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Heat-induced diffusion of nucleosomes along DNA is an experimentally well-studied phenomenon, presum-
ably induced by twist defects that propagate through the wrapped DNA portion. The diffusion constant depends
dramatically on the local mechanical properties of the DNA and the presence of DNA-binding ligands. This has
been quantitatively understood by a stochastic three-state model. Future experiments are expected to allow
application of forces on the nucleosome that induce a directed sliding. By extending the three-state model, the
present work studies theoretically the response of the nucleosome to such external forces and how it is affected
by the mechanical properties of the DNA and the presence of DNA-binding ligands.
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I. INTRODUCTION

Eukaryotic DNA is packaged inside the nucleus by being
wrapped onto millions of protein cylinders. Each cylinder is
an octamer of eight histone proteins and is associated with a
147 base pair �bp� long stretch of DNA �1�. The resulting
complexes, the nucleosomes, are connected via stretches of
linker DNA; typical linker lengths range from 12 to 70 bp
�2�. It is known from the crystal structure �1� that the DNA is
bound to the octamer at 14 binding sites at which the minor
groove of the DNA faces the octamer. This defines the bind-
ing path, a left-handed superhelix of one and three quarter
turns.

With around three quarters of their DNA being tightly
bound to the octamers, the DNA-binding proteins face the
challenge that their target sites might be masked if they hap-
pen to be occupied by a nucleosome. One knows of two
possible pathways of how such wrapped DNA portions be-
come accessible—at least temporarily. One possibility is the
spontaneous unwrapping of nucleosomal DNA from the oc-
tamer �3–5�, which provides DNA-binding proteins a win-
dow of opportunity to bind to their target. Another possibility
is that the octamer moves as a whole along the DNA �6–11�,
thereby releasing previously wrapped portions. This so-
called nucleosome sliding is what we study in the following.

A typical experimental system for investigating nucleo-
some repositioning consists of a DNA template slightly
longer than the wrapped portion �e.g., 207 bp in Ref. �7�� that
is complexed with one octamer. The nucleosome position
can be inferred from the electrophoretic mobility of the com-
plex in a gel. It is found that nucleosome sliding is a slow
process and that it takes a nucleosome around 1 h to reposi-
tion completely on such a short DNA fragment. Another im-
portant observation is that the new positions are all multiples
of 10 bp �the DNA helical repeat� apart from the starting
position.

Concerning nucleosome sliding there are currently two
mechanisms under discussion that could underlie this phe-
nomenon �9,10�. Both mechanisms have in common that
they rely on defects that are thermally injected into the

wrapped DNA and that traverse the nucleosome, thereby
causing its displacement. The reason for assuming defects as
the cause of repositioning rather than the sliding of the oc-
tamer as a whole is that the latter mechanism would require
the simultaneous detachment of all 14 binding sites that is
too costly �around 85kBT�. The two kinds of defects are 10-
bp-loop defects �12,13� and 1-bp-twist defects �14,15�. A 10-
bp-loop defect is a bulge that carries an extra length of 10 bp,
causing redistribution events of that step length. These pre-
serve the rotational orientation of the nucleosome. This fact
as well as the predicted value for the mobility seems to agree
with experiments �13�.

The second class of defects, the 1-bp-twist defects, carries
a missing or an extra base pair. To accommodate such a
defect between two nucleosomal binding sites, the DNA
needs to be stretched �or compressed� and twisted �hence the
name�. A nucleosome mobilized by twist defects moves via 1
bp jumps. Since the octamer is always bound to the minor
groove of the DNA, the nucleosome performs a corkscrew
motion around the DNA. Alternatively one can say that the
DNA acts as a molecular corkscrew. Since twist defects are
much cheaper than loop defects ��9kBT �14� vs �23kBT
�13��, twist defects are expected to make nucleosomes much
more mobile than observed in experiments. However, repo-
sitioning experiments are always done in the presence of
so-called nucleosome positioning experiments that are now
known to be widespread in eukaryotic genomes �16�. Such
positioning sequences �such as the sea urchin’s 5S ribosomal
DNA �rDNA� sequence in Ref. �7�� make use of the fact that
certain base-pair sequences induce an anisotropic bendability
of the DNA. Since in the 1-bp-twist defect mechanism the
DNA in the course of a 10 bp shift �the DNA’s helical pitch�
has to bend in all directions, a positioning sequence creates a
sequence-specific barrier �not present for 10 bp bulges�. In
the case of the sea urchin’s 5S rDNA sequence �7� this bar-
rier is about 10kBT. It follows from equilibrium thermody-
namics that the probability of finding the nucleosomal DNA
in its preferred bending direction is much higher than in an
unfavorable one. It means that even in the case of 1 bp de-
fects, one would find nucleosomes mostly at the optimal po-
sitions 10 bp apart, i.e., at locations in the preferred bending
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direction. In the end, both mechanisms are predicted to ap-
pear very similar in the above-mentioned experiments �10�.

There is an experiment �17� that hints at twist defects
being responsible for nucleosome sliding. This experiment is
performed on a 216 bp DNA template that contains the sea
urchin 5S rDNA sequence in the presence of minor-groove-
binding pyrrole imidazole polyamides, synthetic ligands that
can be designed to bind to short specific DNA sequences. It
was found that the nucleosome mobility is dramatically re-
duced when such ligands are added.

In Ref. �15� a theoretical model was introduced to inves-
tigate the physics behind nucleosome sliding in the presence
of ligands. The model gives a coarse-grained description of
the nucleosome that is assumed to exist in three possible
states that it encounters during its corkscrew diffusion along
the DNA. The resulting diffusion constants for different pos-
sible cases give good agreement with experimental findings,
supporting the picture of twist defects as the cause of nucleo-
somal mobility.

We anticipate that more experimental setups that can test
nucleosomal mobility will become available in the near fu-
ture. These setups will be all based on micromanipulation
methods that allow application of forces to the nucleosome
and study of its resulting sliding along the DNA. We mention
three possible setups in Sec. V, at the end of this paper. It
would be therefore helpful to have a model at hand that
allows interpretation of data obtained by such experiments.
In this context the three-state model proposed in Ref. �15�
might prove to be of use but so far only the diffusion behav-
ior in the absence of forces is known �15�. The purpose of
the present paper is to close this gap by providing a general
solution for a nucleosomal under force using the method
described in Refs. �18,19�.

The paper is organized as follows. In Sec. II the three-
state model for nucleosomes is described and the behavior
under an imposed force is calculated. Then we provide a
section �Sec. III� on the diffusion of the nucleosome in the
absence of an external force recovering relations found in
Ref. �15�. This is followed by the largest section of this paper
�Sec. IV�, where we study the response of the nucleosome to
an external force in the absence or presence of nucleosomal
DNA positioning sequences and/or minor-groove-binding
ligands. In the concluding section �Sec. V� we discuss pos-
sible experiments that could test our predictions.

II. STOCHASTIC THREE-STATE MODEL
FOR NUCLEOSOME SLIDING

We reintroduce here the three-state model of Ref. �15� and
then provide its general solution. In the absence of ligands,
the sliding of the nucleosome along its wrapped DNA can be
described by a hopping model with a single state or with two
states depending on the DNA sequence. The effect of the
sequence can be modeled as shown in Fig. 1 �without con-
sidering state 0 in this figure�. State 1 represents the pre-
ferred binding sites for the DNA-histone complex �the mini-
mum of the sequence-dependent potential�, while state 2
corresponds to the high-energy state of this potential. For
uniform sequences the height of the potential barrier is zero

�the energies of the two states are equal�, which corresponds
to a single-state model. For a positioning sequence of DNA,
states 1 and 2 are separated by 5 bp, i.e., half of the period of
the sequence denoted as l in the figure. Besides their wide-
spread occurrence in eukaryotic DNA �16�, such nucleosome
positioning sequences can be artificially constructed. A very
effective sequence arrangement, called the “TG” sequence,
that leads to a strong nucleosome stability and localization
was experimentally constructed in Ref. �20�. For this special
sequence the system is in state 1 �2� when A/T �G/C� tracts
are in the position of the nucleosome-binding sites.

Let us comment on why we do not use a ten-state model
to describe the nucleosome motion along a positioning se-
quence with a 10 bp period. The problem in doing so would
be that this introduces a large number of rate constants that
are experimentally not accessible. Instead we prefer to fol-
low here the coarse-grained approach introduced in Ref. �15�
that amounts to considering only transitions between maxima
and minima of the potential and neglects further microscopic
details of the sequence. This coarse graining makes the
model simpler without losing the underlying physics, espe-
cially allowing one to account for the strength of the posi-
tioning effect via the barrier height. Similar two-state models
have been used to describe the motion of a linear molecular
motor on its track �such as a kinesin walking on a microtu-
bule� �18,19�.

The presence of DNA ligands affects the interaction of the
nucleosome with the DNA, and we describe this as an addi-
tional state 0 that branches off state 1 or 2. As described in
Ref. �17� synthetic ligands, minor-groove-binding pyrrole
imidazole polyamides, have been designed to bind to short
specific DNA sequences �6 bp long�. When the ligand binds
to the DNA, we assume that no sliding can happen, as con-
firmed by experiments �17�. So the nucleosome waits until
the ligand detaches from the DNA, and this will reduce the
mobility of the nucleosome. The ligand may bind on the
DNA in either state 1 and 2 depending on the location of its
substrate, which is a short DNA sequence. In this model we
only consider the case where the ligand can bind to the DNA
when the nucleosome is in state 1. This is equivalent to
�G�0 in Fig. 1. In state 2 �5 bp, half the DNA pitch, away
from state 1� the binding site is then inaccessible since it
faces the octamer surface. The case where a ligand can bind

l

ω+
12

ω−
21

ω−
12

ω+
21

ω01 ω10

∆G = �/kBT

FIG. 1. �Color online� Schematic view of the three-state model
for sliding of a nucleosome on a periodic DNA sequence of height
�G=�kBT and period 2l. States 0, 1, and 2 denote states where the
ligand is bound, unbound with its binding site open, and unbound
with its binding site closed, respectively. �ij

+�−� denote the rates of
going from state i to state j to the right �left�.
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to the nucleosome in state 2 has been shown—
experimentally �17� and theoretically �15�—to leave the nu-
cleosomal mobility nearly unaffected. Similar periodic se-
quential kinetic models with branching, jumping, or deaths
have been studied in �21�.

To model the dynamics of the nucleosome, consider the
one-dimensional lattice of Fig. 1. The nucleosome can hop to
neighboring sites on this lattice with some specific rates. As-
sume that l is the distance between sites 1 and 2 �which is
half the period�, and let pi�n , t� be the probability for the
nucleosome to be in the states i=0,1 ,2 at position x=nl and
at time t. The pi�n , t� satisfy the master equation

�tp0�n,t� = �10p1�n,t� − �01p0�n,t� , �1�

�tp1�n,t� = �21
+ p2�n − 1,t� + �21

− p2�n + 1,t� + �01p0�n,t�

− ��12
+ + �12

− + �10�p1�n,t� , �2�

�tp2�n,t� = �12
+ p1�n − 1,t� + �12

− p1�n + 1,t�

− ��21
+ + �21

− �p2�n,t� , �3�

where �ij
+ ��ij

−� represents the rate of transition from state i to
neighboring state j on the right �left�; and �10 ��01� repre-
sents the binding �unbinding� rate of a ligand.

Let us introduce a vector F� �� , t�, the components of
which generate functions of the position for each state i.
These components are Fi�� , t�=�ne−�nlpi�n , t�. The use of
generating function reduces the space of configurations that
is infinite, to only three states, due to the periodicity of the
system. It makes the calculations much more tractable. The
master equation now becomes

�tF� ��,t� = M���F� ��,t� , �4�

with

M��� = �− �01 �10 0

�01 − �12
+ − �12

− − �10 �21
+ e−�l + �21

− e�l

0 �12
+ e−�l + �12

− e�l − �21
+ − �21

− � .

�5�

The solution of Eq. �4� is

F� ��,t� = eM���tF� ��,0� . �6�

After calculating the eigenvalues of the matrix M, one can
see that at long time t→ +� only the largest eigenvalue of M
that is denoted by �m��� contributes to �iFi�� , t�= 	e−�nl

�e�m���t. Note that the normalization condition for the prob-
ability implies that �m�0�=0. The eigenvalue �m��� contains
all the long-time dynamical properties of the system, such as
the velocity and the diffusion constant �18,19�, since

v̄ = − �d�m

d�
�

�=0
�7�

and

D =
1

2
�d2�m

d�2 �
�=0

. �8�

One can expand �m��� near �=0 as �m���=−v̄�+D�2

+O��2�. Using this expansion in the eigenvalue equation,
det�M −�m���I3�=0, the velocity and the diffusion constant
are derived as

v̄ =
2��12

+ �21
+ − �12

− �21
− �l

S +
�10

�01
��21

+ + �21
− �

, �9�

D = 2l2

��12
+ �21

+ + �12
− �21

− �K + 8�12
+ �12

− �21
+ �21

− +
�10

�01

J


S +
�10

�01

��21
+ + �21

− ��3
,

�10�

with

S = �12
+ + �12

− + �21
+ + �21

− , �11�

K = ��12
+ �2 + ��12

− �2 + ��21
+ �2 + ��21

− �2

+ 2��12
+ �12

− + �12
+ �21

− + �21
+ �21

− + �21
+ �12

− � , �12�

J = ��12
+ �21

+ + �12
− �21

− ���21
+ + �21

− �
2S +
�10

�01
��21

+ + �21
− ��

− 2��12
+ �21

+ − �12
− �21

− �2
1 −
�21

+ + �21
−

�01
� . �13�

It is worth mentioning that in the ligand-free case the rate of
going from site 1 to 0 is zero, �10=0, and the model be-
comes equivalent to the two-state model that was discussed
in �18,19�.

III. KINETIC RATES IN THE ABSENCE OF FORCE

Nucleosome sliding in the absence of any external force is
a passive process, implying that there is no preference be-
tween the left and right directions. Thus �12

+ =�12
− =�12 and

�21
+ =�21

− =�21. Let us introduce 	 as the ratio of rates,

	 �
�12

�21
= e−�, �14�

where �=�G /kBT is the energy difference between the two
states 1 and 2, and the above equality expresses the detailed
balance condition.

We consider the binding chemical reaction of the ligand:
L+S�LS, where S is the substrate, i.e., the nucleosomal
DNA, L is the ligand, and LS is the ligand-substrate com-
plex. From kinetic theory of first-order chemical reactions,
one can write �10=k+�L��S� and �01=k−�LS�, such that the
equilibrium constant of the chemical reaction is Keq=k+ /k−
= �LS�eq / ��L�eq�S�eq�, in terms of equilibrium concentrations
of ligand ��L�eq�, substrate ��S�eq�, and complex ��LS�eq�.
Therefore the ratio
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 �
�10

�01
= Keq

�L��S�
�LS�

=
�LS�eq

�L�eq�S�eq

�L��S�
�LS�

�15�

quantifies the deviation away from equilibrium. In general,
the substrate is in excess so that �S� and �S�eq are both large,
and also �S���S�eq. Furthermore, if one assumes that �LS�
��LS�eq, then 
��L� / �L�eq.

From Eq. �9� we find that v̄=0 as expected and from Eq.
�10� we obtain the diffusion constant

D =
2�12l

2

1 + 
 + 	
, �16�

i.e., we recover Eq. �9� of Ref. �15�.
The rate �12 in Eq. �16� can be calculated by Kramers rate

theory in the limit ��1. We model the sequence-dependent
potential as a periodic function �U�x�= �

2cos� 
x
l �, with �

=1 /kBT �14�. The time needed for the nucleosome to go from
one minimum of this potential to the neighboring maximum,
�, is then given by

1

�
=

D0

2
kBT
��U��1�U��2��e−� =


���
4l2 D0e−�, �17�

where D0 is the diffusion constant of the nucleosome without
any potential barrier or ligand, and 1 and 2 refer to the mini-
mum and the maximum of the potential U�x�. From this we
find �12 for such a strong positioning sequence:

�12 =
1

2�
=


�

8l2D0e−� for � � 0, �18�

with the factor 1
2 being the probability to go through the

barrier 2 from either direction �22�. It is worth mentioning
that in the limit ��1 with ���0,
�0� when there is a
sequence-dependent potential for the nucleosome, one can
find that

D =

�e−�

4�1 + 
�
D0. �19�

In the case of random sequence of DNA, i.e., in the absence
of a sequence-dependent potential, �=0 and then �12 is sim-
ply equal to

�12 =
D0

l2 , �20�

and the diffusion constant can be found as �15�

D =
2D0

2 + 

. �21�

In the absence of ligands and for arbitrary sign of �, Eq. �19�
becomes

D =

���e−���

4
D0. �22�

Equation �22� that has been derived with a discrete sto-
chastic model can be also derived using a continuous de-
scription in the limit ��1. Consider a particle diffusing in
the periodic potential U�x�. The resulting diffusion constant
is then given by �22�

D = D0	e�U�x�
−1	e−�U�x�
−1. �23�

Indeed 	e�U�x�
 is a Bessel function, the asymptotic form of
which is 2e�/2 /�
� for ��1. From this Eq. �22� is recovered
using Eq. �23�.

Putting in numbers, using realistic parameter values �14�
D0�600 bp2 /s, �=9, l=5 bp, and 
=0 in the absence of
ligands and 
�100 in the presence of ligands, our model
predicts the time needed for a nucleosome to diffuse on a 70
bp DNA to be 78 min without ligands and 131 h with the
ligands, which is consistent with the experimental observa-
tions �17�. For a random sequence ��=0�, in the presence
�
�100� and the absence of ligands �
�0�, the character-
istic times for 70 bp diffusion are 3.5 min and 4 s, respec-
tively.

IV. FORCE-INDUCED NUCLEOSOME SLIDING

Up to now we considered thermally induced, undirected
nucleosome sliding. Here we discuss the case when a force is
applied to the nucleosome.

A force F exerted on the nucleosome introduces a bias in
the transition rates:

�12
+ = �e−�e�1

+f , �24�

�21
− = �e−�2

−f , �25�

�12
− = �e−�e−�1

−f , �26�

�21
+ = �e�2

+f , �27�

where �i
� are the load distribution factors �21�, and f

�Fl /kBT. Using detailed balance condition, one has �1
++�1

−

+�2
++�2

−=2. In the plots that follow we always use �i
�

=1 /2, but the possibility of other values is discussed at the
end of this paper. Inserting these rates into Eq. �9�, the ve-
locity of the nucleosome is as follows:

v = 2�le−� e��1
++�2

+�f − e−��1
−+�2

−�f

e−��e�1
+f + e−�1

−f� + �1 + 
��e�2
+f + e−�2

−f�
. �28�

The mobility of nucleosome is defined as

� �
1

kBT
�dv

df
�

f=0
, �29�

which gives

� =
1

kBT

2�	

1 + 
 + 	
l2. �30�

Comparing this expression with Eq. �16� one finds the Ein-
stein relation �=D / �kBT� verified.

There are three physical quantities that affect the behavior
of the system: the external force F, the sequence-dependent
part of the potential measured by �, and the ligand concen-
tration �L� that enters into 
 through 
��L� / �L�eq. The
physical behavior of the system is characterized by the ve-
locity of the nucleosome repositioning along the DNA and its
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diffusive behavior. In the following the results of our analyti-
cal approach and of a computer simulation that is discussed
in Appendix A, are presented.

We first consider the effect of an external force on the
velocity of the nucleosome repositioning along the DNA. In
Fig. 2 we plot the nucleosome velocity v versus the applied
force F for the two limiting cases 
=0 and 
=100 of the
experiments �17�, both on random DNA and on a positioning
sequence. In all four cases there is excellent agreement be-
tween the simulation results and the analytical approach. At
zero force, the nucleosome shows purely diffusive behavior
and there is no net velocity. As soon as a force is applied,
there is a bias in the transition rates and the nucleosome
attains a drift velocity in the direction of the applied force. A
positioning sequence of DNA leads to an effective potential
barrier on the corkscrew path of the nucleosome �14�, lead-
ing to a drift that is significantly smaller than on random
DNA. Finally, in the presence of ligands the corkscrew slid-
ing is significantly hindered.

The influence of the ligand concentration on the sliding
velocity for a typical external force of 10 pN is presented in
Fig. 3. As can be seen from this plot, for typical experimental
numbers �17� already a small concentration of ligands is suf-
ficient to significantly lower the drift.

Another parameter that provides information about the
system is the diffusion constant of the nucleosome, D. In Fig.
4 we present D as a function of the applied force F for the
case of a positioning sequence. We find that D increases with
the force in the ligand-free case as well as in the presence of
ligands, 
=100. That the diffusion constant increases with F
is a typical effect and is, e.g., also found for ordinary biased
diffusion on a lattice as discussed in Appendix B.

We present the behavior of the diffusion constant versus

, for two different forces, F=0 pN and F=10 pN, in Figs.
5 and 6. Naively one would expect that at a fixed external
force the diffusion constant decreases with 
 since an in-
crease in the ligand concentration leads to a higher probabil-
ity to have a ligand bound that then suppresses diffusion. For
zero force the diffusion constant does indeed follow this ex-
pectation; cf. Figs. 5�a� and 6�a�. Interestingly, in the pres-
ence of a nonzero external force the behavior of the diffusion

(a)

0 10 20 30
F (pN)

0

500

1000
v

(b
p

/s
)

(b)

0 10 20 30
F (pN)

0

0.5

1

v
(b

p
/s

)

FIG. 2. �Color online� The velocity of the nucleosome versus
the external force exerted on the nucleosome for �a� a random se-
quence of DNA ��=0� and �b� a positioning sequence with �=9 in
two cases. The diamonds are simulation data for 
=0, while the
black solid line is plotted using theory �Eq. �28��. The triangles are
simulation data for 
=100, while the brown dashed line is plotted
using theory, again Eq. �28�.
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FIG. 3. �Color online� Velocity v of the nucleosome versus 
 in
the presence of an external force F=10 pN on �a� a random base-
pair sequence ��=0� and �b� a positioning element ��=9�. The red
diamonds are the simulation results, while the line is plotted using
the analytical approach �Eq. �28��.
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constant versus 
 differs dramatically from this expectation.
For 
�1, D increases with 
, and then decreases as 
 goes
to infinity �Figs. 5�b� and 6�b��. For random �positioning�
DNA the maximal value of the diffusion constant is 5 �2�
orders of magnitude larger than the value in the absence of
ligands.

The 
 at which D attains its maximum 
� can be calcu-
lated from Eq. �10� and is shown in Fig. 7 as a function of F
for the two cases of random and positioning DNAs. As can
be seen in this figure 
� approaches quickly the values of 1
for random DNA and 0.5 for the positioning sequence. This
can be read off the diffusion constant. Since at large forces
the positive rates �+ dominate, Eq. �10� simplifies to

D = 2l2 
��12
+ �21

+ �2�21
+

�01��21
+ �
 + 1� + �12

+ �3 . �31�

Setting the derivative of D with respect to 
 equal to zero,
one obtains


� =
�12

+ + �21
+

2�21
+ =

1 + e−�+��1
+−�2

+�f

2
, �32�

where we have used Eqs. �24�–�27�. For the case �i
�=1 /2

�the case depicted in Fig. 7� the force-dependent term drops
out and we find 
�= �1+e−�� /2. Thus one has indeed 
�=1
for random DNA and 
�=1 /2 for a strong positioning se-
quence.

Let us now discuss the behavior of the diffusion constant
versus 
 for small values of 
, i.e., for 
�1. Through an
expansion of the exact expression we obtain

D = A0�f� + A1�f�
 + O�
2� , �33�

where A0 and A1 are functions of f that are given in Appen-
dix C. It is convenient to expand A1�f� as a function of f:

A1�f� = � �D

�

�


=0
= ���0 + �1f2� + O�f4� , �34�

where �, �0, and �1 are functions defined in Appendix C.
Since ��0 and �0�0, we have �D /�
�0 for both random
and positioning sequences of DNA at f =0 as can be verified
by the plots in Figs. 5�a� and 6�a�. When �1 becomes posi-
tive, there is a threshold in force, fT=�−�0 /�1, such that for
f � fT the derivative of D with respect to 
 is positive for
small 
 values. From the explicit expressions for the coeffi-
cients given in Appendix C follows
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FIG. 4. �Color online� Diffusion constant D of the nucleosome
versus external force F for a positioning sequence ��=9�. The solid
black line �red diamonds� and the brown dashed line �light brown
triangles� are the theoretical �simulation� results for 
=0 and 

=100.

(a)

0 20 40 60 80 100
η

0

100

200

300

400

500

600

D
(b

p
2 /s

)

(b)

0 20 40 60 80 100
η

0

5×10
7

1×10
8

1.5×10
8

D
(b

p
2 /s

)

0 1 2 3 4 5
η

0

5×10
7

1×10
8

1.5×10
8

D
(b

p
2 /s

)

FIG. 5. �Color online� Nucleosome diffusion constant D versus

 for random DNA ��=0� for two different forces: �a� F=0 pN and
�b� F=10 pN. �The inset gives a zoomed view showing the non-
monotonous behavior for small 
 values.� The red diamonds are the
simulation results, while the lines are from using the analytical
approach �Eq. �10��.
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fT =
�2�1 + e−��


− 3 + e−��5 − 6e−�� + 4e−��1 + e−��
�

�01
�1/2

. �35�

Putting in numbers, �01=0.001 s−1 and �=D0 / l2�24 s−1,
we find fT�0.48, which is equivalent to F�0.016 pN for a
random sequence of DNA. In the case of the positioning
sequence the rate of � changes to �=
�D0 / �8l2��85 s−1

and we find fT�0.23, which is equivalent to F�0.55 pN.
These threshold forces can indeed be read off the plots in
Fig. 7 as the forces at which the corresponding 
� start to
attain a positive value.

How can the surprising nonmonotonous dependence of D
on 
 for a nucleosome under force be explained, especially

the strongly enhanced fluctuations around 
� with D�
��
�D�
=0�? Obviously the fluctuations in position for a
driven nucleosome in the presence of ligands are of different
origin from the ones in the absence of ligands. For suffi-
ciently large forces the nucleosome mostly steps in the direc-
tion of the force or—if the nucleosome is in state 1—a ligand
might bind. The latter event stops the drifting nucleosome for
a while and is thus a source of fluctuations of completely
different origin, effectively introducing a wide waiting time
distribution for nucleosome escape from states 1 to neighbor-
ing states 2. The higher the concentration of ligands is, i.e.,
the higher the value of 
 is, the more often these events
occur, increasing their contribution to the overall fluctuations
in the nucleosome position, which are measured by the dif-
fusion coefficient. This is the case up to a critical value of 
,

�. Further addition of ligands populates state 0 so much that
the nucleosome is mostly stuck all the time, leading to a
decrease in the value of D.

V. DISCUSSION

Within the framework of a stochastic three-state model,
we have studied the mobility of a nucleosome along DNA in
various cases. In the force-free case we recovered results
from a previous publication �15� that showed that the diffu-
sion constant is extremely sensitive to the underlying DNA
mechanics and the presence of DNA-binding ligands: nu-
cleosome positioning sequences and minor-groove-binding
ligands reduce the mobility by several orders of magnitude.
In the current study we extended this model to allow for
externally applied forces and calculated resulting drift ve-
locities and diffusion constants. The most striking feature
that we found is a nonmonotonous dependence of the diffu-
sion constant on the ligand concentration, for sufficiently
large applied forces; cf. Figs. 5�b� and 6�b�. The maximal
value of the diffusion constant occurs at some intermediate
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FIG. 6. �Color online� The diffusion constant of the nucleosome
versus 
 in the case of a positioning sequence with �=9 for two
different forces: �a� F=0 pN and �b� F=10 pN. The inset is the
zoomed-in plot showing the behavior of the diffusion constant for
small values of 
. The red diamonds are the simulation results,
while the lines are plotted using the analytical approach.
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FIG. 7. �Color online� 
� versus F for the case �i
�=1 /2 for

random DNA �dashed line� and a nucleosome positioning element
�solid line�. The lines are drawn using Eq. �32�.
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concentration 
� where the diffusion constant is typically
several orders of magnitude larger than for the ligand-free
case.

We note that the value of 
� depends according to Eq.
�32� on the load distribution factors �i

�. Also other quantities
depend on those factors. We assumed in all the plots that all
�i

� are equal to 1
2 . By changing the values of �i

� the overall
behavior of all plots does not change, although the precise
values of the diffusion coefficient and even the curvature of
the plots can be affected. The microscopic details of the in-
teraction between the DNA and the nucleosome determine
the values of the distribution factors. For a random sequence
there is no reason to have different rates for backward and
forward steps of the nucleosome along the DNA. Therefore,
one finds that for large values of the external force, 
� con-
verges to 1. For a DNA positioning sequence, the values of
�i

� depend in principle on the precise energy landscape that
results from the underlying sequence. The exact values of
these coefficients can only be determined from experimental
data or from a more detailed modeling of the transition state.
We have arbitrarily chosen them to be 1/2 for the plots. Note
that if �1

+��2
+ then 
� �F→�=0.5, the same value as in our

case �1
+=�2

+, while for �1
+��2

+, 
� increases as F is increased
and one has 
� �F→�→�.

We finally discuss three possible experimental setups for
applying forces on nucleosomes. The first setup could be
achieved by holding a DNA with a positioned nucleosome
under a small tension in a micromanipulation setup. One
could then optically follow the interaction between a tran-
scribing RNA polymerase and the nucleosome on its way if
both complexes are fluorescently labeled. This experiment
would be especially of interest since one should expect in
eukaryotes frequent encounters between nucleosomes and
transcribing RNA polymerases. Since the force-velocity
characteristics of some polymerases are known, one could
hope to be able to deduce the forces that the polymerase
exerts on the nucleosome.

In this context there are several words of caution in place.
First of all one has to ask the question as to whether the
polymerase would not unravel the wrapped DNA from the
nucleosome—destroying the complex altogether, a case con-
sidered recently by Chou �23�. For the typical forces and
velocities encountered this might, however, not be a likely
scenario. A second possible scenario has been deduced from
experiments with short DNA fragments carrying single nu-
cleosomes. In such a setup a transcribing RNA polymerase
�e.g., bacteriophage polymerase from T7 �17� and SP6 �24��
can transcribe the whole fragment, even though it is partially
occupied by a nucleosome. An interpretation of how the
polymerase negotiates with the nucleosome is, however,
tricky since there are at least two possible explanations. The
simpler explanation is that the polymerase crosses the nu-
cleosome in a loop �24,25�. However, the alternative expla-
nation �15� is that the polymerase pushes the nucleosome in
front of it, pushing it off the template; before the octamer
falls off it rebinds at the other DNA terminus. Interestingly,
in the presence of ligands the polymerase stalls �17�, point-
ing toward the second mechanism. Note that the former
mechanism would allow a polymerase to negotiate with an
array of nucleosomes, while the second does not �“traffic

jam”�. In fact, experiments �26� show that RNA polymerase
can only transcribe through an array and leave it intact if a
nuclear cell extract is present. Otherwise the nucleosomes
are stripped off the DNA.

It is thus quite possible that the above proposed experi-
ment would indeed find that the polymerase is able to push a
single nucleosome over a large distance along the DNA. But
even if this is the case, a recent more microscopic study of
the interaction between an RNA polymerase and a nucleo-
some has demonstrated that the response of the nucleosome
to the polymerase cannot be deduced from the force-velocity
characteristics of the polymerase alone �27�. Instead, the mi-
croscopic details of the polymerase propulsion mechanism
have a strong impact on its capacity to reposition nucleo-
somes.

It is therefore more desirable to apply directly a well-
defined force to the nucleosome. Here are at least two pos-
sible strategies: using nanopores �28� and using a second
DNA chain as a scanning probe �29�. If one pulls a DNA
chain through a nanopore that is larger in diameter than that
of the DNA double helix but smaller than the nucleosome,
one could apply controlled forces on the nucleosome. In the
second case, one has a setup with four optical traps and
wraps one DNA chain tightly around the second, allowing to
scan along the second chain. It has to be seen whether pre-
dictions done in the current work can be verified by some of
those possible experiments.
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APPENDIX A: THE ALGORITHM OF THE SIMULATION

The three-state model presented in this paper is simulated
using a “random selection method” �30�. It is defined in
terms of the transition rates �ij

� that give the probabilities per
unit time for going from state i to state j in the plus/minus
direction. If the system is at time t in the state i, a transition
to the neighboring state j happens at time t+�t with the
finite probability Pij

�=�t�ij
�.

For each step, a random number 0���1 is drawn. De-
pending on its value and the state of the system, a decision is
taken as follows:

state: 0 → 1 if 0 � � � P01,

state: 0 → 0 otherwise,

state: 1 → 0 if 0 � � � P10,

state: 1 → 2+ if P10 � � � P10 + P12
+ ,
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state: 1 → 2− if P10 + P12
+ � � � P10 + P12

+ + P12
− ,

state: 1 → 1 otherwise,

state: 2 → 1+ if 0 � � � P21
+ ,

state: 2 → 1− if P21
+ � � � P21

+ + P21
− ,

state: 2 → 2 otherwise.

For the next time step, from t+�t to t+2�t, the procedure
is repeated again. The time step �t is chosen small enough,
such that for each step the condition ��ij

��t�1 is satisfied,
where the sum is taken over the probabilities of all possible
transitions from state i.

This algorithm is similar to the one of Gillespie �31�,
except for the fact that we use here a constant time step,
whereas for the Gillespie algorithm the time step is a random
variable. Both algorithms converge to the same steady state
albeit after different times as we also checked for our model.
The steady-state probabilities for the three states are obtained
by setting the time derivatives of the probabilities in Eqs.
�1�–�3� to zero,

p0 =



1 + 
 + e−� , �A1�

p1 =
1

1 + 
 + e−� , �A2�

p2 =
e−�

1 + 
 + e−� , �A3�

a result that was previously obtained in Ref. �15�. We let the
simulation run for a long time �from t0 to tN, with ti= i�t and
N�1� to be sure that the system has reached equilibrium.
Then averaged over M ensembles with M �1, the mean ve-
locity and the diffusion constant are determined by

v =

�
r=1

M

�Xr�tN� − Xr�t1��

N�tM
, �A4�

and D is determined as the slope of the plot of �r=1
M Xr

2 /M
− ��r=1

M Xr /M�2 versus 2�r=1
M tr /M.

The time steps used for the simulation are less than 0.001,
depending on the simulated case. The time goes to 105 s,
and the number of ensembles is M =2000. The used param-
eters for the simulation are �i

�=1 /2, with i=1,2, and � is
determined from Eqs. �18� and �20� for the positioning and
random DNA sequences, respectively. Also using the experi-
mental data, the typical time needed for a ligand to unbound
from the DNA is some minutes and �01=0.001 s−1.

APPENDIX B: BIASED DIFFUSION

To understand better the effect of an external force on the
diffusion constant, we consider here simple diffusion on a

one-dimensional lattice; cf. Fig. 8, where the position of the
particle is denoted by n. By definition, the diffusion constant
is written as

D �
1

2
lim
t→�

�

�t
�	n2
 − 	n
2� , �B1�

where 	A
 denotes the average of quantity A that is given by
	A
=�nAnPn. Pn is the probability for the particle to be in the
position n. The master equation governing this system can be
written as

dPn

dt
= r�F�Pn+1 + g�F�Pn−1 − �r�F� + g�F��Pn, �B2�

where the force is denoted by F, a is the jump length, and
g�F� and r�F� are the force-dependent rates for going to the
right and left, respectively. Here, we assume that the force
pushes the system to the right so that g�F� increases with F,
while r�F� decreases with F. Then a simple calculation leads
to

�

�t
	n2
 = 2�g�F� − r�F��	n
 + g�F� + r�F� , �B3�

�

�t
	n
2 = 2�g�F� − r�F��	n
 , �B4�

where we have used

�

�t
	A
 = �

n

An
�

�t
Pn, �B5�

�

�t
	A
2 = 2	A


�

�t
	An
 , �B6�

and

�
n

Pn = 1. �B7�

Using Eqs. �B3� and �B4� one finds for the diffusion con-
stant

D =
g�F� + r�F�

2
. �B8�

If the rates in the absence of the external force are
denoted by �, the external force F changes the jumping
rates of the particle to g�F�=� exp�+Fa / �2kBT�� and
r�F�=� exp�−Fa / �2kBT��. Hence

g(F )r(F )

n n + 1n − 1

F

FIG. 8. �Color online� One-dimensional diffusion of a particle in
the presence of an external force F. The force leads to an imbalance
in the jumping rates g�F� and r�F� of the particle.
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D =
�

2
�e+Fa/2kBT + e−Fa/2kBT� . �B9�

We find thus that the diffusion constant increases with F,
similar to the observation in our three-state model; cf. Fig. 4.

APPENDIX C: THE EXPLICIT FORMS
OF THE AUXILIARY FUNCTIONS

In this appendix we give the explicit form of the constants
used in the Eqs. �33� and �34�. First we expand D for 

→0:

D =
B0 + B1
 + B3
2

�S + B2
�3 =
B0

S3 +
B1S − 3B0B2

S4 
 + O�
2� ,

�C1�

where

B0 = 2l2�K��12
+ �21

+ + �12
− �21

− � + 8�12
+ �21

+ �12
− �21

− � ,

B1 = 2l2
2��12
+ �21

+ + �12
− �21

− ���21
+ + �21

− �S

− 2��12
+ �21

+ − �12
− �21

− �2�1 −
�21

− + �21
+

�01
�� ,

B2 = �21
+ + �21

− ,

B3 = 2l2���21
− + �21

− �2��12
+ �21

+ + �12
− �21

− �� .

From this follow the expansion coefficients in Eq. �33�:

A0�f� =
B0

S3 , �C2�

A1�f� =
B1S − 3B0B2

S4 . �C3�

Finally we provide here the behavior of A1�f� for small
forces. Using Eqs. �24�–�27� with �i

�=0.5, the expansion of
Bi�f� for small forces can be written as

S = 2��e−� + 1��1 +
f2

4
� ,

B0 = 8�4e−��e−� + 1�2 + 4�4e−��2 + 2e−2� + �e−� + 1�2�f2,

B1

2l2 = 16�4e−��e−� + 1� + 
16�4e−2��1 +
�

�01
+ 24�� f2,

B2

2l2 = 2��1 +
f2

4
� .

Consequently,

A1�f� =
16l2�5

S4 e−��− 2�1 + e−��2

+ 
− 3 + e−��5 − 6e−�� + 4e−��1 + e−��
�

�01
�� ,

�C4�

Using these expansions and Eq. �34�, one can write

� =
16l2�5

S4 e−�, �C5�

�0 = − 2�1 + e−��2, �C6�

�1 = − 3 + e−��5 − 6e−�� + 4e−��1 + e−��
�

�01
. �C7�
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