (DNS).

Therefore, the operator definitions, in the case of the tur-
bulent channel presented in Fig. 1, gives the following rela-
tions:
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Hereafter, we assume (i) constant flow rate, (ii) homogeneity
in the streamwise (x) and the spanwise (y) directions, (iii)
no-slip conditions at the wall surfaces z=—1 and +1, and (iv)
symmetry with respect to the center plane. Then, the momen-
tum equation averaged along homogeneous directions x,y
and time ¢ variables yields
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where f; is the forcing gradient term, defined by the follow-
ing relation:
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Moreover, as {w}=0 and {uw}={u"w"}, we obtain
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By taking #=(1/2)f' (u)dz=[° (u)dz=1, i.e., taking the
bulk velocity Uy=(1/2)f £1<u>dz to nondimensionalize the
velocities, and by integrating Eq. (6) between —1 and z, we
obtain
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Equation (7) leads to
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with {x)=(u)— 1. Then, by integrating twice Eq. (8), we ob-
tain the following relationship:
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TABLE I. Computation parameters.

Case Re Pr M y Ty Re,
1 3121 0.72 0.4 1.2 293.5 197
2 3121 0.72 2 1.2 293.5 167

This relation shows that the skin friction coefficient can be
split into four contributing terms: the laminar contribution
C;, the turbulent contribution Cy, the compressible contribu-
tion Cc, and the compressible-turbulent interaction term Ccy.
The turbulent term Cy is proportional to the weighted aver-
age of the Reynolds stress, where the weight is linearly de-
creasing with the distance from the wall. As remarked by
Fukagata et al., this explains why the frictional drag ob-
served in wall turbulence is mainly due to the turbulence
wall structures which occur closer to the wall than the posi-
tion of the maximum Reynolds stress. The compressible term
C is proportional to the mean viscosity fluctuation due to
thermal variations and to the mean wall normal velocity gra-
dient. This term is obtained by weighted average with the
linearly decreasing weight as for Cr. The last contributing
term C 7 is proportional to the weighted average of the mean
product between viscosity and velocity fluctuation gradients.
The same relationships are given in Appendixes A and B for
the turbulent pipe flow and the turbulent flat plane flow.
However, in the following sections, the contributive terms
C;, Cr, Cep, Cc are computed only for the turbulent channel
flow case.

III. NUMERICAL SIMULATION

Direct numerical simulations of compressible channel
flows are performed. A skew-symmetric formulation of the
convective terms, as described by Blaisdell [10], is used to
avoid aliasing errors without using filtering. In streamwise
and spanwise directions, periodic conditions are applied.
Therefore, a regular mesh is used along these two directions.
First derivatives in space are discretized by using a sixth-
order centered finite-difference method and second deriva-
tives by using a second-order centered finite-difference
method. In the wall-normal direction, the mesh is refined
near the walls. The order of the centered scheme is decreased
in the near-wall cells. A low storage compact third-order
Runge-Kutta method is used for time stepping as in Lenor-
mand et al. [11]. A fixed-point algorithm is used to force the
pressure-driven flow. No-slip boundary conditions, constant
temperature, and zero wall-normal gradient of velocity are
imposed at the walls. The physical and numerical parameters
of the simulations are given in Tables I and II, where Re,
=poU.26/ u(T,) is the friction Reynolds number with u,

=\Tya1/ Po- The Prandtl number is Pr=0.7 and the specific-

TABLE II. Computational grid parameters.

L, L, L. N, N, N, 20
37 T 1 192 64 129 5% 1073
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FIG. 2. Cumulative contribution of Reynolds stress (a) and of
compressible terms (b) to skin friction for Mach number M=0.4
(—) and M=2 (- -).

heat ratio is y=1.2. The dimensionless quantities L,, L,, and
L. define the computational box size, respectively, in the x, y,
and z directions. N,, N,, and N, are the grid point numbers in
each direction and z, is the first grid size at the wall. The
initial velocity field is given by superimposing three-
dimensional random velocity fluctuations upon the laminar
Poiseuille flow at uniform density. The thermodynamics vari-
ables are left unperturbed.

IV. RESULTS

Analysis of DNS results show that for fully developed
compressible isothermal-wall channel flows, the main contri-
bution to the skin friction is produced by turbulence, even at
the supersonic regime for M =2. Indeed, the cumulative con-
tribution Cy is 6 X 1073, whereas the corresponding com-
pressible term C is 3X 107, as shown in Figs. 2(a) and
2(b). These figures show that 90% of the drag generated by
compressibility effects C is located in the near-wall region
7" <50, i.e., essentially in the viscous sublayer of the turbu-
lent boundary layer. On the other hand, the production area
of drag by Reynolds stress is more extended. The cumulative
Cy term reaches 90% at 7"~ 100, i.e., beyond the viscous
sublayer. Moreover, we observe that the cumulative turbulent
contribution is not quite modified by the Mach number varia-
tion, only 10%. At the same time, the cumulative compress-
ible term varies from 1.169 X 107 to 3.15X 1074, i.e., by a
factor 27. Concerning the wall-normal distribution of the rel-
evant terms, Figs. 3(a) and 3(b) confirm that the compress-
ible contribution to the skin friction is concentrated in a re-
gion closer to the wall than that of the Reynolds stress
contribution, which is more largely extended through the
channel. This can be physically explained by the fact that the
thermal boundary layer is thinner than the kinetic boundary
layer. Note that Co7 is negligible compared to the other
terms, as shown in Table III, and it fluctuates only in the
near-wall region, as shown in Fig. 3(c).

To validate these results, the drag friction coefficient C r is
estimated by two different methods. The first one consists in
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FIG. 3. Reynolds stress terms (a), compressible terms (b), and
compressible/turbulent terms (c) contribution to skin friction for
Mach number M=0.4 (—) and M=2 (- -), and its weighted contri-
butions (with circle).

summing the contributions of each term appearing on the
right-hand side (rhs) of the relationship (9). The second
method uses the expression C;=2p(Ty)(Re,/Re)* based on
the definition of both the Reynolds numbers and on the
choice of the characteristic quantities used to nondimension-
alize the equations. Hence, the error on the Cr coefficient
computed by these two methods is about 0.4% for the M
=0.4 case and about 4% for the M=2 case, respectively.
Then, the relationship (9) seems to be well founded and the
estimation of each contributive term is quite good within a
few percent maximal error at the M =2 regime.

V. CONCLUSION

To conclude, we have obtained a relationship giving the
contribution of different physical mechanisms to the skin
friction. This derivation is straightforward, although the re-
sult is suggestive and useful for analyzing the effects of Rey-
nolds stress on the frictional drag at different Mach numbers.
Indeed, we have used compressible channel flow DNS to
show that even at the M =2 regime, the compressible effects
on the skin friction are quasinegligible compared to the tur-
bulence action. This relationship enables us to physically
analyze drag reduction devices in the compressible boundary
layer case.

APPENDIX A: CYLINDRICAL PIPE FLOW

A similar relationship can be derived in the case of cylin-
drical pipe flow. By writing the longitudinal momentum
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TABLE III. Contribution to the skin friction in the subsonic and supersonic cases.

Mach CT CC CCT CL Cf

0.4 6.083 X 1073 1.169 X 107 1.037 X 107° 1.922x 1073 8.018 x 1073
75.87% 1.4%x107'% 1.19X 1072% 23.97%

2 5.538 X 1073 3.15%x 10~ 8.653 X 107° 1.922x 1073 7.78 X 1073
71.18% 4.05% 1.11X107'% 24.70%

equation in the cylindrical coordinates, averaged along ho-
mogeneous directions 6, z and time ¢ variables yields

1 onpM )
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where the driving gradient term f is given by
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By a similar triple integration process, we obtain the follow-
ing relationship:

and with
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where the relationship [ (')r(uz)drE 1, coming from the adi-
mensionalization, is used. The definition of the dimension-
less quantities is similar to that in the channel case, but J is
replaced by the pipe radius R and the Reynolds number is
Re= pOUO . The weighting factors for the Reynolds stress and
for the addmonal terms coming from the compressibility are

proportional to the square of the radial distance from the pipe
axis.

APPENDIX B: PLANE BOUNDARY LAYER

In the case of the plane boundary layer with zero mean
streamwise pressure gradient, the physical quantities are non-

dimensionalized by the free stream velocity U and density
P, by the boundary layer thickness &, and by the wall tem-
perature T,. The flat plane is located at z=0 with the same
coordinate system as in the channel case shown in Fig. 1.
The skin friction C; is defined by C,= R%ﬁ(m} =0, With
Res=p..U..8/ u(Ty). In this case, (-) denotes the averaging
operator along the spanwise direction. We assume (i) a con-
stant free stream velocity and (ii) (du/dx)~0 at z=1. The
skin friction can then be written as

1
Clx,1) = Rie(g[l -8+ 4f0 (1 =2)XpX{u"w"}dz

+—J (1 -2 — dZ+_f (1-2)

><<,u <%+%>>dz Zf (1-2)?
(<1> ‘9<"“>)dz,

where 8;=/ é(l—(pu))dz is the displacement thickness nor-
malized by &, and (I) is the contributive term when the flow
is inhomogeneous in the streamwise direction, i.e.,
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As noted by Fukagata et al. 6], the first term on the ths does
not correspond to the purely laminar contribution. Indeed,
this quantity is a function of the mean turbulent velocity
profile through the &, term. As in the channel case, the
weighting factors for the Reynolds stress and for the addi-
tional terms coming from the compressibility are linear.
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