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Anomalous diffusion as modeled by a nonstationary extension of Brownian motion
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If the mean-square displacement of a stochastic process is proportional to %, B+ 1, then it is said to be
anomalous. We construct a family of Markovian stochastic processes with independent nonstationary incre-
ments and arbitrary but a priori specified mean-square displacement. We label the family as an extended
Brownian motion and show that they satisfy a Langevin equation with time-dependent diffusion coefficient. If
the time derivative of the variance of the process is homogeneous, then by computing the fractal dimension it
can be shown that the complexity of the family is the same as that of the Brownian motion. For two particles
initially separated by a distance x, the finite-size Lyapunov exponent (FSLE) measures the average rate of
exponential separation to a distance ax. An analytical expression is developed for the FSLEs of the extended
Brownian processes and numerical examples presented. The explicit construction of these processes illustrates
that contrary to what has been stated in the literature, a power-law mean-square displacement is not necessarily
related to a breakdown in the classical central limit theorem (CLT) caused by, for example, correlation (frac-
tional Brownian motion or correlated continuous-time random-walk schemes) or infinite variance (Levy mo-
tion). The classical CLT, coupled with nonstationary increments, can and often does give rise to power-law

moments such as the mean-square displacement.

DOI: 10.1103/PhysRevE.79.032101
I. INTRODUCTION

Over the last decade, there has been a growing interest in
non-Fickian or anomalous transport processes. The standard
description of an anomalous process is one where the mean-
square displacement goes asymptotically as time to some
power, B3, other than 1. If 0= 8<C1, then the process is called
subdiffusive and if 8> 1, then it is superdiffusive. Lévy pro-
cesses [1,2] that do not have a finite second moment, fall into
the superdiffusive category. The case where B=1 corre-
sponds to a classical Brownian motion.

Subdiffusive and superdiffusive processes are the rule in
many heterogeneous or preasymptotic systems. Subdiffusive
processes appear in confined nanofilms [3-5], transport in
natural porous media [6], fractal structures with holes over
all length scales [7], charge-carrier transport in anomalous
semiconductors [8,9], and NMR diffusometry on percolation
structures [10]; see [11] for a review. Superdiffusion occurs
in the atmosphere [12,13], in geologic formations [14-16],
vortex arrays in rotating flows [17], and layered velocity
fields [18], to name a few examples.

In one dimension a process X(r) is said to be Brownian
[19] if (a) every increment X(r+s)—X(s) is normally distrib-
uted with mean zero and variance o2t where o is fixed; (b)
for every pair of disjoint time intervals (z,,%,) and (t3,1,),
t;<t,=t;<ty, the increments X(z,)—X(t;) and X(z,)—X(¢,)
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are independent random variables with distribution given by
(a); (c) X(0)=0 and X(¢) is continuous at #=0.

A standard Brownian motion has o=1; thus by the prop-
erties of a normal distribution, any Brownian motion, X(z),
can be made standard by replacing X(r) with X(¢)/c. The
Fokker-Planck equation for a Brownian process is the clas-
sical diffusion equation with constant diffusion coefficient.

The Lyapunov exponent is commonly used to quantify
mixing in fluid mechanics and is defined as the exponential
rate of separation, averaged over infinite time, of fluid par-
cels initially separated infinitesimally. That is, the Lyapunov
exponent measures the average rate of exponential diver-
gence of two infinitesimally close trajectories.

Unfortunately, the infinite time limit makes the Lyapunov
exponent of limited practical value when dealing with ex-
perimental data. The spatial limiting process makes the
Lyapunov exponent an even more difficult quantity to evalu-
ate experimentally or numerically.

A generalization of the Lyapunov exponent, called the
finite-size Lyapunov exponent (FSLE) [20-22], has been
proposed to study the growth of noninfinitesimal perturba-
tions (distance between trajectories) in dynamical systems.
The FSLE, \,(x), is defined by

A(x) =[1/T,(x)]In a (1)

and is a measure of the growth rate of the mixing zone or
alternatively a measure of the growth rate of the finite-size
perturbations. Here T, the a time, is the average time it takes
for two particles separated by a distance x initially to reach a
separation of ax. Since ax is the threshold, a is called the
threshold ratio. If x is thought of as a measure of the scale of
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the mixing layer in a dispersive flow, then A,(x) measures the
exponential rate of growth to scale ax,

exp[A, ()T, (x)]=a. (2)

By means of particle tracking algorithms, one can select
nearby particles separated a given distance, say x, and then
follow them by measuring the time 7,(x) it takes for the
separation to grow to ax. In the Brownian limit, it has been
argued that the FSLE will be inversely proportional to the
square of the initial separation and directly proportional to
the classical diffusion coefficient [22]. In the case of sym-
metric a-stable Lévy particles, it has been argued [23,24]
that \,(x) is proportional to the diffusion coefficient and in-
versely proportional to x*. The goals of this Brief Report are
to show how by judiciously relaxing (a) above, we can create
a spatially local, Markovian, stochastic process with any de-
sired mean-square displacement and (b) to derive the FSLE
for the process.

II. ONE-DIMENSIONAL COMPRESSED
AND STRETCHED BROWNIAN MOTION

Let H(r) be absolutely continuous with the non-negative
derivative h(?), i.e.,

H(t) = Jth(t’)dt’. (3)
0

We define a “compressed” (“stretched”) Brownian process
X(r) as a process satisfying (b) and (c) above with (a) being
replaced. (a’) Let H(r) <t [H(z)>1] be nonlinear and let ¢
>, then

X(#) — X(s) ~ N[0,H(r) - H(s)].

Clearly if H(f)=t in (a’) then X(¢) is Brownian and except
when H(z)=t, the process has nonstationary increments.

We next show that stretched and compressed Brownian
motions satisfy the Ito stochastic ordinary differential equa-
tion (SODE),

dX = \h(r)dn(p), (4)

where 7 is a standard Brownian motion. SODE:s of this form
have been studied extensively [25-28]. Assuming the par-
ticle is released at the origin, Eq. (4) is equivalent to

X(1) = f Vh(s)dn(s), 5)
0

and hence

t 2 t
<X2(r>>=<{ f \r%dn(S)] >= J h(s)ds = H(1), (6)
0 0

where we have used the fact that 4(¢) is deterministic and
((dn)*)=dt [25]. From Eq. (5), X(¢) is a limit of a linear
combination of Gaussians, and hence it is Gaussian and from
Eq. (6) its variance is H(t), so that X(r) ~N(0,H(r)). Now
X(t)-X(s) and X(s) are independent, so that Var X(r)
=Var[X(r) - X(s)+X(s)]=Var[X(r) - X(s) ]+ Var X(s) implies
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Var X(r)—Var X(s)=Var[ X(1) - X(s) |=H(t) - H(s). Thus
X(1)-X(s)~N[0,H(t)—H(s)] which is (a’). The proofs of
(b) and (c) are trivial.

Clearly, the Langevin (Fokker-Planck equation) for the
transition density corresponding to Eq. (4) is a classical dif-
fusion equation with time-dependent diffusion coefficient
given by h(r)/2. A random-walk approximation for Eq. (4)
takes the form

X(tn/M) — X(t(n - 1)/M) ~ N(O,(t/M)h(tn/M)),  (7)

where ¢ is a fixed time, /M is a time increment, and » is the
step.

III. MULTIDIMENSIONAL EXTENSIONS

There are several possible extensions; the simplest is to
write the increments as

X(1) - X(s) ~ N(O,[H(r) - H(5)]Q), (8)

where each Q;; is non-negative and independent of ¢ and s.
This simple extension allows one to study anisotropic pro-
cesses with uniform scaling. A slightly more complicated
extension takes the form

3
X(1) = X(s) ~ [T N, Hy(1) - H{(s)). 9)

i=1

Here, in the principle directions, x;, the component processes
are independent and allowed to be compressed or stretched
in different directions.

IV. EXAMPLES

A. Anomalous diffusion with power-law scaling

Here we set h(f)=t% where a>-1 [the integral of h(r)
diverges if a=-1]. If -1 <a <0, then the process is com-
pressed Brownian, if a=0 it is classical, and if a>0 it is
stretched. We have (|X(¢)|*)=r**'/(a+1). Thus the mean-
square displacement is proportional to **! so that the com-
pressed case is subdiffusive and the stretched case is super-
diffusive. Note that when a=2 we obtain Richardson
superdiffusion [12] and when a=1, the system is ballistic. If
a different power law is chosen in each direction then the
Langevin equation takes the form

AfYot=-V-q°, (10a)
q“=-D%) - Vf*, (10b)
g™ 0 0
D)= 0 g,y 0 (10c)
0 O q3ta3

B. Logarithmic subdiffusion

Here we take h(t)=(ty+1)"", where #,>0. In this case, the
mean-square displacement grows like In(zy+1).
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C. Multifractal diffusion

Here we take h(r)=(1y+1)“?", where a(r)=-1 and £,>0.
We call this multifractal diffusion in analogy to classical
multifractal processes that have the same form of the mean-
square displacement. In this case however, as pointed out
next, the fractal dimension of the stochastic process does not
change with a(r).

D. Complexity

Park et al. [29] computed the box fractal dimension of a
stochastic process with nonstationary increments. Following
his work [29], and provided that A(z) is homogeneous [in the
sense that h(7)=t* implies h(at)=a“h(t)], we can show that
the box dimensions of X“%(z) is the same as the classical
Brownian motion. Therefore the process X“(¢) has the same
complexity as the standard Brownian process. To date we
have not succeeded in proving this result when A(r) is not
homogeneous.

V. FINITE-SIZE LYAPUNOV EXPONENT

The distribution of stretched/compressed Brownian mo-
tion is given by the solution of

dP/3t = Dh(t) P Plox>, (11)

where D is a constant. If we are computing the probability
density of a particle, D=1 5» and if we are computing the
probability density for the difference between two particle
trajectories, D=1. This is because the diffusion coefficient is
one-half times the derivative of the variance for these pro-
cesses. Because the two particles have Gaussian distribu-
tions, the difference of two such particle trajectories is
Gaussian with twice the variance as the motion of a single
particle.

The reader should note [25] that Eq. (11) is the Eulerian
counterpart to the Lagrangian SODE (4). However, Eq. (4)
contains far more information than Eq. (11) does, as Eq. (4)
describes specific particle trajectories rather than particle
densities, i.e., many different SODEs can give rise to the
same Langevin equation. For example, Dentz ef al. [30] con-
structed a correlated random walk that does not satisfy the
central limit theorem (CLT) but satisfies essentially the same
Langevin equation as our process does.

For diffusion on the interval [0, L] with absorbing bound-
aries, the boundary conditions are expressed mathematically
as

P(0,t)=P(L,1)=0, (12)
with the initial condition
P(x,0) = 8(x — xo). (13)

Note that the solution to this problem is given by

P(x,1) = 22 Sin<ﬂ> sin( ano)e_[“znzDH(t)/Lz]. (14)
L= L L

Following Gitterman [31], we compute the mean first pas-
sage time (MFPT), T, for this process,
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ar ar

1

FIG. 1. Initial configuration of two particles (labeled as P; and
P,) and two passage planes at x=0 and x=2ar.

L 0
= f f P(x,t)dtdx
0 Jo

—E —[1—< 1)"]si (

n=1 TN

x=2ar
x=0

) f e—[ﬂTZ}’lzDH(Z)/Lz]dt. (15)
0

We next compute 7°(r), the time it takes for two particles
separated by a distance r at t=0 to become separated by a
distance ar for the first time. This can be accomplished by
following the path laid out in [24]. We imagine two particles,
separated by a distance r, each moving in the prescribed
fashion. We attach the frame of reference to the first particle
and fix passage planes at a distance ar from it (see Fig. 1).

In this frame of reference everything is fixed, except the
second particle, which moves in this frame of reference with
twice the variance. As noted above, this modifies the diffu-
sion coefficient so that D=1 instead of D=%. The particles
will be separated by a distance ar exactly when the second
particle is at the passage planes. In this system, Tg(r) is sim-
ply the MFPT with L=2ar and xy=(a+1)r. We obtain the
following equation by inserting this information into the pre-
vious equation:

=3 {1 (- 1)"]sin(m)
n=1 TN

2a
o f : (M) J
. exp (2ar)2 t
- , (w(Zk—l)(a+1))
k=1 7T(2k— 1) 2a
* - 2k - 1)2H(t)>
XJO exp(—(zm)2 dt. (16)

Substituting this into the definition of the FSLE we obtain

N =lna / X 4 .n(W(Zk—l)(a+1)>

S k-1 2
® 2
0

(2ar)?
Figure 2 provides a typical example of a family of FSLEs
for h(r)=1. It is important to note that the nonstationarity of
the process requires the FSLE to be a function of time origin.

(17)
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a=2 — — a=4
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FIG. 2. Dependence of FSLE on « and a with 7y=5 and r=1.

VI. CONCLUSIONS

Our goal was to construct a family of Markovian stochas-
tic processes that can be characterized by their first two mo-
ments with predefined mean-square displacement. To do so
we relaxed the stationary-increment assumption associated
with classical Brownian motion and showed, with our char-
acterization, that the limit process has independent incre-
ments with X(r)—X(s) ~N(0,H(r)—H(s)). This process can
be generalized by assuming

3
X(1) - Xs) ~ [T N0, H 1) - H(5)). (18)

i=1

Drift can be included for the constant velocity case by re-
placing the mean zero with v;(f—s) in the normal density of
increments where v; is the constant velocity in the x; direc-
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tion. Langevin equations for the transition density are classi-
cal diffusive with the time-dependent diffusion coefficient
proportional to h(f) or D;~h,(t) in the multiple-dimension
case.

A closed-form equation for the finite-size Lyapunov expo-
nent was derived and a numerical example presented. If only
the first two moments are required, or are all that is available,
to characterize a physical process, then the model presented
provides a simple and clear way of generating realizations
and explaining experimental results.

One final point: it was stated in [11] on page 6 that a
power-law mean-square displacement “is intimately con-
nected with a breakdown of the central limit theorem, caused
by either broad distributions or long-range correlations.” The
arguments put forward here illustrate that this does not have
to be the case. In fact, we have relied solely on the classical
central limit theorem for our analysis. It has been known for
many years that upscaling (via projection operators, renor-
malization groups, generalized central limit theorems,
matched asymptotics, etc.) may give rise to spatially nonlo-
cal and non-Markovian processes, many of which have long-
range correlations and power-law moments. What we have
shown here is that classical CLT renormalization provides a
spatially local and Markovian process which also may pos-
sess power-law moments. Thus while long-range correlations
and breakdown of the CLT often lead to anomalous diffu-
sion, they are not a necessary prerequisite.
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