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A simple fluid, described by pointlike particles interacting via the Lennard-Jones potential, is considered
under confinement in a slit geometry between two walls at distance Lz apart for densities inside the vapor-
liquid coexistence curve. Equilibrium then requires the coexistence of a liquid “bridge” between the two walls,
and vapor in the remaining pore volume. We study this equilibrium for several choices of the wall-fluid
interaction �corresponding to the full range from complete wetting to complete drying, for a macroscopically
thick film�, and consider also the kinetics of state changes in such a system. In particular, we study how this
equilibrium is established by diffusion processes, when a liquid is inserted into an initially empty capillary
�partial or complete evaporation into vacuum�, or when the volume available for the vapor phase increases. We
compare the diffusion constants describing the rates of these processes in such inhomogeneous systems to the
diffusion constants in the corresponding bulk liquid and vapor phases.
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I. INTRODUCTION

Fluids confined into pores with diameters on the mi-
crometer scale down to the nanometer scale are important in
a variety of contexts: they control the properties of wet
granular matter �1�, they play a role for oil recovery from
porous rocks or compactified sands �2�, separation processes
in zeolites �3�, drying processes of food, wood, or other po-
rous solids �4�, nanofluidic devices using fluids in carbon
nanotubes �5�, dip-pen nanolithography �6�, nanolubrication
�7�, fluid transport in living organisms �8�, etc. �9–12�. Many
of these applications involve nonequilibrium processes such
as the flow of fluids in confined geometry, imbibition of flu-
ids into pores �e.g., Refs. �13–17��, surface-directed spinodal
decomposition �e.g., Refs. �18–22�� if one considers binary
fluid mixtures, or evaporation processes of fluids �4�. While
the evaporation process of bulk liquids �across a flat inter-
face� �23–29� and of small droplets �30–33� has been studied
extensively, liquid-vapor transitions under confinement have
been mostly studied emphasizing equilibrium aspects only
�9,12,34–41�. Note that we do not discuss here the inverse
process �nucleation of fluid droplets from the vapor in con-
fined systems, see, e.g., Refs. �42,43��, and we consider nei-
ther the structure �and possible rupture� of nonvolatile con-
fined liquid bridges �44,45�, nor liquid-vapor systems
confined by patterned surfaces �see, e.g., Refs. �44–47��.

In the present paper we wish to contribute to the under-
standing of the kinetics of nonequilibrium processes of con-
fined fluids considering the partial �or complete� evaporation
of liquid bridges, resulting from changes of external condi-
tions, using Molecular Dynamics methods �48–50� to simu-
late a simple Lennard-Jones fluid confined between parallel
walls. We are particularly interested in elucidating the con-
sequences of the inhomogeneity of the structure of the liquid
bridges �depending on the drying/wetting boundary condi-
tions at the confining walls �9,51–56�, there is also an inho-
mogeneity of the system in the z direction perpendicular to
the walls� on the evaporation processes.

In the following section, we shall describe the model that
is simulated and give a few comments on the simulation

method, and the quantities, that are computed. In Sec. III, we
describe the static structure of the liquid bridges �as well as
the regions of the slit pore where the vapor phase domi-
nates�, for various choices of the strength of the interaction
between the fluid particles and the walls, relating the ob-
served interfacial behavior to theoretical concepts about wet-
ting. In Sec. IV, we present some discussion on the transport
behavior of pure coexisting vapor and liquid phases, under
confinement in the slit pores. Section V then considers the
relaxation of the system after suitable parameter changes that
lead to partial �or even complete� evaporation of the liquid
bridges present in the slit pores. The kinetic evolution to-
wards the �inhomogeneous� equilibrium is documented in
detail. Finally, Sec. VI contains our conclusions, and gives
an outlook on future work.

II. MODEL AND SIMULATION METHOD

In this study we are not addressing a particular material
but rather wish to gain insight into the generic behavior of
simple fluids �such as CH4, CO2, etc.� under confinement.
Thus, we describe the fluid particles as pointlike, interacting
via truncated and shifted Lennard-Jones potential

U�r� = ULJ�r� − ULJ�rcut� ,

ULJ = 4����/r�12 − ��/r�6� , �1�

with rcut=2rmin, rmin=21/6�. Note that ULJ�rcut� is chosen
such that U�r� is everywhere continuous, with U�r�rcut�
=0. Mognetti et al. �57� have shown that this model can
describe fairly well the coexistence curves, vapor pressure,
and interfacial tension of molecules such as CH4 or even
C3H8 over a temperature regime from about 0.7Tc to Tc,
when � and � in Eq. �1� are adjusted such that the critical
temperature Tc and critical density �c are correctly repro-
duced by the model ��c, Tc can be accurately estimated from
the model by careful finite size scaling analyses of Monte
Carlo simulations of the model in the grand-canonical en-
semble, as discussed elsewhere �57,58��. Even for CO2 this
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model yields a fair description �58�, although better accuracy
can be obtained for this molecule if the quadrupolar interac-
tion is included �57�, but this is out of consideration here.

For a fluid confined in a slit pore geometry, it is also
necessary to specify the boundary conditions created by the
planar walls confining the thin film. Following Ref. �22�, we
choose an atomistic description of these walls, setting par-
ticles on a regular �and rigid� triangular lattice of lattice spac-
ing �=0.816, in the �x ,y� plane at z=1 and at z=Lz−1 �note
that henceforth lengths are measured in units of �0=1
throughout�. The interaction between wall particles and fluid
particles is chosen also of the form of Eq. �1�, but the energy
parameter � is replaced by �w=�� with � being varied from
�=0.1 to �=0.9. An additional simulation was made where
we made the interaction between the wall and fluid particles
purely repulsive: in this case, the wall particles were placed
in the planes z=0.5 and z=Lz−0.5, respectively, and rcut
=rmin was chosen in Eq. �1�, so that ULJ�rcut�=0 then. In this
case, �w=� was used. Henceforth, we shall also measure
temperature in LJ units �i.e., ��1, kB�1�. Typical linear
dimensions in x and y directions parallel to the walls were at
least Lx=30, Ly =15, choosing periodic boundary conditions
in these directions, and also Lz=15 or Lz=16 was chosen: the
reason for choosing Lx=2Ly is that then the vapor-liquid in-
terfaces that form in the slit pore for suitable total densities
will be oriented in the yz plane, perpendicular to the x direc-
tion; to minimize the interfacial free energy cost. No inho-
mogeneity in the y direction is then expected, and hence
averages of density profiles along the y direction can be
taken. When liquid bridges occur, the density distribution
must then depend on both the x and the z coordinates.

Of course, the choice of the linear dimensions in a com-
puter simulation is a subtle matter, due to finite size effects
�50,59�. While the finite size effects associated with the two
walls defining the finite width of the slit pore are the physi-
cally significant effect that we wish to study, finite size ef-
fects due to too small values of Lx and Ly are simulation
artifacts, since the real systems �if they are finite of nano-
scopic size in x and y direction as well� would have other
boundary effects rather than periodic boundary conditions.
Choice of the latter makes sense to simulate a system that is
truly macroscopic in x and y directions, of course. While
homogeneous systems �containing a single phase� typically
approach the thermodynamic limit rapidly, at least for tem-
peratures or densities outside of the critical region �59�, this
is not always the case for systems exhibiting phase coexist-
ence within a finite simulation box �38,59–61�. In particular,
when we have a liquid slab with two interfaces �perpendicu-
lar to the x-direction� in our system, we expect that both
interfaces have a finite thickness: the standard description
postulates an “intrinsic thickness” l=2�, where � is the cor-
relation length of density fluctuations in the liquid, broad-
ened by capillary waves �62�. While � diverges near the criti-
cal point of the fluid, ��� if we are far below criticality.
However, since the broadening caused by capillary waves
increases logarithmically with Ly, an interfacial thickness of
2� to 4� must be typically expected. However, the two par-
allel interfaces separating the liquid bridge from the sur-
rounding vapor in the simulation box need to be at a distance
L	 l, in order that interactions between these interfaces are

negligible. Because of the periodic boundary condition in x
direction, Lx must exceed L by a factor of 2 or 3 as well. In
order to test for possible finite size effects, we have done part
of our simulations with larger linear dimensions, up to Lx
=90.

All simulations were carried out using molecular dynam-
ics �MD� methods in the framework of the NVT ensemble.
Applying the ESPResSo package �63�, the Newton equations
of motion are integrated via the velocity Verlet algorithm
�48–50�, using a time step 
t=0.002� where the MD time
unit � is defined as �=��m /��1/2, where the mass m=1 is
chosen for the molecules. Temperature was controlled by us-
ing the Langevin thermostat and T*=0.9366 was chosen
throughout.

In order to produce initial states containing liquid bridges
surrounded by vapor, we first equilibrated dense fluids �av-
erage density ��0.5813� in a small box with Lx=30, Ly
=20, Lz=16 and 9000 particles. The density of the fluid is
calculated as �=N�3 /V, where N number of particles and
V=LxLy�Lz−2� for attractive walls, and V=LxLy�Lz−1� for
repulsive walls. After an equilibration run extending over at
least 100� we put this liquid in the center of a box with linear
dimension Lx=60, Ly =20, Lz=16, and simulate this system
over a time interval of 20 000 �. The initial stages of such a
run serve as a simulation of liquid evaporation into vacuum.
For time t�5000�, the liquid bridge is essentially well
equilibrated with respect to the coexisting vapor, and then
averages of the density profiles ��x ,z� are taken.

III. STATIC STRUCTURE OF THE LIQUID BRIDGES

In order to obtain an overview of the behavior, Figs. 1 and
2 present contour plots of the density distribution ��x ,z� for
systems of sizes Lx=60, Ly =20, and Lz=16 and Lx=90, Ly
=20, and Lz=16, respectively. In both cases the color coding
goes from dark blue, corresponding to �=0, to red, corre-
sponding to �=0.65, as indicated by the bar on the top of
each figure. The individual pictures illustrate the variation
with �w, while N=9000 particles were used throughout.
Thus, the average density in Fig. 1 is �̄�0.291 �when we use
the maximum available volume 60
20
14, remembering
that the wall particles are fixed at z=1 and at z=Lz−1=15,
respectively�, while in Fig. 2 it is only �̄�0.194 due to the
larger Lx=90. Note that at the chosen temperature T*

=0.9366 the coexisting vapor and liquid densities are �v
=0.109, �l=0.565; thus, if the density distribution would be
homogeneous in the z direction across the slit pore, we could
simply expect a two-phase equilibrium with a volume frac-
tion X= ��̄−�v� / ��l−�v� of the liquid phase, and the vapor-
liquid interfaces would simply show up as straight lines in
the z direction in Figs. 1 and 2. However, due to the particle-
wall interactions, a nontrivial inhomogeneity of the density
distribution in the z direction results, which readily shows up
in Figs. 1 and 2.

For small �w one sees in Figs. 1 and 2 clear evidence of
drying behavior: rather than observing a liquid bridge con-
necting the confining walls, there occurs in the center of the
slit pore a free standing elliptic liquid cylinder periodic in the
y direction, separated by the vapor phase that has intruded in
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between the liquid and the wall. It is obvious that the vapor-
liquid interfaces in the z direction actually are distinctly nar-
rower than along the x direction. This effect in fact is ex-
pected, of course, since confinement has a strong
constraining effect on interfacial fluctuations in the z direc-
tion, while the finite size Lx in the x direction has much less
effect to constrain the interfaces.

While in the case of Lx=60 the linear dimension of the
liquid slab in the x direction is large enough, so that in the

center of the slab the dependence of any physical properties
on the x coordinate is negligible small, for �w=0.1 to �w
=0.4, this clearly is not true for Lx=90: as �w increases the
linear dimension of the liquid slab along the x axis gets
smaller and smaller �since a larger fraction of particles now
stays in the gas phase, and for larger �w more and more
particles get adsorbed at the walls�. The elliptical shape of
the contours of constant density in Fig. 2 clearly imply that
the two interfaces separating vapor from liquid and then liq-
uid from vapor along the x direction interact with each other.
We do expect that such thin liquid slabs with interacting
interfaces can evaporate much easier than thick slabs, where
these interfaces are separated by a thick region of bulk liquid
from each other.

FIG. 1. �Color� Density distribution ��x ,z� for systems with
linear dimensions Lx=60, Ly =20, and Lz=16, for six values of �w

=0.1,0.4,0.5,0.61,0.7,0.9 �from top to bottom�. The z axis is ori-
ented along the ordinate and the x axis along the abscissa. The value
of the density � corresponds to the color code, as shown by the bar
on the top of the figure. The temperature is T*=kBT /�=0.9366. The
system was simulated for 20 000 time units �see the description in
Sec. II�, and then averages were taken over last 15 000 MD time
units �.

FIG. 2. �Color� Same as Fig. 1, but for Lx=90 instead of Lx

=60. Note that the scale along the x direction is compressed relative
to the scale for the z direction.

MOLECULAR-DYNAMICS SIMULATION OF EVAPORATION… PHYSICAL REVIEW E 79, 031604 �2009�

031604-3



For �w=0.5 the vapor no longer can intrude in between
the liquid slab and the walls, rather the liquid-vapor interface
is “cut off” by the walls. In the region from �w=0.61 to �w
=0.65 �the last one not shown�, the vapor-liquid interface
seems to run almost straight along the z direction, implying
�in the macroscopic limit of very thick slabs� a contact angle
of �=90°, while for �w�0.5 one clearly can speak about a
contact angle exceeding 90° �as long as ��180° one speaks
about “incomplete drying,” while a thick vapor region in
between the walls and the fluid slab should correspond to
�=180°, complete drying�. For �w�0.7 the shape of the liq-
uid slabs, connecting the confining surfaces in Fig. 1 sug-
gests contact angles ��90°, corresponding to incomplete
wetting conditions. However, we emphasize that for nano-
scopically thin films the concept of a contact angle is some-
what ill defined, since it requires that over distances much
larger than the interface thickness its curvature is negligible.
This condition clearly is not satisfied here. This lack of a
precise definition of the contact angle in nanoscopically thin
slits corresponds to the fact that wetting transitions in such
geometries show finite-size rounding �64�.

One can also recognize from Fig. 1 for �w�0.61 a pro-
nounced layering effect near the walls. This layering effect
obscures the “contact region” where the interface meets the
wall. For �w=0.9, the walls are coated already with precur-
sors of wetting layers, indicative of the vicinity of the
rounded wetting transition. Note, however, that for �w=0.9
the total particle number in the system does not suffice to
allow the formation of a well-defined liquid bridge reaching
bulk liquid density in the center of the system. For the larger
system �Lx=90�, the liquid bridge already has disappeared
somewhere in between �w=0.65 and 0.70, since there is
enough space for all the particles to either stay in the vapor
or get adsorbed in the precursors of the wetting layers near
the walls.

At this point, we mention that in our evaluation of simu-
lation data we always have fixed the center of mass of all the
particles right in the center of the slit pore �i.e., at x=Lx /2�.
Due to the periodic boundary condition in the x direction,
translational invariance in the x direction is implied of
course. Thus, fixing the center of mass is a convenient pre-
caution against the diffusion of the liquid along the x axis as
a whole, which would smear our the density inhomogeneity
on average, of course; such an undesirable effect could ob-
scure corresponding experimental observations, where one
cannot control the position of the liquid slab as easily.

Figure 3 shows two selected profiles ��x1 ,z� and ��x2 ,z�
in more detail, choosing x1 such that a cut through the center
of the liquid slab is performed, while x2 is chosen to monitor
the density profile through the slit pore in the vapor region,
far away from the liquid slab. In each part of Fig. 3 there are
presented plots of density for two system sizes Lx=60, Ly
=20, Lz=16 �solid lines� and Lx=90, Ly =20, Lz=16 �lines
with circles�. Density profiles for both box sizes Lx overlap
for values of parameter �w�0.65. One can see that in the
region of incomplete drying ��w=0.1� the liquid density de-
creases almost linearly with z over a significant region of z
when one approaches either wall. For �w=0.3 there is al-
ready evidence of a layering effect in the density profile.
While in the vapor phase the density is higher in the layer

adjacent to the wall than in the center of the slit pore, in the
liquid phase the behavior is different—the density in this
region is significantly higher then in the layer close to the
wall. However, for �w=0.5 the density in the center of the
slit pore is already lower than in the layers adjacent to the
walls. For �w�0.7 the layering effect is even more pro-
nounced, leading to a density that is higher even in the sec-
ond layer adjacent to the wall than in the center of the slit
pore.

In order to characterize the behavior more precisely in the
region of those values of �w where the interfaces between
vapor and liquid are approximately planar, Fig. 4 presents
magnified plots of the profiles ��x1 ,z� and ��x2 ,z� vs z,
where five values of �w from �w=0.4 to �w=0.65 are shown.
This situation where the contact angle �=90° is the “transi-
tion” from incomplete drying to incomplete wetting �51–56�.
We emphasize, however, that even in the thermodynamic
limit �Lz→�� this “transition” is a completely smooth
change, unlike the wetting transition �where �→0� or the
drying transition �where �→180°�, which become sharp
thermodynamic transitions �singularities of the surface ex-
cess free energies associated with the walls �51–56�� in this
limit. We also note that the density profile in the vapor phase
becomes almost horizontal already for �w=0.4, while the
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FIG. 3. �Color online� Density profiles ��x1 ,z� and ��x2 ,z� plot-
ted vs z for eight values of �w=0.1,0.3,0.5,0.61 �from top to bot-
tom, left column� and �w=0.65,0.7,0.8,0.9 �from top to bottom,
right column�. Solid lines and lines with circles represent density
profiles for the system 60
20
16 �see Fig. 1� and 90
20
16
�see Fig. 2�, respectively. In each frame of the panel the upper curve
shows ��x1 ,z� with x1 being defined via ��x1 ,z�=�25

35��x ,z�dx /10,
and the lower curve shows ��x2 ,z�, with x2 being defined via
��x2 ,z�= ��0

3��x ,z�dx+�57
60��x ,z�dx� /6. Thus, the upper curve shows

the density profile along a cut through the center of the liquid slab,
while the lower curve shows the density profile through the vapor
region far away from the vapor-liquid interface. These averages are
carried out for time above t�5000 over 15 000 MD time units �.
Horizontal broken straight lines show bulk �l and �g, respectively.
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density profile in the center of the liquid slab becomes hori-
zontal �in the regime of z where the layering oscillations
have died out� only for �w�0.65, however. Thus, for �w
=0.55 to �w=0.61, where we approximately have �=90°,
there is a clear enhancement of the density in the first two
layers adjacent to the walls. Of course, it would be desirable
to study these behaviors varying also Lz over a wide range,
but this has not been attempted since it would involve a
major computational effort. We emphasize again, that our
simulations for these rather thin slit pores are not suitable to
precisely estimate where drying and wetting transitions occur
�which would show up as macroscopically thick vapor layers
at the walls for the liquid profile ��x1 ,z� or liquid layers at
the walls for the vapor profile ��x2 ,z�, respectively�.

Another caveat that must be made with respect to the
quantitative analysis of our results concern finite size effects
associated with the linear dimension Lx. Comparing, e.g., the
curves ��x1 ,z� for �w=0.65 for Lx=60 and Lx=90 �see Fig.
3� we see that for Lx=90 the density clearly is smaller: since
the total particle number was N=9000 in both cases, more
particles were required for Lx=90 to create a vapor phase
with the proper density in the box volume, and the remaining
particles were only sufficient for a liquid slab that was too
thin to reach the bulk liquid density in its center. This fact is
emphasized in Fig. 5, where the density profiles �̄�x�
=�1

Lz−1��x ,z�dz / �Lz−2� are shown for six values of �w.
While for Lx=60 there is an �albeit small� region of x where
�̄�x� is flat in the center of the liquid slab, for Lx=90 the right
and left interfaces clearly are no longer well separated from
each other. This effect becomes more dramatic, of course, if
one reduces the total number of particles in the slit pore �see
the curve for N=4500, Lx=45 and �w=0.6, as an example�.
Note that the equilibrium conditions for phase coexistence
under confinement are equal temperature and equal chemical
potential throughout our systems; the local pressure �and its
change due to the curvature of the interfaces in Figs. 1 and 2�
does not play any role in characterizing the equilibrium con-
ditions here.

We conclude this section by emphasizing that the purpose
of our paper is not the study of wetting and drying transi-
tions, but the study of liquid-vapor coexistence �and evapo-
ration phenomena� in slit pores that have nanoscopically
small linear dimensions. But the purpose of the present sec-
tion was to clarify the equilibrium properties of phase coex-
istence under such conditions, and to give some hints about

the finite size effects that one needs to understand for a
proper interpretation of the observed behavior.

IV. EFFECT OF LIQUID-VAPOR COEXISTENCE IN SLIT
PORES ON THE TRANSPORT BEHAVIOR

Choosing a system in a cubic box geometry of size L

L
L and periodic boundary conditions, it is straightfor-
ward to obtain the self-diffusion constants of the particles
from their mean-square displacement as a function of time,
using the Einstein relation �48,49�. This diffusion constant in
the bulk �b� hence becomes

Db = lim
t→�

���r�i�t� − r�i�0��2	�/�6t� . �2�

Here it is understood that the average �¯	 includes an
average over all particles �labeled by index i in Eq. �2�� in
the system, as well as an average over the origin of time
�there exists time translation invariance in thermal equilib-

0 1 2 3 4 5 6 7 8
z

0

0.2

0.4

0.6

0.8

1

ρ(
x 1,z

)

ε
w

=0.40
ε

w
=0.50

ε
w

=0.55
ε

w
=0.61

ε
w

=0.65

L
x
=60(a)

0 1 2 3 4 5 6 7 8
z

0

0.1

0.2

0.3

0.4

0.5

ρ(
x 2,z

)

(b)

FIG. 4. �Color online� Magni-
fied plot of finely resolved density
profiles in liquid ��x1 ,z� �a� and
vapor ��x2 ,z� �b� plotted vs z for
�w=0.4, 0.5, 0.55, 0.61 and 0.65,
as indicated in the figure, for Lx

=60, all other parameters being
the same as in Figs. 1–3. Note that
the cells for the averaging have a
width �z=0.125 in the z direction.

0

0.1

0.2

0.3

0.4

0.5

L
x
=60, N=9000 L

x
=90, N=9000

0

0.1

0.2

0.3

0.4

ρ(
x)

0 20 40 60 80
x

0

0.1

0.2

0.3

0.4

L
x
=45, N=4500, ε

w
=0.6

0 20 40 60 80

ε
w

=0.40 ε
w

=0.50

ε
w

=0.57

ε
w

=0.63ε
w

=0.61

ε
w

=0.59

FIG. 5. �Color online� Density profiles �̄�x� averaged in the z
direction plotted vs x for Lx=60 and Lx=90, for six values of �w, as
indicated.

MOLECULAR-DYNAMICS SIMULATION OF EVAPORATION… PHYSICAL REVIEW E 79, 031604 �2009�

031604-5



rium, of course�. Using Eq. �2�, the diffusion constants of
bulk vapor and liquid have been obtained, at vapor-liquid
coexistence

Dv,b = 1.059, Dl,b = 0.173. �3�

When we consider a fluid confined in a slit pore, one
needs to consider the following effects: first of all, the mean-
square displacement can diverge only in the x and y direc-
tions, but not in the z direction perpendicular to the walls.
This type of anisotropy of diffusion in equilibrium was also
studied by Bock et al. �65� for a system with patterned walls.
For every thick slit pores in pure vapor and liquid phases,
where the relative effect of the walls on the diffusion con-
stant can be neglected, we expect that the diffusion constants
in the slit �s� pore become

D�,s = �2/3�D�,b, Dl,s = �2/3�Dl,�. �4�

However, the finite linear dimension of the slit pore in the
z direction does introduce slow transients in the behavior of
the mean-square displacement: a particle starting in the cen-
ter of the slit pore can also diffuse into the z direction over a
distance Lz /2 before the confinement becomes effective. In
fact, such a particle hence can diffuse similar to a three-
dimensional bulk system over a time tD= �Lz /2�2 / �6Db� be-
fore the quasi-two-dimensional diffusion sets in. For this rea-
son, we have defined in terms of the Cartesian coordinates
xi�t�, yi�t�, and zi�t� some effective time-dependence diffu-
sion constants as follows:

D�t� = ��xi�t� − xi�0��2 + �yi�t� − yi�0��2 + �zi�t� − zi�0��2	/�6t� ,

�5�

D�xy��t� = ��xi�t� − xi�0��2 + �yi�t� − yi�0��2	/�4t� , �6�

D�xz��t� = ��xi�t� − xi�0��2 + �zi�t� − zi�0��2	/�4t� , �7�

and

D�yz��t� = ��yi�t� − yi�0��2 + �zi�t� − zi�0��2	/�4t� . �8�

As long as there do not occur any interfaces, the symme-
try of the problem requires D�xz��t�=D�yz��t�, of course, and
this symmetry is in fact nicely obeyed by the numerical data
�Fig. 6�. On the other hand, for t� tD confinement is not
effective, and then the time variation of D�xy��t�, D�xz��t�, and
D�yz��t� is similar. However, at late times D�xy��t� converges
to Ds while D�xz��t� and D�yz��t� converge to Ds /2, since at
late times these mean-square displacements sample diffusion
only in one direction. This leads to a maximum of D�xz��t�
and D�yz��t� at intermediate times �Fig. 6�. Also D�t� for the
confined system exhibits a maximum at about the same time,
while the time dependence of D�xy��t� is always monotonic.

From Fig. 6 it is obvious that even in the bulk we must
run the system over a time ��102 to reach saturation at the
asymptotic values of D. The diffusion constant in the vapor
is about 6 times larger than in the liquid as noted in Eq. �3�,
but the times for the mean-square displacements to converge
to these values are about the same. In the bulk, no Cartesian
coordinate is distinguished, and hence D�t�=D�xy��t�
=D�xz��t�=D�yz��t�. This symmetry property indeed is rather

nicely fulfilled, and this is only a test of the very good sta-
tistical accuracy of our data.

While for the confined liquid D�xy��t� follows rather
closely the behavior of the bulk D�t�, for �w=0.59, for the
confined vapor D�xy��t� is significantly smaller than D�t�. Pre-
sumably, this is due to the fact that the vapor phase at �w
=0.59 clearly is rather inhomogeneous �see Fig. 4�.

The diffusion constants D�t� of the confined system settle
down at 2

3D�xy��t→�� while the diffusion constants D�xz��t�
=D�yz��t� settle down at 1

2D�xy��t→��. These ratios 2 /3, 1 /2
trivially follow from the normalization of the mean-square
displacements in Eqs. �5�–�8� and the fact that only mean
square displacements of x and y coordinates diverge. Since
the relaxation time �D, defined above, which measures how
long it takes for the particles to feel the confinement does
scale inversely with the diffusion constant, it is plausible that
it takes about six times longer in the liquid to reach the
asymptotic values of D�t� and D�xy��t� than it does in the
vapor phase. However, the absolute magnitude of these times
is much larger than expected: using Lz /2=8 we would esti-
mate that in the liquid tD is of the order of 100 only.

V. SIMULATION OF EVAPORATION PROCESSES

A. Evaporation of liquid into vacuum

In this section, we consider nonequilibrium relaxation
processes where due to some change of external conditions
the size of a liquid bridge shrinks. For example, the lateral
linear dimension available for the fluid suddenly increases
�we shall not discuss how such a process could be physically
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FIG. 6. �Color online� Log-log plot of time-dependent diffusion
constants D�t�, D�xy��t�, D�xz��t�, and D�yz��t� vs time, for systems at
T*=0.9366 both in the vapor phase �which in the bulk has a density
�=0.10866� and in the liquid phase �which in the bulk has a density
�=0.565032�. Both data for bulk systems �linear dimensions 27

20
16 for the pure liquid at coexistence and 140
20
16 for
the pure vapor phase at coexistence, with periodic boundary condi-
tions in all three directions� and for confined systems in single-
phase states �confined by walls with �w=0.59, choosing linear di-
mensions 34
20
16 for the liquid and 240
20
16 for the
vapor� are included. Lines with circles correspond to bulk results
for vapor and lines with triangles to bulk results for liquid. Lines
without symbols correspond to data for confined systems.
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realized in an experiment�. Other conceivable changes of ex-
ternal parameters could involve changes of temperature, or
of the wall-particle interaction, etc.

The first process that is studied is the evaporation of liq-
uid into “vacuum,” i.e., we conceive the situation that a pore
is completely filled with liquid, and due to a sudden change
of some external conditions �e.g., a confining wall limiting
the lateral extent of the pore in the x direction is removed�
additional pore volume becomes available. The first situation
for which this process is considered refers to pore walls with
a purely repulsive wall-particle interaction �see Sec. II�. In
this case we chose an initial box with linear dimensions Lx
=30, Ly =15, Lz=15, walls being placed at z=0.5 and z=Lz
−0.5, respectively, and periodic boundary conditions are ap-
plied in x and y directions. This system then contains N
=4500 particles so that the average density of the liquid in
the simulation box is 0.388 while the density in the center of
the box �for z�Lz /2� is about 0.598. Then at time t=0 the
periodic boundary condition in the x direction is removed,
and the system is placed into the center of a box that is twice
as large in the x direction, Lx=60, leaving all other linear
dimensions and boundary conditions invariant. For times t
�0 a periodic boundary condition in the x direction appro-
priate for Lx=60 is reintroduced. The system �which was in
equilibrium and translationally invariant in the x direction for
times t�0� now is far out of equilibrium, because there oc-
curs “vacuum” �no fluid particles� for 0�x�15, 45�x
�60, while we have a fluid �inhomogeneous in the z direc-
tion because of the repulsive walls, of course� in the region
from 15�x�45 while at x=15 and x=45 there occur sharp
fluid-vacuum interfaces at t=0. Figures 7�a�–7�d� show the
resulting time evolution of the local density ��x , z̄ , t� where
we have introduced layers 1,2,3,4,5 such that in layer 1
��x ,z , t� is averaged from z=0 to z=1.5 as well as from z
=15 to z=13.5, in layer 2 from z=1.5 to z=3 and from z
=13.5 to z=12, in layer 3 from z=3 to z=4.5 and from z
=12 to z=10.5, in layer 4 from z=4.5 to z=6 and from z

=10.5 to z=9, while layer 5 comprises the central part of the
slit pore �from z=6 to z=9�. Due to the strongly repulsive
wall-fluid particle interaction, almost never any particles oc-
cur in layer 1, and hence only layers 2, 3, 4, and 5 are shown
in Fig. 7. One can see that the interfacial profile in the x
direction rapidly smoothens, and the density in the central
region of the liquid slab also decreases as fluid particles
evaporate and diffuse into the region of the vapor phase. It
only takes a few hundred MD steps to establish full liquid-
vapor equilibrium �with a homogeneous density of the vapor
in the x direction, away from the liquid-vapor interfacial re-
gions� as the comparison between curves for t=500 and t
=20 000 MD time steps shows. Note that the fluid particles
that “populate” the volume region which in equilibrium form
the vapor phase have to come from the interior of the liquid
slab and move through the region where the liquid-vapor
interface forms. The thickness of this interface gradually in-
creases with time until the equilibrium interfacial thickness
is reached and thus there occur values of x where the time
evolution of the local density is nonmonotonic. Even for the
density fully averaged in the z direction, ��x , t�
=Lz

−1�0
Lz��x ,z , t�dz, a clear nonmonotonic time evolution oc-

curs for x=13.5 and x=14.5 �Fig. 8�. This happens because
as the thickness of the liquid slab shrinks the interfacial pro-
file moves inward, away from its initial position at x=15, of
course. Outside of the wings of the interfacial profile, e.g.,
for x=10.5, there is a monotonous density increase while in
the interior of the liquid slab there is a continuous density
decrease.

Of course, one can also study how the density profiles in
the z direction changes, at different location in the x direction
along the pore �Fig. 9�. One can see here that in the region
where the vapor forms �Fig. 9�a�� there is a monotonic in-
crease of density for all z, but the central region takes longest
to equilibrate �for t=200 MD time units there is still a clear
deviation from equilibrium�. In the interfacial region, there is
a pronounced overshoot of the density in the center of the
pore, Fig. 9�b�, while inside the region when the liquid ini-
tially was situated there is a monotonic density decrease.

0

0.1

0.2

0.3

0.4

0.5
t=1
t=10
t=50
t=100
t=500
t=20000

0 10 20
x

0
0.1
0.2
0.3
0.4
0.5
0.6ρ(

x,
z,

t)

0 10 20 30

layer 2 layer 3

layer 4 layer 5

(a) (b)

(c) (d)

FIG. 7. �Color online� Time evolution of the average density
��x , z̄ , t� during the evaporation of liquid into vacuum after the
change of linear dimension Lx=30 to Lx=60 for layer 2 �a�, 3 �b�, 4
�c�, and 5 �d�. The region of z over which ��x ,z , t� is averaged in the
different layers is explained in the main text. Different curves indi-
cate time t after the volume change, as indicated. These data result
from averaging over 100 independent and equivalent runs.
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This is large effect near the interfaces �Fig. 9�c�� and only a
small effect in the central region of the liquid slab �Fig.
9�d��.

It is of similar interest to study this process when we
introduce a nonzero fluid-wall interaction �w �Fig. 10�, as has
been studied �with respect to the thermal equilibrium as-
pects� already in Sec. III. It is interesting to note that there is
little effect of �w on the time evolution of the total density
��x , t� averaged over all distances z �Fig. 11�, as long as the
final equilibrium state still contains a thick liquid slab in the
center of the film. This is the case still for �w=0.59, but no
longer for �w=0.9 �see also Sec. III�. Also in the case of

nonzero �w a time of about �=500 MD time units suffices to
establish the new liquid-vapor equilibrium, with more or less
pronounced precursors of wetting layers at the walls of the
slit pore, as described in Sec. III. In view of our estimate of
diffusion time scales in Sec. IV, this relatively fast establish-
ment of equilibrium is perfectly reasonable.

One may also ask the question whether the time scale of
equilibration depends on the z coordinate across the film.
Figures 9 and 10 indicate that such a dependence, if it exists,
is very weak. One could expect, however, that such an effect
should occur for much thicker slit pores under conditions,
where the vapor density is lower in the center of the slit,
while the precursors of the wetting layers then can be several
particle diameters thick. In this situation, the relaxation time
in the liquid layers adjacent to the walls could be much
larger than in the vapor region. In our case, however, even
for �w=0.9 where pronounced layering in the dense regions
that build up close to the walls is observed �Fig. 10� no
significant slowing down has been detected.

B. Evaporation of vapor into vacuum

In the previous subsection we have considered the situa-
tion that for a slit pore completely filled with liquid an addi-
tional volume becomes available, into which evaporation can
take place, and have presented data that illustrate how liquid-
vapor interfaces form and a vapor-liquid phase equilibrium is
established. In the present subsection, we consider the alter-
native scenario of a slit pore, in which such a vapor-liquid
phase equilibrium already occurs, and by an external opera-
tion additional volume for the vapor phase becomes avail-
able. Of course, when the vapor spreads into the part of the
volume which initially is empty, the average vapor density
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decreases, and the vapor no longer is in equilibrium with the
liquid phase, with which it has coexisted in equilibrium for
time t�0. As a result, also liquid will evaporate again,
driven by the density gradient that occurs in the vapor re-
gion, until the density in the whole region taken by the vapor
has adjusted to the value the vapor density must have at
coexistence with the liquid in thermal equilibrium at the cho-
sen temperature and boundary conditions �i.e., value of �w�
at the walls of the confining slit pore.

Using the final equilibrium states for the system with lin-
ear dimensions Lx=60, Ly =15, Lz=15 with purely repulsive
walls as an initial condition, we have increased the linear
dimension in the x direction from Lx=60 to Lx=72. Due to
this rather modest increase of Lx, the liquid slab in the center
of the system does not evaporate completely, but simply gets
only a bit smaller, as a consideration of the average profile
��x , t� shows �Fig. 12�. One sees that the strong density gra-
dient �where originally the average density ��x , t=0� jumps
from about 0.092 to zero� at x=6 and x=66 �the vacuum
takes the region 0�x�6 and 66�x�72 at t=0� smooths
out already during first 10 MD time units, and for t=100 the
vapor density in the region 0�x�12 and 60�x�72 is al-
most independent of x, but the density in this region is dis-
tinctly smaller than the critical coexistence density. The
thickness of the liquid slab has remained almost unchanged.
Thus, in this initial regime of times it is basically the vapor
present in the original system that has spread out into the
empty region, which is understandable since the diffusion
constant in the liquid region is much smaller, and also the
driving force for evaporation of the liquid slab is clearly not
very large. From Fig. 12 one can see that the shape of the
interfacial profile �at least in its central part� does not change
with time, it is only the interface position �which we may
characterize precisely from the inflection point of ��x , t� in
Fig. 12� that shifts in the time regime from t�100 to t
�500 with approximately constant velocity, while for t

�500 the vapor density for x�12 and x�60 starts to satu-
rate, and then the interface velocity also decreases to zero.

As in the cases studied so far, we have again tried to
obtain more detailed information on the spatially resolved
data. At the slabs centered at x=0.5, 12.5, 24.5, and 34.5 �all
slabs have a width �x=1.0� we have followed the time evo-
lution of ��x , z̄ , t�, defining the positions z̄ of the five “slices”
in the z direction in the same way as in the equilibrium case.
Since 100 runs needed to be followed for 10 000 MD time
units, this part of the study involves a major computational
effort, although the statistical fluctuations necessarily are still
rather large �Fig. 13�. One can see that for t�2000 there is
no significant relaxation any more, while times t�500
clearly are not enough to fully establish equilibrium. While
in the center of the interfacial region �x=24.5� the relaxation
is slow but the density there decreases in a monotonic fash-
ion, a nonmonotonic density relaxation occurs in the wings
of the profile �x=12.5� far away from the walls. In the re-
gime closer to the walls �layers 1 and 2� the relaxation is
always much faster, however.

C. Transient diffusion during evaporation processes

It is possible in the simulation to ask the question how the
presence of an evaporation process shows up in the time
dependence of the mean-square displacement of the particles.
Experimentally, such a question could be asked, e.g., for
colloid-polymer mixtures �66�, where a vapor liquid type
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phase separation occurs for suitable conditions, and it is pos-
sible to follow the motion of individual colloid particles with
fluorescent labels �67�. In Fig. 14, we show representative
results for the time-dependent diffusivities defined in Eqs.
�5�–�8� for an evaporation simulation where Lx was changed
from Lx=30–60 at t=0. Unlike the situation discussed in
Sec. IV, where the choice of the origin of time did not play
any role since the system in equilibrium obeys time transla-
tion invariance, this is no longer the case now: all quantities
in Eqs. �5�–�8� depend on two times now, the time chosen for
the origin t=0 there, and the time t elapsed since then. We
have not attempted to study this non-stationary transport
problem in full detail, however, but focus only on the case
where the deviation from equilibrium is strongest, i.e., when
the origin of time chosen in Eqs. �5�–�8� coincides with the
time where the change of Lx is performed.

While the initial ballistic regime �where D�t�� t� that one
can recognize for 1� t�6 in Fig. 14, is not much affected by
the fact that the system is out of equilibrium, for t�6 a very
different behavior occurs: D�yz��t� becomes slower for some
transient time period, while for t�20 another speed-up oc-
curs, and near t=100 a maximum of D�yz��t� occurs, followed
by a slow decay to the asymptotic value. The precise height
and location of this maximum depend on the choice of �w
slightly. All other time-dependent diffusion constants do con-
tain also mean-square displacements in the x direction, and
they show a strong speed up already at times t�6. We at-
tribute this speed up to the drift that occurs in the x direction:
since it is more likely for the particles to move in the x
direction than in any other direction, D�yz��t� exhibits a
slower increase than in the ballistic regime. This nonequilib-
rium enhancement of D�t� and the various choices for
D�����t� �� ,�=x ,y ,z� shown in Fig. 14 leads to maxima in
most of the mean-square displacements that are more pro-
nounced than the corresponding data in the confined pure
phases in equilibrium �Fig. 6�. The diffusion constants that
the systems relax to, which show up as the flat plateaus in
Fig. 14 for t�2000, have values in between that of confined

pure liquid and vapor phases, consistent with the �qualita-
tive� expectation. Of course, we are far from a quantitative
understanding of transport phenomena during relaxation in
such inhomogeneous two-phase systems in confined geom-
etry.

VI. CONCLUSIONS

Fluids confined in slitlike pores can form liquid bridges
coexisting with vapor at temperatures below the critical
point. In the present work, we have studied for a simple
Lennard-Jones model of a fluid the static structure of such
liquid bridges, for several typical cases of fluid-wall interac-
tions, corresponding to �incomplete� drying and wetting con-
ditions. We have used molecular dynamics simulations to
explore the partial �or complete� evaporation of such bridges
resulting from changes of external thermodynamic control
parameters and we have discussed the interplay of finite size
effects �associated with the finite width of the slit pore, or
with the finite linear dimensions of the liquid bridge in the
directions parallel to the slit walls, or both� and surface ef-
fects due to the walls.

When one considers the density variation in the direction
perpendicular to the confining walls, one finds that both in
the liquid phase and in the vapor phase the density ap-
proaches the values of bulk liquid and vapor at the coexist-
ence curve, after about only five Lennard-Jones diameters, if
one stays away from the region where liquid-vapor interfaces
run across the slit pore �this condition also requires, of
course, that the liquid bridge is thick enough that the two
interfaces separating it from the vapor phase are noninteract-
ing�. This finding holds for all choices of the wall-fluid in-
teraction �only when the slit width D gets several orders of
magnitude larger than the Lennard-Jones diameter and if one
is very close to conditions of complete wetting or complete
drying, would be a larger inhomogeneity in the direction
perpendicular to the wall expected�. On the other hand, when
the two interfaces between the liquid bridge and the vapor
are close enough together so that their interaction cannot be
neglected �e.g., the case �w=0.9 in Figs. 1 and 3; �w=0.7 in
Figs. 2 and 3�, the density inside the liquid bridge remains
smaller than in the bulk, and one can observe a smooth
crossover to the state where the liquid “bridge” rather should
be described as two wall-attached droplets opposite of each
other �Fig. 2, �w=0.7�. Changing the thermodynamic condi-
tions, in this way a smooth crossover from states containing
a bridge to states without a bridge �Fig. 2, �w=0.9� are pos-
sible, and no sharp phase transitions �in the sense of a sin-
gular behavior of thermodynamic potentials or their deriva-
tives� are involved, when all linear dimensions considered
remain finite.

For the conditions studied, there is a significant �but not
too strong� dynamic asymmetry between the coexisting
phases in the bulk �the diffusion constant of the vapor is
about 6 times larger than that of the liquid, Fig. 6�. When one
considers either pure vapor or pure liquid phases in confine-
ment, the crossover from three-dimensional to quasi-two-
dimensional diffusion already causes slow transients in the
mean square displacements, Eq. �6� of the order of several
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thousand MD time units �physically, this may correspond to
about 10 ns�. It turns out that this time-scale associated with
diffusion in confined geometry in equilibrium is larger than
the time scale on which evaporation processes take place
�Figs. 9–13�. Both the evaporation of liquid into vacuum and
of vapor into vacuum is essentially completed after a few
hundred MD time units already. When the vapor that evapo-
rates into the vacuum still coexists with a liquid bridge in the
center of the slit pore, the liquid bridge must somewhat
shrink to maintain local thermal equilibrium: in this way the
establishment of a density gradient in the vapor region of the
system can be avoided. During the evaporation process,
some of the mean-square displacements show superdiffusive
behavior �Fig. 14�.

Of course, our observations are only a first step towards
the full clarification of the problem: it would be interesting to
vary both parallel and perpendicular linear dimensions over
at least a decade systematically, to clarify under which con-
ditions the evaporation process becomes much slower �which

then would be relevant for applications�. Also a study of the
variation with temperature would be interesting. However,
all such extensions need substantial computer resources, and
must be left to future work. However, we hope that the
present work stimulates both the development of phenom-
enological analytical work and experimental studies on these
issues.
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