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Complicated patterns showing various spatial scales have been obtained in the past by coupling Turing
systems in such a way that the scales of the independent systems resonate. This produces superimposed
patterns with different length scales. Here we propose a model consisting of two identical reaction-diffusion
systems coupled together in such a way that one of them produces a simple Turing pattern of spots or stripes,
and the other traveling wave fronts that eventually become stationary. The basic idea is to assume that one of
the systems becomes fixed after some time and serves as a source of morphogens for the other system. This
mechanism produces patterns very similar to the pigmentation patterns observed in different species of stin-
grays and other fishes. The biological mechanisms that support the realization of this model are discussed.
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I. INTRODUCTION

In 1952 Alan Turing proposed that a system of chemical
substances, or morphogens, diffusing and reacting with each
other, could produce spatially stable patterns �1�. He intro-
duced a system of reaction-diffusion equations and deter-
mined general conditions for the formation of spatial patterns
driven by diffusion. For many years the existence of the
Turing mechanism for morphogenesis in real biological sys-
tems has been difficult to corroborate, although it seems that
there is now strong experimental evidence that pattern of
follicles on the skin of mice is produced by a Turing mecha-
nism �2�. Kondo and Asai �3� suggested that the pigment
patterns on the skin of the angelfish Pomacanthus imperator
could be modeled by a Turing system, a notion further de-
veloped by us �4,5�. A further example of Turing systems in
pattern formation can be found in the generation of left-right
asymmetry in the mouse embryo �6�.

Another major issue has been that Turing models give
very simple patterns of spots or stripes, and more elaborate
models are needed to mimic the patterns observed in many
biological systems. Coupled systems of reaction-diffusion
equations have successfully been applied in the modeling of
a number of complex biological patterning events. From the
arrangement of omatidia in the Drosophila retina �7� to the
patterns on sea shells �8� and the arrangement of tentacles
around the primary organizer in hydra �9�. It is this type of
model that we discuss here.

A. Linearly coupled Turing models

A few years ago we proposed �10� that coupling two
simple Turing systems could produce more complex patterns

and simulate reasonably well some complicated structures,
including the skin patterns of some fish species. There we
used linear, quadratic, and cubic couplings and found that
linear and cubic terms could modify the basic stripe or spot
patterns substantially, contrary to quadratic coupling which
had very little effect on the basic patterns.

More recently, a series of papers investigate a way of
linearly coupling two sets of Turing equations, using the
Brusselator model �11�, the Oregonator model �12�, or the
Lengyel-Epstein model �13�. All these models preserve the
stable fixed point in the absence of diffusion, and when the
parameters ensure unstable resonating modes at two different
wavelengths, beautiful patterns appear. Examples are the so-
called “eyes,” spots contained in stripes or vice versa, or
patterns with spots of two different sizes �wavelengths�.
These models can be interpreted as systems consisting of two
chemically active layers, separated by an intermediate layer
that is not chemically active, but allows diffusion of chemi-
cals through it. Experimental research has been carried out in
this particular field of multilayer systems to verify the model
�see �14��.

B. Nonlinearly coupled Turing models

There are also situations where the intermediate layer
could be chemically active, resulting in interlayer interac-
tions that are more complicated than simple diffusion of
chemicals. For example, they may involve reactions and
catalyzers. Turing systems coupled nonlinearly have been
studied by us recently �15�. In this work, a cubic coupling
was introduced between the constituents such that the mor-
phogen concentration and the original fixed points of the
system are conserved. The resulting fourth order characteris-
tic polynomial may facilitate two well-separated Turing*Corresponding author.
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spaces and hence give rise to two very different wavelengths
competing in a complex manner.

In contrast to the case of linear coupling, our results
showed that the strength of coupling has a great impact on
the patterns produced. Strong coupling between the systems
leads to very simple patterns—a result of only one wave-
length surviving—whereas weak coupling leads to complex
patterns with symmetries that are not simply a resonant su-
perposition of patterns with different wavelengths.

C. Aims and outline

The skin of vertebrates is made up of layers, which may
interact by chemicals diffusing between them; as such, they
are ideal systems to be modeled by coupling two sets of
reaction-diffusion equations. In this paper we propose a
simple model that produces patterns very similar to those
observed in the skin of freshwater stingrays of the Amazon
basin. We use the general reaction-diffusion system of Ref.
�10� to simulate the chemical reactions in two skin layers.
The kinetics are assumed to be the same in both layers and
therefore events in both layers are modeled using the same
set of reaction-diffusion equations, but with different param-
eters in each layer. To allow the diffusion of chemicals be-
tween layers one couples the two systems linearly. An im-
portant assumption is that the dynamics in one of the layers
may become stationary after some time and serve as a source
of morphogens for the second layer, modifying the pattern
produced by the latter.

The paper is organized as follows. In Sec. II we present
the biological basis of the possible mechanisms that could
produce coloration of the skin and the patterns of the fish we
are considering. In Sec. III we discuss the basic properties of
our model system and through linear analysis we explore the
various bifurcations that give rise to different patterns. In
Sec. IV we exhibit the resulting patterns from extensive nu-
merical simulations, and in Sec. V we discuss these results
and draw some conclusions.

II. BIOLOGICAL BACKGROUND

Vertebrate skin consists of two layers: an overlying der-
mis separated from an epidermis by a basal lamina, see Fig.
1 and Ref. �16�. The dermis is made up of several sheets of
cells, the outer sheets being formed via mitosis taking place
in the inner sheets. The mesenchymal cells of the underlying
dermis are able to migrate in the extracellular matrix to form
structures such as the hair follicles and feather buds. The
dividing basal lamina tightly couples the two skin layers
whilst allowing signals to travel between them. The forma-
tion of skin appendages and patterns requires the interaction
of epithelium and mesenchyme �17�. It has been demon-
strated that the mesenchyme determines the number, size,
location, and structural identity of the appendage, while the
epithelium determines the orientation �18�.

A mechanochemical framework has been suggested for
modeling the formation of skin appendages and patterns
�19–22�. In general these models use a system of partial dif-
ferential equations to describe the density of mesenchymal

cells and extracellular matrix, with matrix deformations
modeled using a small-strain assumption. Events in the over-
lying epidermis are modeled using a system of reaction-
diffusion equations to describe the distribution of various
signaling factors present. The two layers are coupled via in-
teraction terms present in the systems. Such coupled systems
are capable of producing more complex patterns than the
simple systems generally used to describe patterning, but
they can be difficult to study, analytically or numerically.
Coupled systems of reaction-diffusion equations, however,
may also lead to the generation of complex patterns and are
more amenable to analytical and computational examination
�10,15�. Our assumption in this case will be, similar to any
reaction-diffusion model, that the chemical pre-pattern in-
duces a sorting of the different cell types and therefore leads
to the observed patterns.

Stingray patterning

One specific application we consider will be to pigmenta-
tion patterning in stingrays. Freshwater stingrays of the fam-
ily Potamotrygonidae, the only living family of Chondrich-
thyes �sharks, rays, and chimaeras� restricted to freshwater,
occur in many South American river systems that flow into
the Atlantic Ocean or Caribbean Sea �23�. Most potamotry-
gonid species have highly intricate dorsal color patterns,
which may include variously shaped spots, ocelli �spots sur-
rounded by rings�, rosettes, reticular, and vermiform mark-
ings, or a combination of these, usually distributed over a
grey, brown, reddish-brown, or blackish background color.

Of particular interest to us will be the complex patterns
found on the skin of the stingray Potamotrygon motoro,
shown in Fig. 2, for three reasons: �i� In potamotrygonid
stingrays, as in chondrichthyans in general, major coloration
characteristics are mostly established by birth or shortly
thereafter. Furthermore, coloration does not vary drastically
in response to local, external stimuli, as is possible in other
groups of fishes. �ii� The pattern does not look like a simple
Turing pattern. �iii� The pattern differs between species and
may also depend on the gender and age of the fish. We aim to
show that this polymorphism could be explained by the same
model.

FIG. 1. Illustration of the different skin layers. The outer layer
�epidermis� consists of columnar epithelial cells arranged in sheets,
whilst the inner layer �dermis� consists of mesenchymal cells that
are more loosely arranged and able to migrate on the extracellular
matrix.
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III. ANALYSIS OF THE DYNAMICAL MODEL

In Ref. �10� we proposed a reaction-diffusion model with
two chemicals, u and v, obtained by assuming a fixed point
at �u ,v�= �0,0� and Taylor expanding the nonlinear kinetics
of the model around this point, up to cubic terms. We shall
call it the BVAM model from now on. It can be written in
nondimensional form as

�u

�t
= D�2u + ��u + av − Cuv − uv2� , �1�

�v
�t

= �2v + ��bv + hu + Cuv + uv2� , �2�

where D=Du /Dv is the ratio of diffusion constants, � gives
the spatiotemporal scale, and C measures the relative
strength of the quadratic and cubic terms.

The model has three fixed points located at �u0 ,v0�
= �0,0� and �u0 ,v0��=v��−g ,1�, where

v� =
− C � �C2 − 4�h − b/g�

2
, �3�

and

g = �a + b�/�1 + h� . �4�

In general, the Jacobian matrix takes the form

J = �1 − � a − �

h + � b + �
� , �5�

where

� = v0�C + v0� , �6�

and

� = Cu0 + 2u0v0 = − gv0�C + 2v0� . �7�

The diffusion matrix is

D = �D/� 0

0 1/� � . �8�

In the linearized system a dispersion relation is found by
solving the characteristic equation �A−�I�=0, where I is the
unit matrix and A=J−D�2. One obtains

�2��2� − ���2�Tr�A� + Det�A� = 0. �9�

This model has only one stationary state �at u0=v0=0�
when h=−1. A complete analysis of this situation, including
a nonlinear analysis of the amplitude equations, has been
published elsewhere �24�.

The existence of the other fixed points makes this model
very rich in behavior. For instance, if one fixes the value of h
in the absence of diffusion �k=0�, the complex eigenvalues
�w=�+ i	� can be examined in the plane �g , f�, where f
=b /g−h. If Det�J�=0 one of the roots is �=0 and the other
is real �observe that h�−1⇒g=0�. The condition Tr�J�=0
marks the region where � changes sign. The discriminant
condition Tr�J2�−4 Det�J�=0 separates the regions of real
and complex roots. These three conditions divide the �g , f�
space into the five regions shown in Fig. 3.

In region 1 there are saddle points, therefore trajectories
that start in the general vicinity of the fixed points first ap-
proach them, and then diverge. As a result of the cubic reac-
tion terms, there is a stable limit cycle that encompasses the
two fixed points. The existence of this limit cycle was cor-
roborated by numerical simulation. In region 5 the fixed
points are unstable; trajectories that start in their vicinity
diverge in an oscillatory manner. There is also a limit cycle
in this region. In region 2 both roots have negative real part,
but with an oscillatory contribution. In region 3 there is the
possibility of an instability driven by diffusion, producing
stationary spatial Turing patterns. A detailed analysis of the
model under these conditions is published elsewhere �25�. A

FIG. 2. �Color online� Potamotrygon motoro: �a� neonate, �b�
adult female, �c� juvenile male. Potamotrygon sp.: �d� adult male.
Scale bars: �a� 1.5 cm; �b� 1.0 cm; �c� 0.5 cm; �d� 0.5 cm.

FIG. 3. Phase diagram of Eqs. �1� and �2�, when D=0, C=0,
and h=−2.5. In region 1, �1
0, �2�0 and 	=0 �saddle points�. In
region 2, �1,2
0 and 	�0 �oscillating stable points�. In region 3,
�1,2
0, and 	=0 �stable points�. In region 4, ��1,2�0� and 	=0
�both points are unstable�. In region 5, �1,2�0 and 	�0 �oscillat-
ing unstable points�. The lines were calculated by the conditions
extracted from the dispersion relation Eq. �9�. See text for
definitions.
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large variety of stationary and oscillating patterns can be
obtained: in Fig. 4 we show some interesting examples.

Of particular interest are the disordered dots shown in Fig.
4�a�, which are really solitary wave fronts that close in a
circle of fixed radius. These structures have been studied in
detail by Gomila et al. �26�, examining the evolution of do-
main walls in nonlinear optical systems with a complex
Ginzburg-Landau model. In general one can show that if a
system has two different stable steady states, which are
equivalent under the existing symmetries, then there are
wave fronts that connect the two steady states. In a one-
dimensional domain they move with a velocity that depends
on the shape of the profile. In two dimensions the velocity
also depends on the local curvature.

These phenomena have been verified to occur in our
reaction-diffusion model �25� at the border between region 2
and region 5 �see Fig. 3� in the absence of quadratic terms
C=0, which produces two symmetrical fixed points around
zero. If C�0 the fixed points become asymmetric, and the
border between regions 2 and 5 is different for each point
�u0 ,v0��. Therefore one phase will dominate over the other
and circular spot patterns of one steady state solution appear
embedded in the other steady state. It is these predicted sta-
tionary dots that can be seen in Fig. 4�a�.

It has been shown that if certain symmetry requirements
are fulfilled by the Ginzburg-Landau model the radius of the
circular spot patterns can be calculated analytically �27�. The
amplitude equations for the BVAM model when h=−1 can
be written as a complex Ginzbug-Landau system �28�, and it
is not surprising that these robust, isolated, circular excita-

tions appear in the BVAM model. When h�−1 and C�0
the system loses the symmetries that allow analytical treat-
ment of the bifurcation of Ref. �27�, although it is still pos-
sible to examine this peculiar bifurcation by generalizing the
method, and this work is currently in progress.

The transition from moving front waves through labyrin-
thine stationary patterns to disordered circular spot patterns
of fixed radius when varying the value of the bifurcation
parameter C was studied numerically, and it is shown in Fig.
5. The critical value of C lies between 0.71 and 0.72.

All the patterns shown are stationary, except that shown in
Fig. 5�a� in which the fronts move, continuously changing
shape. This phenomenon arises since the velocity is propor-
tional to the local curvature of the profiles, and as a conse-
quence the points at which the curvature changes sign do not
move, giving an impression that the fronts rotate around
those points. Observe that the transition between stripes and
spots is not sharp, and that one could have a combination of
stripes and spots.

Examples of such patterns in nature

Patterns like these are found in many real systems, for
instance the skin pattern of freshwater catfish shown in Fig. 6
varies from a purely striped pattern to a disordered pattern of
dots and stripes, very similar to the ones obtained in our
calculations.

IV. NUMERICAL SIMULATIONS

We shall investigate numerically the case of a two-layered
system that is coupled linearly. Evidently, the aim of this sort
of research is to find new ways of simulating patterns in
nature, and to gain insight into the possible mechanisms of
pattern formation and selection acting on real systems. As
already mentioned, complicated resonant patterns have been
obtained by linearly coupling two simple Turing models,

FIG. 4. Examples of patterns obtained using the BVAM model
given by Eqs. �1� and �2�, relaxing the condition h=−1 and using
the parameter values detailed in the Appendix, Sec. 1. �a� and �b�
are stationary, �c� shows traveling wave fronts �region 2 of Fig. 3�,
and �d� is an oscillating spiral pattern �region 5 of Fig. 3�. In each
case the domain is square with side length 254. Patterns �b�, �c�, and
�d� were reproduced with kind permission from Springer Science
�Business Media �Ref. �5�, Figs. 7–9�.

FIG. 5. Patterns obtained using the BVAM model given by Eqs.
�1� and �2� and parameter values as detailed in the Appendix, Sec.
1. The values of the quadratic interaction C are, respectively, 0.0,
0.30, 0.60, 0.70, 0.71, and 0.72 for the images �a�–�f�. In each case
the domain is square with side length 80, the same random initial
conditions were used and periodic boundary conditions were im-
posed. The gray scale ranges from −0.4 to 0.4.
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each of which meet the respective Turing conditions.
Here we shall extend the numerical study of two coupled

systems to the case in which one of the layers does not fulfill
the Turing conditions, but produces a disordered array of
circles with fixed radius. Our aim is to obtain an irregular
pattern of big spots surrounded by a labyrinthine pattern as a
background, as in Fig. 2. Specifically, in each layer we shall
model events using the BVAM system but with the param-
eters in layer 1 lying in a different region of parameter space
than those in layer 2.

A. Two separate systems

System 1 consists of the BVAM model of Eqs. �1� and �2�
tuned with appropriate parameters to produce Turing patterns
�see the Appendix for more detail�. Linear analysis around
the only fixed point �0, 0� reveals that with these parameters
the complex eigenvalues �1,2=�1,2+ i	 have negative � and
	=0 in the absence of diffusion. However, in the presence of
diffusion, the fixed point becomes linearly unstable ���0
and 	=0� to certain admissible modes around �c	0.65. This
is known as a diffusion-driven or Turing instability. The re-
gion of parameter space wherein the conditions of a Turing
instability �10� are met is quite small for the BVAM model
�see, for instance, Ref. �24��. In two dimensions it is seen
that a cubic nonlinearity favors stripes, and the quadratic one
produces robust spots �29�. This model produces simple Tur-
ing patterns of stripes �C=0� or spots �C�0�.

Examples of numerical calculations are given in Fig. 7 for
different boundary conditions. The gray scale represents the

concentration of morphogen u. In all the numerical simula-
tions presented here we have used a simple Euler method to
integrate the dynamical equations, usually starting with a
small random perturbation around zero as the initial condi-
tion. The time step has to be small enough to converge reli-
ably �30�, consequently we have used dt	10−2.

System 2 also consists of the BVAM model of Eqs. �1�
and �2� but it is set up in such a way that the fixed point �0,0�
is unstable and the other two fixed points are stable in zero
dimensions ��=0�, but the symmetry of the two stable points
is lost by setting C=0.72. The parameters used are detailed
in the Appendix, Sec. 1, and situate system 2 at the point
�0.65,0.165� in the �f ,g� plane, near the border between re-
gion 2 and region 5 in Fig. 3. The dispersion relation for the
two separate systems around the various fixed points is
shown in Fig. 8.

B. Two-layer coupled system

When these two systems are coupled together, the system
is now one consisting of four PDEs:

�ui

�t
=

Di

�i
�2ui + qu�ui − uj� + Kui

�ui,vi� , �10�

�vi

�t
=

1

�i
�2vi + qv�vi − v j� + Kvi

�ui,vi� , �11�

where the reactive species �ui and vi� and their diffusion
coefficients �Di /�i and 1 /�i� are distinguished by subscripts

FIG. 6. �Color online� Three species of freshwater catfish in the
Amazon basin, together with an example numerical simulation. �a�
Pseudoplatystoma fasciatum �Surubím pintado�, �b� Pseudoplatys-
toma tigrinum �Surubim atigrado�, �c� Pseudoplatystoma coruscans
�Surubim manchado�. �d� A pattern obtained using the BVAM
model given by Eqs. �1� and �2� and parameter values as detailed in
the Appendix, Sec. 1. The domain is square with side length 80.
Scale bars: �a� 15 cm; �b� 5 cm; �c� 10 cm.

FIG. 7. Patterns in u obtained from the BVAM model given by
Eqs. �1� and �2� with varying parameters and boundary conditions
�bc�. The top row shows zero flux bc, in the second row there are
periodic bc, and in the third row free bc. Columns are from left to
right: first and second with a set of parameters such that kc=0.45,
third and fourth columns with kc=0.89. In the first and third col-
umns C=0.0 �favors stripes for periodic and zero flux bc�, and in
the second and fourth column C=1.57 �favors spots for periodic
and zero flux bc�. In all 12 patterns we used the same random initial
conditions and a square domain with side length 80. The gray scale
ranges from −0.15 to 0.15 and other parameters are detailed in the
Appendix, Sec. 1.
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i , j=1,2 that specify the layer they are in. Both layers obey
the kinetics Kui

and Kvi
given in Eqs. �1� and �2�, but with

different parameter values. The parameters qu and qv are the
coupling strengths and represent diffusion between the two
layers.

Linear analysis can be carried out in the usual way. There
is only one fixed point at the origin for the coupled system,
namely ui=vi=0, i , j=1,2. If the coupling parameters qu and
qv are small, the dispersion relation for the coupled system
shows that a Turing instability is still possible. However,
when the coupling increases the modes near �=0 that are
linearly stable when the systems are uncoupled, can become
unstable and oscillate, and Turing patterns are not possible.

In Fig. 9 we show a series of snapshots of numerical
calculations �taken at regular time intervals�, of a coupled
system with qu=qv=0.0078, which is the critical value for
the Turing instability. We only show the dominant pattern of
u2 because v2 is in antiphase, and because system 1 produces
a fairly normal Turing pattern, as can be seen in Fig. 9�i�,
where the converged pattern of u1 is shown. The parameter
values used are detailed in the Appendix, Sec. 2.

Observe that the wave fronts initially moving through the
domain �periodic boundary conditions were used� become
immobilized when the domains of high concentration �dark
regions� are approximately circular. Also notice that some of
the spots split during the process. The final pattern is a ran-
dom disposition of large dots, with an average distance be-
tween them much larger than the mean radius of the spots.
The Turing pattern of u1 is realized everywhere, but in the
regions where there are spots the contrast is smaller, meaning
that the system is closer to the bifurcation and patterns there
form more slowly and with smaller amplitude. It is also no-
ticeable that the size of the domains of high concentration of
u2 �around the value of v+ in Eq. �3�� is fairly constant
throughout the domain.

The large spots are very peculiar, they are more similar to
the so-called “eyes,” since the shape of the wave front has a
sharp asymmetric crest on the edges �25�. In Fig. 10 we show
the profile of one spot taken from a cross section of the
solution for u2 shown in Fig. 9.

Above the critical coupling strength no Turing pattern is
formed, yet the spots of system 2 acquire a different profile,
with oscillations at their borders caused by the coupling. An
example of a strongly coupled system is given in Fig. 11.
Observe that the pattern of u1 is dictated by the shape of the
pattern from system 2. Only at the borders between the re-
gions of high and low concentration �when u2 and v2 are near
zero� does an instability appear giving rise to spatial oscilla-
tions that interfere and decay with distance.

FIG. 8. The dispersion relation of system 1 for �0,0� is shown
using a continuous line; only the real part of the eigenvalue is
shown. Around �u0 ,v0�� system 1 has complex conjugate roots, the
real part around both fixed points is indicated using a dotted line.
The same situation occurs for system 2 and the dispersion relation
around the two fixed points is shown using dashed lines.

FIG. 9. �Color online� Pattern of the concentration of u2 calcu-
lated from the two-layer coupled system given by Eqs. �10� and �11�
with parameter values as given in the Appendix, sec. 2. �a� The
initial random conditions. The series from �b� to �h� shows the time
evolution of u2—snap shots are taken every 45 000 time steps—and
�i� is the pattern of u1 taken at the same time as �h�. The domain is
square with side length 120 and the values of u2 range from −0.4 to
0.4 �see Fig. 10�.

FIG. 10. Profile of u2 along the line y=50 in Fig. 9�h�.
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C. Patterns observed in nature

Patterns of the kind exhibited by a two-layer coupled sys-
tem can be compared with the coloration of the female stin-
grays shown in Fig. 12. However, the coloration of the adult
male fish cannot be simulated with the two layers being ac-
tive. The changes seen in the coloration of the male fish as it
matures suggest that at some stage in development the pig-
mentation pattern in one layer of the skin becomes stationary.
A way of modifying the patterns is to assume that the initial
pattern forms in system 2 very rapidly, and then that the
dynamics become very slow on the time scale of patterning
in system 1. This could simulate the biological scenario that
the cells of one of the skin layers become inactive after the
animal has matured sufficiently. If this is so, the other layer
could accommodate to the new situation—the inactive layer
will be sensed only as a background source of morphogen on
which the Turing pattern evolves.

D. System with a source

The hypothesis put forward for male stingray patterning
can be tested by simulating the dynamics of system 1 whilst
adding a constant term proportional to the final stationary
pattern, u2�x ,y�, from system 2. This will provide a compli-
cated parameter landscape in which the pattern will evolve.

Specifically, the dynamics of system 1 after system 2 has
become stationary can be followed by

�u1

�t
=

D1

�1
�2u1 + Ku1

�u1,v1� + qu2, �12�

�v1

�t
=

1

�1
�2v1 + Kv1

�u1,v1� , �13�

where the notation is the same as in Eqs. �10� and �11�.
Linear stability analysis is now difficult: the elements of

the Jacobian matrix have a space dependence because the
steady states are spatially dependent due to the u2�x ,y� term.
However, as the profile u2 is nearly constant everywhere and
only varies rapidly at the edge of the circles �see profile in
Fig. 10�, one can apply an approximate method described
elsewhere �31� when a parameter changes abruptly to predict
the regions where a Turing pattern can emerge. In Fig. 13 we
show the pattern used as a source, and the results of such a
study.

Extensive numerical simulations were carried out guided
by this analysis. We discovered that the appearance of Turing
patterns is not very sensitive to the strength of the coupling,
q, contrary to the case in Sec. IV B when both systems are
active.

The patterns vary in appearance when one changes the
strength of the quadratic terms �C1� in a way that resembles
the transition from young to adult male. In Fig. 14 we show
two patterns that arise from a system with a source using the
same initial conditions for both. Figure 14�a� for u1 and Fig.
14�b� for v1 correspond to C1=0.0. This resembles the pat-
tern of the male stingray. Observe that although there are no
quadratic nonlinearities, one obtains a dotted pattern instead
of the expected Turing stripes. This is due to the interference
of stripes in the complicated domain where the Turing insta-
bility exists. Figure 14�c� is obtained with C1=1.0 and this
resembles the skin of the young fish, with a mixture of spots
and stripes around the large spots. Observe that the pattern
for v1 in Fig. 14�d� is in antiphase with u1, and also with v1
in �b�. One could conclude that the different patterns the
male fish exhibit are due to a degradation of some chemical
reaction in the adult fish.

Other variations in the coloration of the stingrays can be
simulated by coupling the system to a u2 that is not fully
converged. This could mean that the reaction in one of the
skin layers stops at an earlier stage.

FIG. 11. �Color online� Pattern of u1 obtained with the two-layer
coupled system given by Eqs. �10� and �11� using qu=qv=0.2 and
other parameter values as given in the Appendix, Sec. 2. The do-
main is square with side length 120.

FIG. 12. �Color online� �a� Patterns seen in juvenile Potamotry-
gon motoro. �b� The stingray Potamotrygon leopoldi presents a col-
oration that looks like the color inversion of Potamotrygon motoro.
Scale bars: �a� 5 cm; �b� 10 cm.

FIG. 13. �a� Pattern in u2 used as a source and analyzed to
discern the regions is which Turing instabilities can arise. �b� Black
regions are places with linearly unstable modes. The domain is
square with side length 120.
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In Fig. 15 we show an example of a simulation carried out
with a source pattern �u2� that has not attained the final stable
values of the spot pattern, and the jump between the high and
the low concentration regions of morphogen is not suffi-
ciently large. Notice that the Turing pattern of system 1 now
appears almost everywhere in the domain. In the same figure
we show the time history of a single point �at the center of
the domain� to reveal the way in which the dynamical system
converges numerically. Notice that after a relatively small
number of time steps the oscillatory convergence has at-
tained values such that �u�t+
t�−u�t� � 
10−8.

Similar patterns could be obtained by diminishing the
value of the coupling parameter q, since then one has effec-
tively lowered the amplitude of the perturbation for system
1. In Fig. 16 we show the changes of the pattern of u1 when
one varies the coupling parameter from q=0.0 to q=0.25.

V. CONCLUSIONS

In this paper, we have investigated pattern formation in a
two-layer system in which patterning in one layer occurs on
a faster time scale and serves as the driver for patterning in
the layer of interest. The notion that patterns evolve from one
state to another instead of emerging de novo was in fact
recognized by Turing in his seminal 1952 paper �1�. Since
then, a number of such studies have been proposed for pat-
terning in the context of skin organ formation which build on
this. For example, Nagorka and Mooney �32� proposed a
reaction-diffusion system for hair patterning in which high
concentrations of morphogen served to set up morphogen
sources for subsequent patterning in the same system. This
model was verified experimentally recently by Sick et al. �2�.
Cruywagen et al. �33,34� proposed a coupled mecha-
nochemical model for propagating patterns, while Painter et
al. �5� coupled a chemotactic model with a Turing model to
investigate complex patterning on growing domains. More
recently, Page et al. �31� showed how coupled reaction-
diffusion systems could lead to patterning outside the Turing
regime.

A detailed numerical investigation of two-layer systems
with different couplings has been carried out. These systems
can generate patterns not exhibited by the one-layer systems.
The novelty here is that the complexity of the underlying
“forcing” system leads to quite new patterning phenomena
on the overlying system. The models used to represent each
layer need not be different, in fact most reaction-diffusion
systems exhibit a rich variety of bifurcations that can be
used. In particular, the BVAM model examined here presents
Turing, Hopf, and Turing-Hopf bifurcations when h�−1.
We have also shown that stationary patterns can be obtained
by other means. In particular, when the system becomes
bistable it is possible to obtain circular wave fronts in a sta-
tionary pattern that is extremely robust.

FIG. 14. �Color online� Patterns obtained from the system with
a source given by Eqs. �12� and �13�, calculated with u2 as in Fig.
13 and parameters as given in the Appendix, Sec. 3. �a� u1 using
C1=0.0, �b� v1 using C1=0.0, �c� u1 using C1=1.0, �d� v1 using
C1=1.0. The domain is square with side length 120 and the color
scale ranges from −0.4 to 0.4. Notice that the vi are in antiphase
with the ui.

FIG. 15. �Color online� �a� Pattern obtained for the coupled
system with a source when q=0.05 and the pattern for u2 is not
fully converged. The domain is square with side length 120. �b�
Time history of the concentration u1 at a single point at the center of
the domain, showing a rapid oscillatory convergence of the pattern.

FIG. 16. �Color online� Patterns obtained from the two-layer
coupled system of Eqs. �10� and �11� varying the coupling param-
eter q from 0.00 to 0.25. The domain is square with side length 120
and the same random initial conditions used to excite the Turing
pattern when q=0.0 were used in every calculation. The nonlinear
parameter is C1=0.5 and the other parameters are detailed in the
Appendix, Sec. 2.
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We have reproduced the patterns seen in freshwater stin-
grays by tuning the parameters of the BVAM model to gen-
erate disordered spots and using it as a source coupled to a
Turing system. This suggests that only a simple mechanism
is needed to produce the changes in coloration that may be
gender and age dependent, since very straight-forward varia-
tions in the concentration and diffusion of morphogens can
produce the observed changes. Coloration in freshwater
potamotrygonid stingrays, as in fishes and lower vertebrates
in general, is provided by the uppermost strata of the dermis
through pigment-containing cells known as chromatophores
�35,36�. In our present study we have not included cells so
we must think of the chemical patterns we have shown above
to be pre-patterns to which such cells would respond �as in,
for example, Painter et al. �5��.

Conspicuous differences in color and pattern of the skin
are usually a guide for taxonomy, as in the case of freshwater
catfishes in the Amazon basin. However, we have shown that
diversity in coloration may be modeled by changing a single
parameter in the same model, and that the patterns distin-
guishing various species can be obtained. Therefore a more
complete understanding of color pattern formation and varia-
tion, both among and within species, as well as in relation to
its ontogenetic development, is essential to properly interpret
its systematic significance and usefulness in species identifi-
cation. Whether species with similar color patterns are phy-
logenetically closely related requires the elucidation of their
evolutionary history, for which molecular and morphological
approaches are currently being implemented.
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APPENDIX: DETAILS OF THE NUMERICAL
SIMULATIONS

The simple BVAM model

The simple BVAM model can be written in nondimen-
sional form as follows:

�u

�t
= D�2u + ��u + av − Cuv − uv2� , �A1�

�v
�t

= �2v + ��bv + hu + Cuv + uv2� , �A2�

TABLE I. Parameter values used in Fig. 4–8. BC indicates the choice of boundary conditions.

Parameter Fig. 4�a� Fig. 4�b� Fig. 4�c� Fig. 4�d� Fig. 5 Fig. 6

D 0.5160 0.8000 1.0000 1.0000 0.5160 1.0000

� 0.1500 0.5000 0.5000 0.0833 0.3500 0.3500

f 0.6500 0.7500 0.6543 0.5043 0.6500 0.6500

g 0.1650 0.1650 0.1650 0.1650 0.1650 0.1650

h −2.5000 −2.5000 −2.5000 −2.5000 −2.5000 −2.5000

C 0.0000 0.0000 0.0000 0.0000 0.000→0.7200 0.8200

BC periodic periodic periodic periodic periodic periodic

Grid 256�256 256�256 256�256 256�256 82�82 82�82

Parameter Figs. 7�a�–7�d� Figs. 7�e�–7�h� Figs. 7�i�–7�l� Fig. 8 system 2

D 0.5160 0.5160 0.5160 0.5160

a 1.1123 1.1123 1.1123 0.0577

b −1.0122 −1.0122 −1.0122 −0.3053

h −1.0000 −1.0000 −1.0000 −2.5000

� 0.1000 0.1000 0.1000 0.1000

kc 0.4500 0.4500 0.8900

C 0.0000 1.5700 0.0000 0.7200

BC zero flux periodic free

Grid 82�82 82�82 82�82 124�124
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where D=Du /Dv is the ratio of diffusion constants, � gives
the spatiotemporal scale, and C measures the relative
strength of the quadratic and cubic terms. For convenience in
further analysis, we define the ratios

g =
a + b

1 + h
and f =

b

g
− h . �A3�

Table I shows the parameter values used in the BVAM
model for different figures. In each case BC indicates the
choice of boundary conditions.

2. Two-layer coupled system

The two-layer coupled system involves two BVAM sys-
tems coupled together via terms proportional to the differ-
ence between u and v concentrations in each separate sys-
tem, and can be written as follows:

�ui

�t
=

Di

�i
�2ui + qu�ui − uj� + Kui

�ui,vi� , �A4�

�vi

�t
=

1

�i
�2vi + qv�vi − v j� + Kvi

�ui,vi� , �A5�

where the reactive species are distinguished by subscripts
i=1,2 which denote the layer they are in. The kinetic terms,

Kui
and Kvi

, are as in the simple BVAM model:

Kui
�ui,vi� = ui + avi − Cuivi − uivi

2

and

Kvi
�ui,vi� = bvi + hui + Cuivi + uivi

2. �A6�

Table II shows parameter values used in Figs. 9 and 10.
The parameter values used in Fig. 11 are identical except that
qu=qv=0.2.

3. System with a source

In the system with a source, the simple BVAM model is
solved in layer 2:

�u2

�t
= D�2u2 + ��u2 + av2 − Cu2v2 − u2v2

2� , �A7�

�v2

�t
= �2v2 + ��bv2 + hu2 + Cu2v2 + u2v2

2� . �A8�

It is then used as a source for the BVAM system used in
layer 1. In general, for example in Fig. 14, system 2 is al-
lowed to reach steady state so that u2�x ,y , t�
u2�x ,y� before
coupling to system 1:

�u1

�t
=

D1

�1
�2u1 + Ku1

�u1,v1� + qu2, �A9�

�v1

�t
=

1

�1
�2v1 + Kv1

�u1,v1� . �A10�

The parameter values used in Fig. 14 are detailed in Table
III. The same parameters are used in Fig. 15 except that
C1=0.5 and q varies between 0.00 and 0.25.

4. Supplementary movies

We solve the simple BVAM model with parameter values
for the supplementary movies as shown in Table IV �see Ref.
�37��.

TABLE II. Parameter values used in Fig. 9.

Parameter Fig. 9 system 1 Fig. 9 system 2

D D1=0.5160 D2=0.5160

a a1=1.1123

b b1=−0.3053

h h1=−1.0000

f f2=0.6500

g g2=0.1650

� �1=1.0000 �2=0.1500

C C1=0.0020 C2=0.7200

qu qu=0.0078 qu=0.0078

qv qv=0.0078 qv=0.0078

TABLE III. Parameter values used in Fig. 14.

Parameter Fig. 14 system 1 Fig. 14 system 2

D D1=0.5160 D2=0.5160

a a1=1.1123

b b1=−0.3053

h h1=−1.0000

f f2=0.6500

g g2=0.1650

� �1=1.0000 �2=0.1500

C C1=0.0020 C2=0.0000

q q=0.0000→1.0000

TABLE IV. Parameter values used in supplementary movies.

Parameter 0417 dots 0417 worms 0418 dots & worms

D 0.5160 0.3440 0.6450

� 0.1500 0.1500 0.1500

f 0.6500 0.6500 0.6500

g 0.1650 0.1650 0.1650

h −2.5000 −2.5000 −2.5000

C 0.7200 0.7200 0.5600
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