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Trajectory data from observations of a random-walk process are often used to characterize macroscopic
transport coefficients and to make inferences about motility mechanisms. Continuum equations describing the
average moments of the position of an agent in an exclusion process are derived and validated with simulation
data. Unlike standard noninteracting random walks, the moment equations for the exclusion process explicitly
represent the interaction of agents since they depend on the averaged macroscopic agent density. Key issues
associated with the validity of the continuum equations and interpretation of experimental data are discussed.
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I. INTRODUCTION

Several kinds of interacting particle models have been
applied to biological phenomena. These include the follow-
ing: contact processes that model infection spreading �1�;
voter processes that model ecological interactions �2�; the
Eden model that represents the growth of cell colonies �3�;
and exclusion processes that model the motility of individu-
als within a population �4�. Discrete random-walk models
based on a simple exclusion process are often used to repre-
sent cell motility �5–9�. Simple exclusion processes are a
natural choice to represent cell motility as they incorporate
realistic cell-cell interactions by allowing at most one motile
agent per lattice site.

Experimental cell trajectory data are routinely analyzed to
improve our understanding of collective behavior in cell
populations �10�. Trajectory data can be analyzed by quanti-
fying various properties such as the total trajectory length,
velocity, mean-square displacement, persistence time, trajec-
tory orientation, and turning frequency �5,11–17�. In this
work we develop equations governing average agent trajec-
tories that are relevant to random-walk models based on a
simple exclusion process.

II. MODELING PATHLINES IN AN EXCLUSION
PROCESS

A. Population-level density information

An asymmetric simple exclusion process �1,18�, with a
random sequential update method �4�, is realized on a two-
dimensional square lattice with spacing �. In each time step,
of duration �, all agents have the opportunity to move with
probability P. A motile agent at �x ,y� steps to �x ,y��� with
probability �1��y� /4, or to �x�� ,y� with probability
�1��x� /4, where ��x��1 and ��y��1. If an agent attempts to
move into an occupied site then that motility event is
aborted.

The simple exclusion process is related to a continuum
partial differential equation in the appropriate limit as
�→0 and �→0 �7,19–22�. If the average occupancy of site
�i , j�, averaged over many realizations, is �Ci,j�, the spatial

and temporal evolutions of the corresponding continuous
density C�x ,y , t� is governed by

�C

�t
= D�2C − � · �vC�1 − C�� , �1�

where v= �vx ,vy� is the advective velocity with components

vx = lim
�,�→0

�P�x�

2�
	, vy = lim

�,�→0
�P�y�

2�
	 ,

and the diffusivity is given by

D = lim
�,�→0

�P�2

4�
	 .

To obtain a well-defined continuum limit, we require that if
�x and �y are nonzero �biased motility�, they decrease to zero
as �x=O��� and �y =O��� �23�. This nonlinear advection
diffusion model is related to traffic flow models and Burgers’
equation �24�. All continuum equations developed in this
work assume that adjacent lattice sites have independent oc-
cupancy status. This neglect of spatial correlations at each
instant is questionable for individual realizations but proves
much more satisfactory for averaged properties as evidenced
by simulation data reported here.

B. Individual-level pathline information

Instead of focusing on the evolution of the averaged agent
macroscopic density, we take a different point of view and
model the average evolution behavior of a tagged agent
within the population. The expected displacement of a
tagged agent at site �i , j� during the next time step is

�px = �P
�1 + �x�

4
�1 − �Ci+1,j�� − �P

�1 − �x�
4

�1 − �Ci−1,j�� ,

�2�

�py = �P
�1 + �y�

4
�1 − �Ci,j+1�� − �P

�1 − �y�
4

�1 − �Ci,j−1�� .

�3�

The factors �1− �Ci�1,j�� and �1− �Ci,j�1�� in Eqs. �2� and �3�
account for attempted moves that are aborted due to the tar-*m.simpson@ms.unimelb.edu.au
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get site being occupied. Dividing these expressions by � and
holding �2 /� constant, we let �→0 and �→0 simulta-
neously giving

dpx

dt
= − 2D

�C

�x
+ vx�1 − C� , �4�

dpy

dt
= − 2D

�C

�y
+ vy�1 − C� . �5�

The solution of these differential equations gives px�t� and
py�t�, which are the coordinates of the average trajectory of a
tagged agent in an exclusion process initially at position
�px�0� , py�0��. The curve given by �px�t� , py�t�� is analogous
to a pathline in potential flow �25�.

Two important differences between the equations govern-
ing the evolution of the average pathlines in an exclusion
process compared a standard noninteracting random walk
�10,23� are as follows: �i� an unbiased exclusion process
��x=�y =0� can give rise to a net drift due to the average
agent density gradient, whereas the net drift of agents under-
going a standard noninteracting unbiased random walk is
always zero, and �ii� the average pathlines in an exclusion
process depend on an interaction with the average agent den-
sity distribution, whereas there is no such interaction for a
standard random-walk model. These differences have several
important and practical consequences which we will explore
by comparing the solution of Eq. �4� with simulation data.

Continuum equations for the evolution of the pathline
variance �the variance of the tagged agent’s position� are
now developed. The discrete equations governing the vari-
ance are taken as

���x
2� = P�� − �px�2 �1 + �x�

4
�1 − �Ci+1,j�� + �0 − �px�2

��1 −
P

2
	 + P�− � − �px�2 �1 − �x�

4
�1 − �Ci−1,j�� ,

�6�

���y
2� = P�� − �py�2 �1 + �y�

4
�1 − �Ci,j+1�� + �0 − �py�2

��1 −
P

2
	 + P�− � − �py�2 �1 − �y�

4
�1 − �Ci,j−1�� .

�7�

These equations neglect spatial occupancy correlations and
treat the abortion of moves to occupied sites exactly as in
Eqs. �2� and �3�. They also carry an additional approxima-
tion, the neglect of temporal correlations in the motion �ef-
fectively successive steps are taken as independent�. To see
the effect of this, let X denote the x coordinate of the position
of the tagged particle at a given time in one realization, and
�X denote the x displacement increment in the next time
step. If temporal correlations are retained, the average of
2�X− px���X−�px� must be added to the right-hand side of
Eq. �6�. A way to do this using only averages of tractable
quantities is not easily apparent.

Dividing Eqs. �6� and �7� by � and letting �→0 and
�→0 in the usual way gives

d��x
2�

dt
=

d��y
2�

dt
= 2D�1 − C� . �8�

The solution of these differential equations gives �x
2�t� and

�y
2�t�, which are the predictions, based on the stated approxi-

mations, of the variances of the tagged agent’s coordinates.
We note that as well as the issue of temporal correlations,

there are other differences between the discrete and con-
tinuum equations that describe the evolution of the average
pathlines and the pathline variance. For both we assume the
macroscopic density is governed by Eq. �1�, which is ob-
tained in the limit where � ,�→0, �x=O���, and �y =O���
such that �2 /� is finite. After dividing by �, each term in the
discrete expressions for the agent displacement �Eqs. �2� and
�3�� gives rise to terms which are proportional to O��2 /��
and O��x� /�� or O��y� /�� and therefore contributes a term
dependent on the diffusivity and the advective velocity in the
continuum model �Eqs. �4� and �5��. In contrast, using the
same procedure for the discrete variance expressions �Eqs.
�6� and �7��, there is only one term proportional to O��2 /��,
while the terms involving the bias are O��x�

2 /�� or
O��y�

2 /�� or smaller. Therefore, in the continuum limit, the
variance is not explicitly dependent on the advective veloc-
ity.

To solve the continuum models presented here, we ap-
proximate Eq. �1� numerically with a centered-in-space finite
difference approximation and implicit Crank-Nicolson time
integration with time step h �26�. Within each time step used
to solve Eq. �1�, we also integrate Eqs. �4�, �5�, and �8� over
the same time interval with a Crank-Nicolson method �26�. A
pathline with initial position �px�0� , py�0�� is determined by
approximating �C /�x, �C /�y, and C at �px�0� , py�0�� using
central differences and linear interpolation. With this infor-
mation Eqs. �4�, �5�, and �8� are integrated giving
�px�h� , py�h�� and ��x

2�h� ,�y
2�h��. This procedure is repeated

over many time steps giving �px�t� , py�t�� and ��x
2�t� ,�y

2�t��.
To examine how the solutions of Eqs. �4�, �5�, and �8�

compare with averaged simulation results, we perform a se-
ries of computational experiments as follows. A particular
agent within a population undergoing an exclusion process is
tagged. The trajectory of the tagged agent is averaged over
M identically prepared realizations to give

�x�t�� =
1

M


m=1

M

xm�t�, �y�t�� =
1

M


m=1

M

ym�t� . �9�

The solution of Eq. �8�, with �x
2�0�=�y

2�0�=0, will be
compared with the evolution of the sample variance given by

sx
2�t� =

1

�M − 1� 

m=1

M

�xm�t� − �x�t���2, �10�

sy
2�t� =

1

�M − 1� 

m=1

M

�ym�t� − �y�t���2. �11�
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III. COMPARING CONTINUUM RESULTS
AND SIMULATION DATA

We compare discrete and continuum results where the ini-
tial average occupancy of all sites within every column is a
constant and �y =0, so that there is bias present at most in the
x direction. This configuration reduces the system to a one-
dimensional problem where we need only consider the x
component of the pathline data �22�. A one-dimensional form
of Eq. �1� is considered, and we will compare �i� px�t� with
�x�t�� and �ii� �x

2�t� with sx
2�t�.

Simulations are performed on a lattice with Lx=200,
Ly =20, and periodic boundary conditions at y=1 and y=Ly.
Initially all sites between 85�x�115 are occupied and a
tagged agent is placed at �114,10�. The three columns in Fig.
1 contain results for different values of the bias parameter,
�x=0, 0.1, and 0.5. Snapshots of the agents at t=0 and 200
�Fig. 1 row �a�–�b�� illustrate the influence of the motility
bias as the unbiased population ��x=0� spreads symmetri-
cally about x=100, whereas the biased populations ��x	0�
move in the positive x direction as expected. The influence of
the motility bias is also apparent in Fig. 1 row �c�, where the
continuum solution of Eq. �1� is compared with averaged
one-dimensional density profiles from the simulation data.
The density profiles from the simulation data are obtained by
averaging the occupancy across the height of the lattice Ly
for M identically prepared realizations �22�. In all cases the
continuum and discrete profiles compare very well and the
influence of the nonlinear advection term is apparent as the

density profile becomes triangular and moves in the positive
x direction as �x increases.

Results in Fig. 1 row �d� show that the evolution of the
average pathline for our tagged agent predicted by Eq. �4�
accurately matches the simulation data in all cases. Regard-
less of the bias parameter the average pathline drifts in the
positive x direction. This result for the unbiased case is very
interesting as Eq. �1� reduces to a linear diffusion equation,
which is traditionally associated with a noninteracting unbi-
ased random walk and no net drift �10�. For the unbiased
exclusion process the average pathline drifts from x=114 to
x=120.4 during the interval 0� t�200. This observation
highlights the importance of interpreting pathline data appro-
priately. The details of the pathline depend strongly on the
initial location of the tagged agent within the population. For
the initial condition in Fig. 1, the unbiased pathline starting
from �x ,y�= �86,10� drifts to the left �not shown�, whereas
the unbiased pathline starting from �114,10� drifts to the
right. Furthermore, if the tagged agent is placed symmetri-
cally within a distribution of unbiased agents, then its aver-
aged pathline would not drift at all due to symmetry. This
highlights the critical importance of interpreting pathline
data relative to the initial distribution of the population and
the initial point on the pathline.

Results in Fig. 1 row �e�, compare the evolution of the
predicted pathline variance �Eq. �8�� in the continuum model
and the corresponding sample variance �Eq. �10��. Con-
tinuum and discrete results compare very well for �x=0 and
0.1. However, the two do not match satisfactorily when the
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FIG. 1. �Color online� Averaged agent density and pathline results with P=1 and �y =0. Results are given for different amounts of
motility bias in the x direction with �x=0 �left column�, �x=0.1 �middle column�, and �x=0.5 �right column�. Snapshots of a single
realization at t=0 and 200 are given in rows �a� and �b�, respectively, showing the evolution of a population of agents and the position of a
tagged agent initially at �114,10� is shown with an enlarged green bullet. Row �c� shows the averaged density profiles �C� �solid blue�
extracted from the simulation data compared with the continuum solution of Eq. �1� C �dotted red�. Rows �d�–�e� compare the evolution of
the mean position and variance for the tagged agent. Continuum results �dotted red� are compared with simulation data �solid blue�. All
simulation results are averaged over 100 Monte Carlo realizations with �=�=1. All continuum models are solved numerically with a spatial
discretization �x=0.1 and temporal discretization h=0.25.
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horizontal bias is increased to �x=0.5. The two match rea-
sonably well for the initial part of the simulation where
t�50, but at later times the continuum result underestimates
the simulation data. We found that increasing the number of
Monte Carlo realizations did not improve this comparison.
We note again that the bias parameter �involved in the ad-
vective velocity� does not explicitly appear in the evolution
of �x

2�t� �Eq. �8��. However, there is an implicit influence of
the bias parameter through the population density C in Eq.
�8�. This is an intriguing result given that the continuum-
discrete comparison of the density profiles �Fig. 1 row �c��
and the first moment �Fig. 1 row �d�� matches very well
regardless of the value of the bias parameter. Further results
�not shown� indicate that Eq. �8� is valid for the problem
reported in Fig. 1 for ��x��0.1 and t�200.

Additional continuum and discrete pathline data with the
same initial distribution of agents but different values of
�px�0� , py�0�� to Fig. 1 were also generated. Similarly, further
pathline data for different initial distributions of agents also
gave comparable results. Comparing the continuum and dis-
crete results for the averaged density profiles and mean po-
sition gave qualitatively similar results to those in Figs. 1�c�
and 1�d�. The same trends with regard to the divergence be-
tween the continuum and the sample variance were also ob-
served for these additional simulations.

We now discuss some practical issues associated with the
interpretation of averaged simulation data. Simulation results
in Fig. 1 were averaged over 100 Monte Carlo realizations
for 0� t�200. These parameters were chosen to reflect the
key properties of the simulation data.

Several additional issues are highlighted in Fig. 2. The
trajectory data in Fig. 2 shows that the fluctuations in the
averaged pathline �x�t��, and the sample variance sx

2�t� be-
come smaller as the number of Monte Carlo simulations, M,
increases. However, we see that the fluctuations diminish at
different rates for the two types of data. In all cases consid-
ered in this work, the fluctuations in the averaged pathline
data diminished faster than those for the sample variance as
the number of Monte Carlo simulations increased. Since it is
impractical to collect a very large number of experimental
trajectories from identically prepared systems, it is reassuring
that the fluctuations in the pathline data diminish faster than
those for the variance data, as we are more likely to use
pathline data to match with experimental results than vari-
ance data.

In all cases considered here, the quality of the match be-
tween the averaged simulation data and the continuum mod-

els decreased with time. This is why we chose to present
results in Fig. 1 for 100 Monte Carlo realizations and 0� t
�200. For larger intervals of time, we would need to in-
crease the number of realizations in order to obtain a good
match. This indicates that experimental pathline data may be
best collected over several short periods of time rather than a
single trajectory over a longer period of time.

IV. DISCUSSION AND CONCLUSION

The analysis of pathline data is a standard way to estimate
macroscopic transport coefficients that describe the motility
of populations. In cell biology, for example, pathline data is
collected and analyzed to make inferences about whether cell
motility is directed or undirected. This can be achieved by
observing the behavior of a population of cells placed in a
gradient of a signaling chemical �13,27�.

In this work we present continuum equations describing
the average pathlines in a population of agents undergoing a
simple exclusion process. Unlike standard noninteracting
random-walk models, the equations governing the pathlines
in an exclusion process explicitly reflect the influence of
agent-agent interactions since the evolution of the moments
depends on an interaction with the average macroscopic be-
havior of the system. We note that the pathline equations
presented here are consistent with previous simulation data
for the simple case of a uniformly occupied lattice with no
temporal or spatial gradients present in the system �6�.

The theoretical pathline models developed here capture
some key features that have been observed in the experimen-
tal cell biology literature. For example, both Ward et al. �13�
and Cai et al. �28� studied pathline data in vitro and observed
that pathlines were biased away from the bulk population.
Similarly, Druckenbrod and Epstein �29� reported pathline
data collected within an intact tissue culture. These data also
described pathlines that were directed down the macroscopic
cell density gradient. These observations are consistent with
the pathline models developed here and point to the impor-
tance of capturing the correct cell-cell interactions that are
ignored using a standard random-walk model �10,23�.

In addition to presenting and validating continuum mod-
els for the position and variance of pathline data in an exclu-
sion process, a key result of this work shows that the simu-
lation data and the continuum model for the pathline
variance diverge as the bias parameter, �x, increases. There
are a number of potential explanations for this. First, it is
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FIG. 2. �Color online� Unbiased pathline simulation data corresponding to the results in the left column of Fig. 1 show the convergence
behavior with respect to M, the number of Monte Carlo realizations. The evolution of �a� the agent position and �b� the variance are given
for averages over M =10 �blue�, M =100 �green�, and M =500 �red� simulations. All results correspond to �=�= P=1, �y =�x=0, and
�px�0� , py�0��= �114,10�.
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possible that the deviation reflects the fact that the continuum
equations are relevant in the limit where � ,�→0 simulta-
neously, with the requirement that the bias parameters must
decrease to zero, with �x=O��� and �y =O��� �23�. There-
fore, we may expect the continuum-discrete comparison to
breakdown when �x is no longer sufficiently small. Second, it
is possible that the assumption of ignoring instantaneous cor-
relations between occupancy states of adjacent sites becomes
less appropriate as the bias parameters increase and that the
continuum variance model is sensitive to the breakdown of
this assumption. Third, the pathline variance predictions in-

volve the neglect of temporal correlations which may be-
come more important when the bias parameter increases. Of
course, the divergence between the continuum and discrete
variance could be caused by a combination of these issues.
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