PHYSICAL REVIEW E 79, 031701 (2009)

Relaxational dynamics of smectic phases on a curved substrate
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We study the dynamics of pattern formation of two-dimensional smectic systems constrained to lie on a
substrate with sinusoidal topography. We observe a coupling between defects and geometry that induces the
preferential location of positive (negative) defects onto regions with positive (negative) Gaussian curvature.
For the curvatures studied here we observe unbinding and self-organization of disclination pairs. The local
orientation of the pattern and the location of topological defects can be accurately controlled with the curvature
of the underlying substrate. Thus, long-range interactions arising from the geometry of the substrate lead to
ordered patterns with potential applications to nanotechnology.
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Striped phases are present in a wide variety of physical
systems such as ferrimagnetic films with dipolar interactions,
Langmuir monolayers, Rayleigh-Bénard convection cells,
liquid crystals, and symmetric block copolymers [1,2]. Equi-
librium and nonequilibrium features of two-dimensional
(2D) striped phases have been intensively studied in the last
three decades. In these systems, most of the attention has
been focused on the role of topological defects in the dynam-
ics of phase transitions [3].

In the last years, the studies of self-assembly in 2D sys-
tems have also been driven by the possible applications to
nanotechnology [4]. For example, thin-film patterns of block
copolymers have been used as nanolithographic masks for
pattern transfer [5]. One of the main difficulties associated to
these systems is the lack of long-range order due to the pres-
ence of unavoidable topological defects [6]. For striped pat-
terns it was shown that correlation lengths grow slowly with
the annealing time during thermal treatments, mainly due to
the annihilation of multipoles of disclinations (orientational
topological defects) [6]. Slow kinetics of ordering has also
been observed in systems with hexagonal symmetry [7,8].
Since most of the nanotechnological applications of self-
assembled systems require well ordered patterns, different
strategies have been employed to induce long-range order
[9].

Recently, there has been an increasing interest in the study
of 2D modulated phases on nonflat surfaces [10-18]. One of
the main differences between planar and curved 2D modu-
lated phases is the nature of topological defects. The curva-
ture of the substrate can impose a topological requirement
involving defects in the equilibrium state. This topological
requirement is given by the Gauss-Bonnet theorem which
relates the integral of the Gaussian curvature with the total
disclination charge [10-18].

From the first insights, most of the studies have consid-
ered 2D striped phases on spheres. By using the Frank free
energy in the one constant approximation, Lubensky and
Prost [10] showed that in nematic phases constrained to lie
on spheres the fundamental state is given by four +1/2 dis-
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clinations located at the vertex of a tetrahedron (baseball
configuration). It was pointed out that this particular arrange-
ment of defects can be functionalized to obtain divalent or
tetravalent spheres [19,20]. In the case of smectic phases on
spheres, defect configurations including hedgehog, spirals,
and quasibaseball have been identified [11] and recently ob-
served by self-consistent calculations of lamellar forming
block copolymers [12].

In this work we investigate the kinetics of ordering of a
2D smectic phase constrained to lie on a curved sinusoidal
substrate. Although in our system there is no topological re-
quirement for the existence of defects, since the energy of a
defect-free state grows as the curvature of the substrate is
increased [10], it is expected that the system relaxes the
strain field energy by locating defects on preferential surface
sites.

Here we consider the process of pattern formation of a
striped phase described by the following free-energy func-
tional [2,21]:

F= f dzr\@[ U(y) + ggaﬂ(?azp(r)&ﬁgb(r)

—§ f f drdr g\g' Glr - Vo) p(x’), (1)

where ¢ describe the order parameter field, U(i))=-1y’
+uyf is the typical double well with two minima, D is re-
lated to the penalization to form interfaces, g is the determi-
nant of the metric g,z of the curved substrate, and G(r
—r’') is a Green’s function which takes into account the com-
peting long-range interactions.

Recently, Santangelo et al. [13] have argued that the ex-
trinsic curvature may be an important factor in determining
the pattern configuration of columnar phases. In that study,
the columnar phases were obtained with a 0.3 um thick film
of a cylinder forming block copolymer deposited on a curved
substrate. The experiments image the top layer of a film
roughly ten layers thick [top layer of a three-dimensional
(3D) array of hexagonally packed cylinders]. It has been ar-
gued that due to the coupling with the extrinsic curvature, a
boundarylike term aligns the columns at the regions where
the Gaussian curvature of the substrate changes the sign.
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However, how the underlying layers (which necessarily con-
tains topological defects and strains) couple to the two-
dimensional geometry of the topmost layer and how it affects
the equilibrium configuration is still an open question [13].

Note that Eq. (1) does not include any coupling with the
extrinsic curvature. However, since experimentally the effect
of the extrinsic curvature could be strongly reduced (for ex-
ample by using thin films of symmetric block copolymers),
Eq. (1) provides a good approximation to describe the prop-
erties of experimental two-dimensional smectic systems. In
addition, note also that Eq. (1) can be extended to take into
account the coupling with the extrinsic curvature by consid-
ering, for example, a monolayer of cylinders rather that a
strictly two-dimensional system.

The dynamic evolution of a smectic system quenched into
the spinodal region of the phase diagram can be obtained
through the following relaxational equation:

P SF
a—lf = MVfB{gﬂ} +(r,1). (2)

Here M is a phenomenological mobility coefficient, 7 is a
white random noise term to take into account thermal fluc-
tuations [7], and ViB=%;‘7a(\Eganﬂ) is the Laplace-
Beltrami operator, which reduces to the classical Laplacian
for flat systems [22]. Equation (2) leads to spinodal decom-
position for 7> 7,, where 7,=2\Db is the critical tempera-
ture. In the case of 2D planar systems this coarse grained
model has probed to be a remarkable tool to study dynamical
and equilibrium features of 2D modulated phases [2,7,8].

Here we numerically solve Eq. (2) on a sinusoidal geom-
etry by using a finite difference forward in time center space
scheme on a 512X 512 grid. The dynamics is studied for a
substrate of square symmetry described by: R=xi+yj
+f(x,y)k, with f(x,y)=A cos(2mx/L)cos(2my/L) [see Fig.
1(a)]. Here i, j, and k are the basis Cartesian vectors, L
~37m/ ko, A~ 1671k, ky=0.45~ (b/D)"* is the local wave
vector amplitude of the striped pattern (Fig. 1) and L=256 is
the side length of the 2D projection of the surface onto the
x-y plane. Then, here the substrate deformation [ 18] becomes
A2m/L~0.867. In order to study the relaxational dynamics
of an initial homogeneous system quenched into the unstable
region of the phase diagram, we solve Eq. (2) in a square cell
of area L? starting from a random initial condition [7,8].

Figures 1(b) and 1(c) show the dynamics of pattern for-
mation for a system deeply quenched into the unstable region
(7,/ 7=0.6). Figure 1(b) shows the pattern configuration of
the system at early times. As a consequence of the competing
interactions, we observe a fast length scale selectivity. How-
ever, differently from the patterns observed in flat systems,
where the early domains are roughly circular [7], here the
curvature of the substrate induces a preferential alignment of
the domains, which becomes distorted along the parallels of
the substrate (z=constant). Although the orientation of the
domains is relatively well defined at early times, there is a
poor connectivity and a high density of uniformly distributed
defects.

Similarly to planar systems, as time proceeds, the degree
of order increases led by an increment of domain connectiv-
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FIG. 1. (Color online) (a) Three-dimensional view of the sinu-
soidal substrate defined by R(x,y). The side length of the 2D pro-
jection of the surface onto the x-y plane is L. Panels (b) and (c)
show the pattern configurations at early and intermediate times,
respectively. Panel (d) shows the late time configuration of the
smectic pattern on a bump. Red (gray) lines indicate representative
geodesics and the arrows the normals to the stripes.

ity and the further annihilation of dislocations and multipoles
of *1/2 disclinations [6]. The intermediate stage of ordering
clearly shows the coupling between curvature and stripe ori-
entation [Fig. 1(c)]. In Figs. 1(c) and 1(d) we have included
a few representative geodesic lines to show the interrelation-
ship between stripe orientation and geometry. We can ob-
serve that in order to minimize the compressional free energy
there is a tendency of the normals to the stripes to follow
geodesic lines, in agreement with theoretical predictions
[13]. However, packing effects can be quite important in de-
termining distribution of topological defects in systems with
strong length scale selectivity [12]. These packing effects can
be clearly observed in Fig. 1(b), where the free energy in
nearly flat regions is relaxed via the unbinding of disloca-
tions.

Figure 2 shows the temporal evolution of the number dis-
locations (NV,). At early times, the decrease in N, is produced
by the increase in the connectivity between near neighbor
stripes. Typically, the connectivity between stripes increases
by the diffusion of dislocations on distances of order kj'. At
intermediate times, the further annihilation of dislocations is
given by a combination of the glide and climb mechanisms.
Here we found that the number of dislocations decreases as
N,~ 7933 This slow dynamics of dislocation annihilation is
very close to that found experimentally in planar systems [6].

In order to emphasize the relationship between defects
and curvature, in Figs. 3(a) and 3(b) we show a x-y projec-
tion of a superposition of the Gaussian curvature with the
striped pattern. The Gaussian curvature, K, defined as the
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FIG. 2. Number of dislocations N, (circles) and orientational
order parameter (S) (squares) as a function of time. The lines cor-
respond to the power law and logarithmic fits, respectively. Inset:
(S) vs N, (symbols) and linear fit for the late stage of relaxation.

product of the two principal curvatures, is the intrinsic cur-
vature of the substrate [22]. Tt is positive in crest and valleys,
negative in saddles, and zero in planar regions [Fig. 3(c)]
[23].

From this figure it can be easily observed that the cores of
most of the disclinations are located on zones of high Gauss-
ian curvature, indicating the strong coupling between topo-
logical defects and curvature. It is also clear that positive
(negative) disclinations are preferentially located onto re-
gions of positive (negative) curvature. The preferential loca-
tion of the defects according to the local curvature is in good
agreement with the theoretical predictions for the equilib-
rium properties of liquid crystal phases on curved surfaces
[14]. Dislocations are also observed to have preferential ori-
entations, mainly dictated by the constraint of equally spaced
stripes.
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FIG. 3. (Color online) [(a) and (b)] 2D projection of the pattern
onto the x-y plane overlapped by the Gaussian curvature of the
substrate [panel (c)]. The side length of the 2D projection of the
pattern onto the x-y plane is L. (c) 3D view of the Gaussian curva-
ture of the substrate. Color (gray) code indicated on the bottom. [(d)
and (e)] Schematic representation of the two arrays of disclinations
observed in panels (a) and (b), respectively. These arrays of discli-
nations are favored energetically by the presence of long-range
interactions.
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In the regions with the highest curvature we observe ar-
rangements of disclinations rarely found in planar systems
[1,6]. While pairs of 1/2 disclinations of the same sign repeal
each other in planar systems, here these configurations are
stabilized by the curvature of the substrate. For the geometry
studied here we observe that the average distance between
the disclinations located in the regions of the highest curva-
ture is about 3/k,. This distance should be strongly affected
by curvature and packing effects, such that binding-
unbinding transitions can be expected for other curvatures.
Differently from hexagonal systems where the free energy
can be relaxed by grain boundary scars [15-18], here we
found that the distance between near neighbor disclinations
can vary to screen the curvature.

We note that the pairs of —1/2 disclinations around saddle
points could be locally arranged in two different low-energy
configurations. These configurations can be expected to be
equally energetic in the absence of long-range interactions.
However, Figs. 3(a) and 3(b) show that the orientation of the
—1/2 pairs of disclinations is not randomly distributed be-
tween these two low-energy states. The four negative pairs
are located parallel or perpendicular to the four geodesic
lines connecting each pair of nearest-neighbor bumps or val-
leys [compare Figs. 3(a) and 3(b) with the schematic repre-
sentations of the arrays of disclinations of Figs. 3(d) and
3(e)]. Although the unbinding of +1/2 disclinations can be
also observed in Fig. 3, it is more difficult to establish the
correlation between the local orientation of the pair and the
geometry of the substrate.

In general, the free-energy functional for a 2D texture
embedded in an arbitrary frozen surface contains only splay
and bend terms. In our case, the fixed layer spacing dictates
that bend is more energetically costly than splay, forcing
K3>K; (K, and K3 being the splay and bend constants, re-
spectively). For example, in block copolymer thin films with
smectic symmetry it has been found that K3/ K, ~40 [24]. In
what follows and for simplicity, we compare our numerical
results with a particular solution (pure splay configuration)
of the Euler-Lagrange equation associated to the Frank free
energy in the one constant approximation [10], [19]. In the
one constant approximation, the Frank free energy takes the
form Fp=K,[d*r\g[dmP+T gwy]z, where m is the normal
field of the pattern and F‘; are connection coefficients asso-
ciated with the parallel transport of m. This free energy can
be written in terms of the local orientation of the normal field
of the stripes 6(r) respect to a basis e;, e, of the tangent
plane of the surface (where m is decomposed as m
=cos fe;+sin fe,). Then, FF=K]fdzr\y’gg"‘ﬁ(&aﬁ—Aa)(&ﬁﬁ
—Ap), where A,=e;-d,e, is a connection that compensates
the rotation of the basis vectors. The equilibrium configura-
tion is obtained through the associated Euler-Lagrange equa-
tion V;5600+d,A,+I'7,A,=0 [10].

For the sinusoidal surface we can choose the basis vectors
of the tangent plane as e;=f,i+fj +(2+HPk, e,=f,i—f.j.
We found that a simple pure splay solution satisfying the
Euler-Lagrange equation for our problem is given by m par-
allel to e; throughout the surface.

Figure 4(a) shows the projection of the local orientation
6y(r) onto the x-y plane [fy(r)=tan"'(e,-j/e,-i)]. We may
note that 6,(r) rotates an angle of 27 around the bumps and
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FIG. 4. (Color online) 3D views of (a) 6,(r) and (b) 6(r). (c) 2D
projection of the pattern onto the x-y plane overlapped by the local
orientation of the stripes. The inset shows 6(r) on a bump and the
bottom of this figure indicates the color (gray) code employed to
identify the local orientation. (d) 2D projection of the order param-
eter S onto the x-y plane at long times. The white squares and
circles indicate negative and positive disclinations, respectively.
Color (gray) code indicated at the bottom. Here the side length of
the 2D projections is L.

valleys, and —27 around the saddles, making these points
good candidates to locate disclinations. In order to compare
this simple splay pure solution for 6y(r) with the late con-
figuration obtained by the simulations, we determine the lo-
cal orientation of the stripes 6(r) by the gradient method
described elsewhere [6].

The local orientation of the striped pattern is shown in
Figs. 4(b) and 4(c). A by eye comparison between 6,(r) and
the actual pattern [Fig. 4(a) vs Figs. 4(b) and 4(c)] indicates
that this solution provides a reasonably good description for
the local orientation. Although 6,(r) cannot describe ad-
equately the real orientation of the stripes, mainly due to the
unbinding of defects (see Figs. 3 and 4), when the distance
between pairs of disclinations is small, such as in the inset of
Fig. 4(c), the mismatch between both orientational fields be-
comes small.
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A quantitative comparison between the local orientation
of the stripes and 6y(r) can be obtained by defining an ori-
entational order parameter as S=cos(2A6), where A6 is the
difference between 6(r) and 6,(r). Note that S=1 for perfect
alignment in the direction dictated 6y(r) and S=0 for a ran-
dom orientation. Figure 4(d) shows the map of S onto the
surface. Note the excellent agreement between both orienta-
tional fields, except at the regions where there is unbinding
of disclinations.

In Fig. 2 we show the time dependence of the average of
the order parameter ((S)). Here we found that (S) grows
roughly logarithmically on time [25]. As compared with pla-
nar systems where the dynamics is controlled by the annihi-
lation of multipoles of disclinations (density of disclinations
~1712) [6], here the coupling between defects and geometry
leads to a dynamics clearly slower.

Experimental results on shear aligned sphere forming
block copolymers deposited onto flat substrates indicate that
(S) decreases linearly with the number of dislocations [26].
In this case, it has been observed that each dislocation de-
stroys the orientational order in an area of order 1/g. In the
inset of Fig. 2 we have also included a plot of {S) vs N,.
Although here we also found (S)~ N, at long times, where
the density of dislocations is relatively small, at early times
the dynamics departs from linearity since the domains are
strongly distorted in the direction dictated by the curvature.

In summary, we have studied the influence of the curva-
ture of the substrate on the kinetics of ordering of a pattern
with smectic symmetry. We have demonstrated that the ori-
entation of the pattern and the location of topological defects
are established at the very early stage of phase separation.
This open the possibility of a robust mechanism for an accu-
rate control of smectic textures with potential applications to
nanotechnology. For example, curved substrates could be
used to accurately control the density and location of defects
in thin films of block copolymers. In this sense, the existence
of disclinations in the regions of high curvature would allow
the creation of novel materials with chemical linkers or bio-
molecules strands anchored at the core of the defects [20].
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