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Discrete random tessellations appear not infrequently in describing nucleation and growth transformations.
Generally, several non-Euclidean metrics are possible in this case. Previously �A. Korobov, Phys. Rev. B 76,
085430 �2007�� continual analogs of such tessellations have been studied. Here one of the simplest discrete
varieties of the Kolmogorov-Johnson-Mehl-Avrami model, namely, the model with von Neumann neighbor-
hoods, has been examined per se, i.e., without continualization. The tessellation is uniform in the sense that
domain boundaries consist of tiles. Similarities and distinctions between discrete and continual models are
discussed.
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I. INTRODUCTION

Apparently simple Kolmogorov-Johnson-Mehl-Avrami
�KJMA� theory �1–3� proves to be extensively exploitable
over decades in ever growing number of fields. Historically
starting from steel crystallization �1–4�, it is currently em-
ployed in describing such disparate at first glance processes
as DNA replication �5,6� and phase separation in multicom-
ponent alloys �7�, biosorption in living cells �8� and solid
state reaction kinetics �9,10�, cryopreservation of biological
tissues �11� and film growth on solid substrates �12�, etc.
This inspires continuous theoretical efforts in developing the
theory and in extending it beyond fairly strong applicability
conditions explicitly stated in �1�. In many of these works the
KJMA theory serves as the starting point and comparison
standard. Recent extensions of the theory include, in particu-
lar, the account of finite volume �13�, nonrandom nucleation,
and overgrowth processes �14�, anisotropic growth �15�, con-
tinuous heating conditions �16�, screening effects �17�. In the
framework of the KJMA theory the explicit solution has been
found for the temporal evolution of the domain structure in
the Poisson-Voronoi case for arbitrary dimension �18–20�.
Also, the sidedness probability has been studied in detail for
this type of tessellations using Monte Carlo �MC� method
�21�. One more recent result is the statistical properties in the
case of time-dependent nucleation and growth rates with no
imposed restrictions �22�. In all cases the Euclidean metric is
implied.

This paper presents a simple discrete two-dimensional
�2D� version of the KJMA model on the square tiling. Both
nucleation and growth are discrete. Discrete nucleation
means that a nucleus possesses definite size and cannot be
considered as a point. Nucleation on the tiling is simulta-
neous and spatially almost random; with a small correction
required to provide uniform domain boundaries as described
below. Discrete growth means that at each step s standing for
discrete time all adjacent tiles join the growing nucleus. Lin-
ear growth is considered, and accordingly the ultimate tes-
sellation is a discrete analog of conventional Poisson-

Voronoi tessellations. In topological respect, a peculiarity is
the finite number of growth directions, whereas in continual
2D nucleation-growth models this number is infinite �but is
finite in 1D continual case�. In metrical respect, a peculiarity
is that the discrete growth mode determines the metric dif-
ferent from the Euclidean metric. Two basic modes are pos-
sible on a square tiling determined by the von Neumann and
Moore neighborhoods. Note that both of them have been
recently considered in �23� �with subsequent continualiza-
tion� in studying the anisotropic growth. This paper deals
with the former. Compared to lattice models, e.g., semideter-
ministic lattice models �24�, two main distinctions are non-
Euclidean metric and definite dimensions of tiles.

To compare a discrete model with the conventional
KJMA theory it needs to be continualized since there is no
natural discretization for the Euclidean metric. This was
done in �25�. The free boundary length as a function of the
nucleus radius was shown to be sensitive to the metric,
whereas the final area distribution is practically invariant.
But in passing to continual analogs, some peculiarities of
discrete tessellations are obviously lost. With this in mind,
this paper examines the discrete tessellation per se to reveal
distinctions and similarities with continual analogs. The main
emphasis is on the kinetic properties and final area distribu-
tions. A necessary attention is also paid to peculiarities of
domain boundaries.

II. TESSELLATION

This section describes the model tessellation under study.
One square tile is considered as the nucleus capable of sub-
sequent stable growth. This is a typical zero approximation.
In the present context the oversimplification is not too
strong: presented results can be generalized for more in-
volved cases of nucleation. Some aspects of the transforma-
tion of random irregular nuclei into regular islands with the
same form and orientation are discussed in �26�. All nuclei
appear simultaneously at the very beginning of the growth
process; no additional nuclei appear during the growth pro-
cess. Nuclei are randomly distributed on the square tiling,
but further undergo a small correction as explained below.*Alexander.I.Korobov@univer.kharkov.ua
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The growth process is irreversible, discrete, and sym-
metrical: at each step s �standing for discrete time� the inter-
face propagates to all symmetrically equivalent tiles adjacent
with a growing island. On the square tiling two growth
modes correspond to these conditions �Fig. 1�: �a� a tile joins
the growing island only if they have a common edge; �b� a
tile joins the growing island if they have a common vertex.
In the first case 4s tiles are joined at step s; in the second
case the number of joining tiles is 8s. These modes may be

described in terms of the displacement vectors. The first case
is termed von Neumann neighborhood; the displacement
vector is

N5 = ��0

0
� ; �1

0
� ; �0

1
� ; �− 1

0
� ; � 0

− 1
�� . �1�

The second case is termed Moore neighborhood; the dis-
placement vector is
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The distance between two nuclei is defined as the number of
tiles in the shortest chain of tiles connecting nuclei. As illus-
trated in Fig. 1, thus defined distance is different for different
growth modes; for the same mutual situation of nuclei the
distance is nine in the first case �c� and is five in the second
case �d�. Generally, for von Neumann neighborhood the dis-
tance is

DN = 	�x	 + 	�y	 . �3�

For Moore neighborhood it reads

DM = max�	x − x0	, 	y − y0	� �4�

In this way the growth mode determines the metric.
Islands are fixed and grow to impingement. Upon im-

pingement the growth in the direction of impingement is
stopped; in other directions it proceeds according to the
above rules. Note that the number of directions in the dis-

crete case is finite in contrast to 2D continual models. Ulti-
mately this results in a random discrete tessellation.

Tessellations with von Neumann neighborhood are se-
lected to start with. On the one hand, this is the simplest
case. On the other hand, the island is intermediate between
compact and ramified shapes, and various scenarios may be
further considered.

In studying discrete tessellations one faces a number of
peculiarities which have no analogs in the conventional con-
tinual case. The first peculiarity is the structure of bound-
aries, which needs to be addressed in some detail to make
possible the study of various properties.

III. BOUNDARIES

In constructing a conventional continuous tessellation, the
random Voronoi cell is defined as the geometric locus, points
of which are closer to a particular nucleus than to any other
nucleus. Voronoi cells fill the whole space without overlaps.
Boundaries in this case have zero measure and fairly simple
structure: each boundary point is equidistant from two nuclei
except vertexes which are equidistant from three nuclei. It is
logical to construct a discrete analog in the same manner:
tiles are allotted to nearest nuclei in the corresponding met-
ric, and each random domain consists of tiles which are
closer to a particular nucleation tile than to any other nucle-
ation tile. The problem is that boundaries in the discrete case
appear to be more involved.

Figure 2 shows that boundaries may be either lines or
chains of tiles depending on the distance between nuclei. We
remind the reader that the distance between two nuclei is the
number of tiles in the shortest chain connecting these nuclei
�nucleation tiles are not included�. If the distance is even, the
boundary is the line �e.g., the boundary between nuclei b and
c in Fig. 2�; if the distance is odd, the boundary is the chain
of tiles �e.g., the boundary between nuclei a and b in Fig. 2�.

Generally, discrete random tessellations have mixed
boundaries. It is impossible to construct a tessellation with
only linear boundaries. But it is possible to construct a tes-
sellation with only tiling boundaries. To do this, the square

dc

a b

FIG. 1. Two growth modes on the square tiling: von Neumann
neighborhood �a� and Moore neighborhood �b�. They determine dif-
ferent distances between two nuclei, �c� and �d�, respectively.
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tiling is considered as a big chessboard. First, nuclei are
placed at random at all the tiles. Then each nucleation tile
that turns out to be black is shifted at random to one of
nearest white tiles �or vice versa�. This is a slight violation of
the initial randomness. Tessellations of this type will be
termed tessellations with uniform boundaries or, briefly, uni-
form tessellations. An example is shown in Fig. 3. Square
tiles fall into nuclei �nucleation tiles�, boundary tiles and
interior tiles of random domains �Voronoi domains�. In this
paper only uniform tessellations will be considered as the
simplest case.

Note that boundaries in this case have nonzero measure.
To ensure that the whole space will be filled after a nucle-
ation and growth process is completed, the impingement of
two nuclei is defined as the event when these nuclei occupy
the nearest equidistant boundary tile. In calculating domain
areas, this tile is equally divided between two domains. Ac-
cordingly, the area of a random domain is the sum of areas of
all interior tiles plus one half of areas of boundary tiles equi-
distant from two nuclei plus one third of areas of boundary
tiles equidistant from three nuclei, etc. The sum of all do-
main areas equals to the area of the whole space. No changes
are required if one wants to pass to tessellations with mixed
boundaries. Thus, this paper deals with discrete random
Poisson-Voronoi tessellations with square tiles, one-tile
stable nuclei, von Neumann neighborhoods, and uniform
boundaries. Corresponding metric �3� will be termed QN
metric.

The boundary between two nuclei has a definite structure
�Fig. 2�:

�i� The number of tiles in its stepwise part is equal to
min�	�x	 , 	�y	�+1.

�ii� If the origin of coordinates is associated with one of
nucleation tiles �nucleus a in Fig. 2�, one of the above
boundary tiles is surely situated on one of these axes �axis y
in Fig. 2�.

�iii� The stepwise part may be prolonged �ad infinitum if
there are only two nuclei� in both directions by straight parts
oriented along the second axis.

�iv� The stepwise part may consist of only one tile; in this
case one obtains simply a straight boundary parallel to one of
the axes.

On the Euclidean plane three points �not on one line�
determine a circle with the center equidistant from these
three points. This is used, in particular, in constructing ran-
dom tessellations �27�. In the QN metric this is not always the
case. Figure 4 illustrates the situation when three nuclei have
no common vertex; nuclei b and c are not adjacent.

As was mentioned above, boundaries of conventional tes-
sellations contain points equidistant from two or three nuclei;
there are no other possibilities. Boundaries of discrete tessel-
lations are more involved in this respect. They include tiles
equidistant from four, five, etc., nuclei. For brevity this will
be termed the multiplicity � of a boundary tile. Multiplicity
twelve was observed for tessellations with high density of
nuclei. Note that the multiplicity is defined as the number of
nuclei equidistant from the given boundary tile. For vertices
this is not obligatory coincide with the number of outgoing
edges. Thus, in Fig. 5 there are two fourfold vertices, B and
C. The former has four outgoing edges formed by twofold
tiles; the latter has three outgoing edges formed by threefold
tiles. An edge can join vertices with different multiplicity;

b

a

c

x

y

FIG. 2. Two types of boundaries, linear and tiling; solid circles
show the distance between nuclei b and c.

FIG. 3. An example of discrete random tessellation; the double
hatching denotes vertices.

a

b

c

FIG. 4. Three nuclei may have no equidistant tile; nuclei b and
c are not adjacent.
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FIG. 5. Examples of boundary tiles with various
multiplicities.
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e.g., edge AB joins threefold vertex A and fourfold vertex B.
An edge may include tiles with various multiplicities; e.g.,
the edge joining vertices B and C consists partly of twofold
and partly of threefold tiles. Two vertices may be immediate
neighbors with no edge between them; e.g., vertices D and E
in Fig. 5. Vertex D is formed by nuclei a, d, and e; vertex E
is formed by nuclei a, b, and d; there is no edge between
them.

A further peculiarity is that boundary tiles may form two-
dimensional arrays. An example is given in Fig. 6�a�. Four
nuclei form a boundary consisting of fourfold tiles. From
above and below they border with twofold boundary tiles.
Also, this array includes two threefold tiles. On the other
hand, the presence of a vertex with high multiplicity is not
necessarily associated with involved two-dimensional arrays
of boundary tiles. Figure 6�b� shows a fragment of random
tessellation which has a fivefold vertex and one-dimensional
boundaries consisted mainly of twofold tiles.

IV. PROPERTIES

Kinetics of the interface length is of the main interest in
this section since this characteristic was shown to be sensi-
tive to the metric in continualized cases. Kinetics is studied
not only for the whole tessellations �with different density of
nuclei� but also for subsets of random Voronoi domains with
4, 5, etc., neighbors. Accordingly, computation of necessary
statistics precedes the study of kinetic properties. Area dis-
tributions are also studied in connection with kinetics: results
obtained support the mutual situation of kinetic curves. In
addition, distances to neighbors are computed and compared
with distances in the Euclidean metric.

A. Distribution of domains in the number of neighbors

One of the most general and long-known properties of
conventional random tessellations is the number of edges of
the typical cell which is always six �28,29�. In other words,
nucleus has six neighbors in the average. Naturally, the first
step is to examine this property in our discrete case.

Uniform discrete tessellations are convenient in computa-
tional respect. A tessellation is represented as the three-
dimensional array A�d1�d2�15�; d1 and d2 determine the
size of the tiling; the third dimension is used for storing
characteristics of each tile. The density of nuclei � is defined
as the ratio of the number of nuclei N to the total number of
tiles in the tiling; �=N / �d1�d2�. In all computations N was
10 000. Positions of nuclei were selected at random and cor-

rected at random as described above to be only odd to pro-
vide the uniformity of the generated tessellation. All results
discussed below are the average of 25 simulations.

With the account of the above peculiarities, boundaries
were determined in the following way. For each tile of the
tessellation distances were computed in the QN metric to all
nucleation tiles and the minimal distance was identified.
Then the number of these minimal values in the array of
distances was determined. This is the multiplicity of a tile �
�the numbers of equidistant nuclei�. It was stored in the array
A for further computations. Also, the step number s at which
a given tile is reached by a growing nucleus was computed.

To avoid boundary effects, all boundary random domains,
i.e., domains bordered partly by boundary tiles and partly by
the border of initial tiling, have been rejected. The resulting
piece of tiling has an irregular shape and is completely bor-
dered with boundary tiles at which the growth process van-
ishes. No one nucleus can grow beyond these boundaries,
and all tiles will be ultimately captured by the growth pro-
cess.

Two nuclei are neighbors if they have at least two com-
mon boundary tiles irrespectively of their multiplicity. If they
have only one common boundary tile �vertex� they are not
neighbors.

The range of � studied was 0.1 to 0.0001. Obviously, �
must be less than unity: �=1 would mean that each tile is
the nucleation tile. In the case of dense tessellations the per-
centage of boundary tiles is fairly big and the growth process
takes relatively few steps. Thus, for �=0.1 half of all tiles
are boundary tiles and the growth process is completed in
only 10 steps �Table I�. Several tiles with multiplicities 9 to
12 have been observed �not reflected in the table�. With the
decrease of � the percentage of boundary tiles and the maxi-
mal multiplicity decrease while the number of steps in-
creases. The study of sparse tessellations is computationally
more demanding.

(a) (b)

2 543

FIG. 6. Examples of boundary structures.

TABLE I. The ratio of interior and boundary tiles with the ac-
count of multiplicity.

Nuclei density �

0.0001 0.001 0.01 0.1

Maximum step 362 85 30 10

Maximum
multiplicity

5 6 7 12

Percentage of
interior tiles

97.6 91.9 77.8 41.7

Percentage of
boundary tiles

Total 2.4 8.0 21.4 49.3

With multiplicity 2 2.3 7.4 17.4 27.0

3 0.05 0.5 3.2 13.4

4 103 0.03 0.5 5.7

5 10−5 10−3 0.08 2.2

6 — 10−4 0.01 0.8

7 — — 10−3 0.3

8 — — — 0.05
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The distributions of random domains in the number of
immediate neighbors � are shown in Table II. Domains with
six neighbors prevail in all tessellations except the densest
one, in which domains with seven neighbors dominate. With
the decrease of � the percentage of domains with � equals 4
to 6 increases whereas the percentage of domains with the
coordination numbers 7 and greater decreases. Generally,
distributions tend to that for continual random Voronoi tes-
sellation with �
1 �last column of Table II�; � is the density
of nuclei in the continuous case. The main distinction is that
no random domains with three neighbors were registered for
discrete tessellations. More than 97% of all random domains
have 4 to 10 immediate neighbors.

B. Kinetics

Now it is possible to study the KJMA kinetics of discrete
tessellations. This is done in the way described in �25�.
Briefly, the growth of each island inside its random domain
is followed in dynamics starting from the moment of nucle-
ation and up to the moment when the domain is completely
filled; boundary tiles are equally divided between all equidis-
tant nuclei according to their multiplicity as described above.
Kinetic curves for discrete tessellations have been computed
in the following way. Function n�s� was associated with each
random domain of a tessellation, where n is the number of
tiles actually joined the island at step s �in other words, ac-
tual interface length expressed as the number of interface
tiles�. This curve is termed primitive kinetic curve. An ex-
ample is shown in the insert of Fig. 7. The sum of all primi-
tive curves normalized on the total number of nuclei gives
the kinetic curve N�s� which characterizes kinetic properties
of the random tessellation as a whole �solid lines in Figs.
7�a� and 7�b��. In the case of �=0.1 curves are not smooth
because of fairly small number of steps required to complete
the growth process. As was shown in �25�, in the continual
case corresponding kinetic curves are not scaled into similar
curves computed in the Euclidean metric.

In the conventional continuous case domains with six
neighbors have been shown to be representative in kinetic
respect �30�. To examine this regularity in the discrete case,

kinetic curves N��s� were computed separately for random
domains with 4, 5, 6, 7, 8, and 9 neighbors as sums of cor-
responding primitive curves normalized on the number of
domains with � neighbors. Results for �=0.0001 and �
=0.1 are shown in Fig. 7. In all four studied cases the ten-
dency is the same as was previously observed for conven-
tional Voronoi tessellations with the Euclidean metric: with
the increase of � the maximum is shifted upwards and right.
This agrees with the area distribution described below. N6�s�
curve provides a reasonably good approximation to N�s�
curve in the case of �=0.0001. Note that in this case the
percentage of domains with six neighbors is the biggest
�Table II�. On the contrary, for �=0.1 N�s� curve practically
coincide with N7�s� curve. The prevalence of domains with

TABLE II. Distribution of random domains in the number of immediate neighbors.

Number of
neighbors �

Percentage of tiles with � neighbors

�=0.1 �=0.01 �=0.001 �=0.0001

Conventional
tessellation �30�

�=0.93

3 — — — — 2

4 1.4 5.3 9.4 12.3 13

5 13.1 17.6 22.9 25.8 24

6 24.4 26.5 27.6 27.9 28

7 25.3 23.3 21.4 19.8 21

8 18.5 15.3 11.9 8.9 8

9 10.1 7.4 4.6 3.2 2

10 4.6 2.9 1.5 1.3 1
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FIG. 7. Kinetic curves for the whole tessellation �solid� and for
separate subsets of domains with � neighbors �dashed�; an example
of primitive kinetic curve is shown in the inset.
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�=7 over domains with �=6 is only 1%, but domains with
�=8 considerably prevail over domains with �=5, while in
the case of �=0.0001 the ratio is inverse. For other values of
� N�s� curves are situated between N6�s� and N7�s� curves.
Generally, with the increase of � the maximum of N�s�
curves is shifted left and downwards �Fig. 8�. In the case of
�=0.0001 �not shown in Fig. 8� s=50, N�s�=114.

Discrete results may also be compared with analytical re-
sults obtained for the metric under study in the framework of
the KJMA approach �25�. The analytical expression for the
boundary length L as a function of radius r �proportional to
time� reads

L�r� = 4�2r exp�− 2r2�� . �5�

�Note that in �25� L is given per unit area.� For comparing
discrete and continual results it is reasonable to take the edge
of the tile as the unit length. Then �=�. Positions of maxima
on kinetic curves corresponding to different � are compared
in Table III. Taking into account that values of s are integer,
rmax and smax agree well except the densest tessellation. Lmax
and Nmax differ, but their ratio �=Nmax /Lmax is practically the
same for all values of �, about 0.7 �Table III�. Using this
value, L�r� curves may be scaled into N�s� curves when rmax
and smax are close enough,

N�r� = �L�r� . �6�

The result of scaling in the case of �=0.004 is shown in Fig.
9 as an example; for smaller values of � fitting is similar.
But for �=0.1 scaling is obviously impossible since rmax and

smax differ considerably. The value of � is connected in some
way with the discrete nature of the growth process. Note also
that the KJMA approach requires the convex shape of grow-
ing islands. Discrete islands with von Neumann neighbor-
hood are not convex.

C. Area distributions

To obtain a deeper insight into the above results they need
to be related to the distribution of domain areas. The trans-
formation is believed to be completed, and the area of a
random domain is just the number of tiles belonging to this
domain. The nucleation tile is included and boundary tiles
are equally divided between nuclei from which they are equi-
distant. Thus computed areas S have been scaled as S /S
�where the mean area S=1 /�� and the histogram constructed
from these data have been normalized to unit area. Results
for various � are shown in Fig. 10. Solid lines correspond to
the commonly used Kiang conjecture �31�

F�y� =
cc

��c�
yc−1 exp�− cy� , �7�

where y is the scaled area. This conjecture works in all cases.
Analytically derived value of the parameter c in the conven-
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FIG. 8. Kinetic curves of tessellations with different density of
nuclei �.

TABLE III. Positions of maxima on kinetic curves in discrete
and continual cases.

Nuclei
density
�=�

Continual
model; Eq. �5�

Discrete
model; Fig. 7

�rmax Lmax smax Nmax

0.001 15.8 54 16 36 0.66

0.004 7.9 27.5 9 19 0.69

0.006 6.5 21.7 7 16 0.74

0.01 5.0 17 6 12 0.71

0.1 1.58 5.4 3 4 0.74
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FIG. 9. Numerical kinetic curve for discrete tessellation �solid�
in comparison with scaled analytical curve for continual tessellation
�dashed�; �=�=0.004.
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FIG. 10. Area distributions of random domains �histogram� in
comparison with the Kiang conjecture �solid line� for different nu-
clei density.
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tional continual case equals 3.575 �32�. This value provides
good fitting for scares discrete tessellations, but in passing to
denser tessellations it considerably increases. The invariance
of the area distribution with respect to the metric in the con-
tinual case has been shown previously �25�, and it is reason-
able to suppose that the increase of c is a consequence of the
high percentage of boundary tiles.

An interesting and somewhat unexpected result is the lin-
ear dependence of the mean area S� computed separately for
subsets of random domains with � immediate neighbors on �
�Fig. 11�. Only four lines are shown because it is impossible
to combine all results in one figure. But linearity is observed
for all studied values of �. Slopes are 1.2, 14.1, 23.1, 39.5,
147.9, and 1490 for � 0.1, 0.01, 0.006, 0.004, 0.001, and
0.0001, respectively. This agrees with the mutual situation of
kinetic curves in Fig. 7. Intuitively clear that the mean area
must decrease at higher �. But �	10 is a fairly rear event,
and in the present study no statistically significant results
have been obtained. Fragmentary observations show that the
mean area tends to increase up to �=12, though not so rap-
idly.

In Table IV the mean areas computed for subsets of ran-
dom domains with six and seven immediate neighbors are
compared with mean areas of the whole tessellations with
different �. In the case of the most scares tessellation the
subset of domains with �=6 represents well this characteris-
tic: the discrepancy is only 2%. In the most dense tessellation
domains with �=7 are representative in this respect. This is
in agreement with kinetic characteristics discussed above.

D. Distances to neighbors

Finally, the averaged distances to the nearest, second, etc.,
neighbors have been computed for all tessellations to com-

pare with corresponding distances in the Euclidian metric
�E�. Only results for �=0.004 are shown in Table V as an
example. Since there is no natural discretization for the Eu-
clidean metric, distances have been computed between cen-
ters of nucleation tiles and the side of the tile has been taken
as the unit length. 
=�Q�a ,b� /�E�a ,b� is the ratio of aver-
aged distances computed in both metrics.

Computations revealed the constancy of the averaged
value of 
 irrespectively of �; for all values of � it falls
within the range 1.25–1.27. This may be explained as illus-
trated in Fig. 12. Points of the circle are equidistant from
point O in the E metric. In the QN metric their distances from
O vary in the range �R ,R�2�, where R is the circle radius �in
E metric�. Only four points �A� have the same distances in
both metrics. There are four points �B� for which the differ-
ence of distances is the biggest. The rest of points are inter-
mediate in this respect. For symmetry considerations it is
reasonable to estimate 
 as 1

�/4�0
�/4�sin 
+cos 
�d

1.27,

which is in the good agreement with the above empirical
results. Averaged distances to neighbors in the Euclidean
metric can be calculated analytically exploiting the rigor-
ously proved relationship �33�


�k� =
��k + 1/2�

�k − 1�!���
, �8�

where k is the number of the neighbor, ��x� is the Euler
function, � is the density of nuclei. Now relationship �8� can
also be used to estimate averaged distances to neighbors in
the QN metric exploiting the empirical coefficient 
.

V. SUMMARY

Quite a number of simulations of various 2D nucleation
and growth transformations are started on a lattice but later
are continualized to obtain analytical relationships. The Eu-
clidean metric is usually implied though sometimes it is
poorly agreed with the anisotropy of a problem. In this paper
the discrete description is kept up to the end and the metric
differs from the Euclidean metric.
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FIG. 11. Mean area computed for subsets of random domains
with various numbers of immediate neighbors.

TABLE IV. Deviation �%� of S� from S for different �.
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Nuclei density �
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FIG. 12. For points A distances from O is the same in both
metrics QN and E; for points B the difference of distances is the
biggest.
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One of the simplest possible cases has been examined:
square tiles, simultaneous nucleation, one-tile stable nuclei,
random distribution of nuclei, von Neumann neighborhood,
irreversible growth to impingement, immobile islands. Com-
pared to the continuous analog, the structure of boundaries is
much more involved. In spite of different metric, discrete-
ness and square symmetry, the averaged number of neigh-
bors remains six except very dense tessellations with high
percentage of boundary tiles. The maximum on kinetic
curves is shifted left and downwards with the increase of
nuclei density. In sparse tessellations domains with six
neighbors are kinetically representative as in the continuous
case, but for dense tessellations this is not true. Also, the
kinetic curve can be scaled in a simple manner into corre-
sponding analytically calculated curve for continuous tessel-
lation with the same metric if the nuclei density is small; and
again this is not the case for dense tessellations. Area distri-
butions of the totally transformed random domains have also
been studied. The mean area of domains with definite coor-
dination number increases linearly with the increase of coor-

dination number in the range 4 to 10 at all studied densities.
This is in agreement with the mutual situation of kinetic
curves for subsets of domains with definite coordination
numbers. The Kiang conjecture works well for area distribu-
tion in all cases. For sparse tessellations its parameter is
close to that for continuous tessellations but with the increase
of nuclei density it considerably increases. This emphasizes
the nonequivalence of discrete tessellations with different
densities in contrast to the universality demonstrated for con-
ventional Poisson-Voronoi tessellations, e.g., in �34,35�. No
universal solution for the discrete model follows from the
presented results. Further discussion of this interesting subtle
point requires similar results for Moore and hexagonal cases.
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