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Persistent correlation of constrained colloidal motion
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We have investigated the motion of a single optically trapped colloidal particle close to a limiting wall at
time scales where the inertia of the surrounding fluid plays a significant role. The velocity autocorrelation
function exhibits a complex interplay due to the momentum relaxation of the particle, the vortex diffusion in
the fluid, the obstruction of flow close to the interface, and the harmonic restoring forces due to the optical trap.
We show that already a weak trapping force has a significant impact on the velocity autocorrelation function
C(t)=(v(r)v(0)) at times where the hydrodynamic memory leads to an algebraic decay. The long-time behavior
for the motion parallel and perpendicular to the wall is derived analytically and compared to numerical results.
Then, we discuss the power spectral densities of the displacement and provide simple interpolation formulas.
The theoretical predictions are finally compared to recent experimental observations.
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I. INTRODUCTION

Understanding and controlling the motion of small colloi-
dal particles suspended in fluids and confined to small vol-
umes are essential in many applications in microfluidics [1]
and biophysics [2]. Thermal fluctuations of the surrounding
fluid agitate the colloids giving rise to Brownian motion.
Positioning the particle close to an interface or membrane
and the direct optical observation of its trajectories allow in
principle to use the bead’s motion as a sensor for the chemi-
cal and physical properties of these two-dimensional sur-
faces. For example, the presence of surfactants [3], surface
tension and elasticity [4,5], or an adsorption layer [6] modi-
fies the frequency-dependent mobility close to the interface.
To establish Brownian motion as a local reporter of
frequency-dependent surface properties, a detailed under-
standing of the complex interplay between the hydrodynamic
flow and the colloidal thermal fluctuations is a prerequisite.
The simplest effect known as surface confinement, namely,
the anisotropic reduction in the diffusion coefficient close to
a bounding wall [7,8] has been directly observed experimen-
tally only very recently [9,10]. To gain insight beyond the
transport coefficients, one should record the time-dependent
information, e.g., the mean-square displacement or the veloc-
ity autocorrelation, at time scales before the regime of simple
diffusion is attained. Using weak optical trapping the quasi-
free Brownian particle’s trajectory can be monitored inter-
ferometrically [11] with a time resolution of a few microsec-
onds and a simultaneous positional sensitivity in the
subnanometer regime [12,13].

In the diffusive regime the momenta of the colloid are
equilibrated with the surrounding fluid and are irrelevant for
the Brownian motion. At very short times the particle’s mo-
tion is ballistic as expected by Newton’s laws. Hence, only
after the colloid’s initial momentum is transferred to the fluid
the particle undergoes a random walk characterized by dif-
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fusion coefficients. The time scale where this transition oc-
curs may be naively estimated by balancing the particle’s
inertia with the Stokes drag 7,=m,/6mna, where m,, denotes
the mass of the colloid, a is its radius, and # is the shear
viscosity of the fluid. Since momentum is conserved it can
only be transported by vortex diffusion giving rise to another
characteristic time scale Tf=a2pf/ 7, where py is the density
of the fluid. The time a vortex emitted from the colloid to
reach the wall separated at a distance 4 may be estimated by
the characteristic time Tw=/’l2pf/ 7. The dynamical informa-
tion on how the diffusive regime is reached is encoded in the
velocity autocorrelation function (VACF) Cy(2)=(v,(t)v,(0))
for the motion parallel to the surface and similarly perpen-
dicular to the wall. In bulk the VACF exhibits a power-law
decay 3% at long times due to slow vortex diffusion. This
long-time tail is also expected in the presence of a wall for
times up to 7,. For longer times this leading nonanalytic
behavior is canceled and a more rapid decay is expected
since the wall can carry away the momentum much faster.
An algebraic decay > for motion parallel and a r~”'> long-
time tail for motion perpendicular to the wall have been pre-
dicted by Gotoh and Kaneda [14] extending an earlier work
of Wakiya [15]. However, the result for the perpendicular
motion is erroneous, as pointed out by Felderhof [16]. He
succeeded also in calculating the frequency-dependent mo-
bility for all frequencies in both directions and thus giving an
analytical solution for the motion close to the wall up to
Fourier transform. Later, he generalized this work to the case
of a compressible fluid [17] and to a second bounding wall
[18]. Computer simulations for a colloidal particle confined
between two walls demonstrate that the long-time behavior
of the VACF is strongly affected by the confinement [ 19-23].

Recently, we have reported direct measurements of the
velocity autocorrelation function of a single colloid im-
mersed in water close to a bounding wall [24]. We have
observed that the time-dependent VACF becomes anisotropic
and exhibits the nonalgebraic tails that had been anticipated
much earlier [14-16]. To observe the particle for sufficiently
long times close to a wall, we used a trap constraining the
Brownian motion even more. The optical trap introduces a
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harmonic restoring force —Kx, where x denotes the displace-
ment from the trap center and K is the spring constant. Ig-
noring the wall another time scale can be constructed, 7
=6mna/K, characteristic of the positional equilibration in
the trap.

Here we supplement our experimental results with a deri-
vation of the theoretical description of the Brownian motion
confined by a harmonic potential and a bounding wall. In
particular, we discuss the complex interplay of the weak trap
with hydrodynamic memory originating from the obstructed
vortex motion. We show that even if the trapping time 7
exceeds the characteristic time scales of particle momentum
relaxation T fluid momentum diffusion Th and the wall-
vortex reflection 7,, by several orders of magnitude it still has
a significant influence on the velocity autocorrelation func-
tion. Section II provides a brief introduction to the theoreti-
cal framework of Felderhof, which is extended by a har-
monic restoring force in Sec. III. An analytical discussion of
the emerging long-time tails is presented in Sec. IV followed
by a numerical study of the VACF and the power spectral
density of the displacement in Sec. V. A comparison to our
experimental results is shown in Sec. VI.

II. FELDERHOF’S FRAMEWORK

In this section we review the theoretical basis elaborated
by Felderhof [16] for the motion of a single colloid in the
vicinity of a wall. The fluid is treated as a continuum de-
scribed by the Navier-Stokes equations. The colloid is mod-
eled as an impenetrable sphere embedded in a viscous in-
compressible fluid. At the particle’s surface the usual no-slip
boundary conditions are imposed. By the fluctuation-
dissipation theorem the velocity autocorrelation function is
related to the frequency-dependent admittance [25]; hence, it
suffices to calculate the deterministic velocity response of
the colloid to an external force.

The external force R(#) causes the motion of both the
particle and surrounding fluid, which reacts by exerting a
time-dependent drag force. Newton’s second law for the ac-
celeration of the sphere reads after a temporal Fourier trans-
form —iw(m,-m,)U,=-F,+R,, where U, is the velocity of
the colloidal particle, m, is its mass, and my denotes the mass
of the displaced fluid. The total induced force F, corre-
sponds to the frequency-dependent drag force on the particle
up to the acceleration force —iwm U, of a rigid sphere of
fluid of equal radius. We shall employ the point-particle limit
where inhomogeneities of the flow on the scale of the colloid
are ignored.

To calculate the total induced force one maps the problem
in the presence of a bounding surface to a corresponding one
in infinite space and employs the generalized Faxén theorem
of Mazur and Bedeaux [26]. For an unbounded fluid the
frequency-dependent induced force F, is

F,= {{(w)—%iwmf](Uw—v;) (1)

with {(w)=6mna(l+\-iwTy) and v, denoting the unper-
turbed flow evaluated at the position of the particle ry. The
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branch cut is chosen such that V-iw7;=(1-i)Vw7,/2. Then
consider as acting flow

v/ (r) = v,(r) = vo,(r), 2)

where v, (r) and v,,(r) denote the solutions of the Navier-
Stokes equation in response to a point force R, acting at r,
in the presence of a bounding surface and in the infinite
space. Clearly, v/ (r) satisfies the homogenous Stokes equa-
tions. The key idea is that v, (r) can be interpreted as a flow
in infinite space resulting from the force R,, with v/ (r) as an
externally acting flow. Yet, for flows in infinite space the
generalized Faxén theorem applies and the induced force can
be calculated easily.

By linearity of the Navier-Stokes equation, the fluid re-
sponse to a point force R, acting at r, is obtained by

Va)(r) = G(r7r0) ' Rw’ VOw(r) = GO(r - rO) : Rwa (3)

where G(r,ry) and Gy(r-r,) are the corresponding (tensor)
Green’s functions. Then the acting flow at the position of the
particle reads v, =F(ry, w)R,,, where

F(rg,») = lim [G(r,ro) - Gy(r,1)] (4)

l'ﬂl'o

defines the reaction field tensor. Its frequency dependence
only enters via the ratio 4/ 6= v’wrf/ 2, where h is the distance
to the wall and 6=\27/ psw denotes the skin penetration
depth. Combining Newton’s second law, Faxén’s theorem,
and the reaction field approach, one finds for the force bal-
ance

—iw(m,-m)U,=- [g’(w) - %iwmf] [U,- F(rp,o)R,]

+R,,. (5)

Solving this equation for the particle velocity yields U,
=)(w)R,,, where the response function Y(w) is called the
admittance tensor and corresponds to a frequency-dependent
mobility.

Consider first the case where the wall is infinitely far
away and the reaction field tensor vanishes. Then one finds
for the admittance for infinite space

Yo(w) =[~iwm™ + {(w)]™". (6)

Here m"=m,+m;/2 can be interpreted as the effective mass
of the particle since for a particle moving in an ideal fluid
with constant velocity U the total kinetic energy including
the dragged fluid is given by m*U?/2 [27].

The general result in presence of a bounding wall can then
be expressed as

V(rp,w) = yo(w){l + 6’7T7](1<1 +V-iwT+ L;:)Tf>

XF(rO,w)] (7)

Thus, all modifications due to the bounding wall are de-
scribed by the reaction field tensor. By symmetry only the
motion parallel and perpendicular to the wall, ) (r,, ) and
Y, (ry,w), has nonzero components. Felderhof succeeded in
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providing a full analytical result for the frequency depen-
dence of the corresponding reaction field tensors. We have
verified the sophisticated results for the parallel motion, Eq.
(3.9) in [16], and the perpendicular motion [28]. For further
analysis, in particular, to evaluate the long-time tails in the
velocity autocorrelation function, it is sufficient to know
their corresponding low-frequency expansions

F”(l’l,(l)) = ;<— 2 +v-— 2U2+ 0(03)>

6mph\ 16 8
and
1 9 3
F,(hw)=——|-=+v-=0>+0 4), 8
1 (h,0) 6777]h< g TV gV ") (8)

where v=(-iwT,)"?=(1-i)\oT,/2. Specializing to the sta-

tionary case, w=0, and inserting into Eq. (7), one easily ob-
tains the zero-frequency admittance )} ,(h,0) recovering
Lorentz’s result [7] for the mobility close to a wall

1 ga], m=uo[1—2g], )

M= Mo _Ef_z Sh

where ug=1/67na denotes the mobility in bulk.

II1. INFLUENCE OF A HARMONIC TRAP

In the framework presented above it is implicitly assumed
that the distance /# between the particle and its bounding wall
is time independent. To realize this situation experimentally
and to prevent the particle from leaving the detection region,
a trap is needed, which should be included to complete the
model. Already in bulk, the motion of a harmonically bound
Brownian colloid differs drastically from a free particle since
at long enough times the restoring forces limit the particle’s
mean-square displacement to a finite value. The very first
attempt by Uhlenbeck and Ornstein [29] to model the inter-
play of particle inertia, Stokes friction, and harmonic restor-
ing forces dates back to 1930 but ignores hydrodynamic
memory effects. Only much later, Clercx and Schram [30]
incorporated the fluid inertia generalizing the VACF for the
free motion. In particular, they found that the long-time
anomaly changes from a +~*2 behavior for a free particle to a
much more rapid decay according to ~”/2. Here, we combine
the ideas of Felderhof for the free motion close to a confining
wall with the externally acting harmonic restoring force.

Following the chain of arguments of Sec. II we include
the harmonic restoring force in Newton’s second law,

—iw(m,-m)U,=-F,-Kx,+R,,. (10)

Here K denotes the spring constant of the optical trap, which
we assume to be isotropic. The displacement of the particle
relative to the trap center at r will be eliminated in favor of
the particle’s velocity via U,=-iwX,,. Since Faxén’s law and
the reaction field tensor are unaffected by the presence of the
trap, one can again eliminate the total induced force F, and
merely supplement the force balance [Eq. (5)] by the har-
monic force

PHYSICAL REVIEW E 79, 031402 (2009)
. K
—iw(m,-my)U,~ ZU“’

3
=- {g(a)) - Eiwmf] [U,- F(rg,0)R,)]+R,.

In terms of the admittance tensor the previous relation may
be written as
K
Uw=y(r0,w)|:._Uw+Rw:| (11)
iw
with the following interpretation: the particle’s velocity is
still determined by the admittance tensor without trap, pro-
vided now the net force is considered as driving the system.
Solving for the velocity U,=)J%(r,, )R, one finds that the
harmonic potential modifies the admittance according to the
simple rule

y“‘)(ro,w) =[V(rp,w) '+ Ki—iw] ™. (12)

This result includes Felderhof’s result for zero trapping, K
=0, as well as of Clercx and Schram [30] if the wall is
infinitely far away, J(ry,w) — Vy(w). Again by symmetry,
the matrix Y¥(r,, ) is diagonal with elements yﬁk)(ro,w)
and y<f>(r0, w) for the force R, parallel or perpendicular to
the wall.

The trap introduces another characteristic time scale 7,
into the problem: balancing the harmonic restoring force
—Kx with the zero-frequency Stokes drag 67 nmav, one ob-
tains 7, =67na/K=1/ugK. The reference drag force has
been chosen as the one acting in bulk, although it is clear that
the presence of a boundary suppresses the hydrodynamic
friction. The physical interpretation of the dependences is
that a stronger trap will lead to a faster relaxation to equilib-
rium resulting in a reduction in 7;, whereas an increase in the
Stokes drag induced by a larger viscosity leads to slowing
down of the equilibration process.

In the derivation we have assumed that the trapping is
isotropic, i.e., the spring constants are identical for all direc-
tions of the displacement. In case the trapping potential be-
comes anisotropic, the restoring force is still given by —Kx,,
where the spring constant K has to be interpreted as a sym-
metric matrix. Then Eq. (12) still holds, and if the principal
axes of the trap include the direction perpendicular to the
wall, the matrix inversion is achieved by inverting the diag-
onal elements.

Let us compare Eq. (12) to the well known high- and
low-frequency limits. For high frequencies the trap becomes
increasingly irrelevant and the response is dominated by the
inertia of the particle and the displaced fluid. In the low-
frequency regime the harmonic potential suppresses the ad-
mittance reflecting the fact that no static external force can
induce a stationary motion of the particle in confinement.

IV. ANALYTICAL DISCUSSION OF THE VELOCITY
AUTOCORRELATION FUNCTION

Here we focus on the VACF Cy(t)=(v/(1)v,(0)) for
the motion parallel and perpendicular to the wall,
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C , (1)=(v ()v ,(0)). The VACFs are connected to the admit-
tances of Sec. III via the ﬂuctuation-dissipation theorem

)

Mw)=—| dte'C(1), (13)

kBT

where kT denotes the thermal energy. This relation holds for
all cases, i.e., parallel and perpendicular to the wall, with and
without trap. To simplify notation we have suppressed the
dependence on the position ry,.

Due to trapping the particle samples only a region close to
the center of the trap and according to a stationary ensemble
given by the Gibbs-Boltzmann measure. In particular, time-
dependent position correlation functions such as (x(z)-x(0))
are well defined. In the derivation for the admittances, the
position of the particle was assumed to be fixed at ry. How-
ever, since the particle fluctuates and takes excursions from
the center of the trap of typical magnitude Vkgz7/K, the
spring constant of the trap has to be strong enough in order
to render these fluctuations negligible compared to the dis-
tance to the wall h.

The short-time evolution of the velocity autocorrelation is
inferred from the high-frequency behavior of the correspond-
ing admittances. Obviously, the harmonic restoring forces do
not affect the initial value and they are still given by

kBT( a3 )
1643)°

kpT a’
= <1§> (4)

Without a bounding surface C¥(r=0)=k,T/m* [30] is recov-
ered. The equipartition theorem suggests that the initial value
should read kgT/ m, for all cases. However, as discussed al-
ready by Zwanzig and Bixon [25], there is an additional
rapid decrease in the VACEF if the finite compressibility of
the fluid is taken into account.

The low-frequency expansion of the admittance exhibits
noninteger powers, which by tauberian theorems [31] corre-
spond to algebraic long-time decays in the VACF. The lead-
ing long-time behavior of the normalized velocity autocorre-
lation, C(r—)/C(0)=(7/1)% can be inferred from the
leading nonanalytic contribution in the admittance Y(w
—0)=C(0)H(—iwn)* 'I'(1-a)/kgT. The physical origin of
the long-living correlations lies in the long-range fluid flow
that is generated by momentum conservation in the Navier-
Stokes equation. At low Reynolds number, transverse mo-
mentum can only be transported away by vortex diffusion;
hence, there is a time-dependent growing length scale R(¢)
~(mt/p)""* characterizing how far momentum has pen-
etrated into the fluid. In the simple case of unconfined free
motion, the particle’s initial momentum is then shared with a
fluid volume ~R(7)* leading to a long-time behavior of
C(1)/C(0) ~1t732. For the free motion close to a bounding
surface, the leading term ~#~? is canceled and a more rapid
algebraic decay 1> [16] is expected. Interestingly, the same
algebraic decay occurs also in the disordered Lorentz gas
[32-34], a simple model for transport in porous media. There
the long-time memory arises since the particle remembers

ca=0)=

c(t=0)=
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TABLE 1. Leading nonanalytic term in the low-frequency ex-
pansion of the dimensionless admittances 67na)(w) for the free
case (0), perpendicular (1), and parallel (Il) and again in the pres-
ence of the trap (k,k L ,kl).

6mna)(w) Leading nonanalytic term
° —(—iwrf)”2
: o g -
I (_iwrf)3/2[%_§+%+é\/§(l B
)52
' ~(~iwm)* 7/ 77
— I8 (Ciwr)?E] 20 _9ﬂ)
Tw 97,
V(-2
32 17 2 _( 97))
- 9(9-16\m):(—lwrf) 7%[_ 721% +40=(1 S_Tj
K e
-o\3(1-2)]

the presence of an obstructing wall for arbitrarily long time.
Confining the motion of a colloidal particle in bulk by a
harmonic potential leads to a more rapid decorrelation ac-
cording to 7> [30]. In the case of a trapped particle close to
a wall, a series expansion yH w), Y* i w) in powers of the
frequency reveals a leading nonanalytic term w’/? resulting
in a ~r'? tail. To obtain this result it is sufficient to know
the reaction field tensors Fy(ry,w) and F, (ry, ) including
O(w) terms. Table T summarizes the leading nonanalytic be-
havior of the admittances including all prefactors. The cor-
responding long-time tails in the normalized velocity auto-
correlation function are displayed in Table II, where for the
walls only the leading term in 7,,/ 7/ is shown.

For the motion perpendicular to the wall, the true long-
time behavior is masked by the next-to-leading term. This
has been pointed out by Felderhof [16] for the trap-free mo-
tion and here we supplement the analysis also for the trapped
dynamics. In order to derive the next-to-leading term in the
low-frequency expansion the reaction field tensor F | (w, 1)
has to be evaluated including the order (—iw7,)”2. Then the
two leading nonanalytic terms in the far-field expansion
7,/ 7,21 read
6mna) | (w)=(- inf)3/2|:<ZE—§) ! Ti( lef):| (15)

| 7 9/ 107

without harmonic restoring force and

2| (7 5 17
W0 N _ o 2Tk 2
6mna)(w) = (-ioT)” 7/%[<;]j 9> 1072( thf)}
(16)

including the trap. The second term becomes negligible with
respect to the first one only at frequencies below w << 7/ Tﬁ
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TABLE II. The leading long-time behavior of the normalized
velocity autocorrelation function C(t—)/C(0) for the free case
(0), perpendicular (L), and parallel (Il) and again in the presence of
the trap (k,k L ,kll). For the cases of a bounding wall, only the
leading contribution in T,/7; is displayed. The mass ratio is en-
coded in the constant B=(97,/ 7,+1)/ 18\

C(1r)/C(0) Leading algebraic decay

0 B(ff)‘”
+ B3
” B

k %B(%)z(%)-m
k1l 135 (% g)( )9/2
Kll 1053 - ( f)79/2

For the corresponding time correlation functions this implies
a long-time behavior according to

CL(I—NO)_E T s L—S/Z Ti(i)—7/2]
C.(0) ‘23{(??_9)(7) Ta\z) |

(17)
cPe—=) 105 ﬁ[( z)(z)
c®0) 8 ﬁ 7 9

7_,’Z -11/2
2072<Tf) } (18)

The amplitude of the leading term depends on the ratio of the
mass of the particle to the displaced mass of the fluid or
equivalently on the ratio 7,/ 7,=2m,/9m;. For typical experi-
mental conditions, e.g., a silica sphere in water, the ampli-
tude is negative and one should expect the correlation func-
tion to approach zero from below. The presence of the factor
7,/ 7y renders the amplitude of the subleading term to a large
quantity. Balancing both terms yields an estimate 72 /7 for
the time one has to wait in order to observe the true long-
time behavior. Hence the perpendicular motion without trap
exhibits a zero crossing on a time scale much longer than the
naive guess 7,,. We shall see in Sec. V that even a weak trap
has strong implications for this intermediate-time behavior.

V. NUMERICAL RESULTS

A. Velocity autocorrelation function

The inverse Fourier transformation cannot be calculated
analytically since the admittance tensors are not simple el-
ementary functions. A numerical Fourier transformation can
easily be performed, and since the time correlation functions
are real and even in time, a Fourier-cosine transformation is
sufficient,

PHYSICAL REVIEW E 79, 031402 (2009)

J dw cos(wt)Re[Y(w)]. (19)

Since the VACF exhibits long-time power-law behavior the
admittance has to be sampled over many decades in fre-
quency. A conventional fast Fourier transform (FFT) is rather
ill suited to achieve this and would also calculate C(¢) on an
equidistant time grid not convenient for our purposes. Hence,
we apply a simple modified Filon algorithm [35] with typi-
cally 103 frequencies per decade covering 30 decades to cal-
culate C(7) on a logarithmically equidistant grid containing
100 data points per decade. We employed MATHEMATICA® to
evaluate the various special functions appearing in the reac-
tion field tensors and spliced them together with a high-order
series expansion at low and high frequencies. We have
checked that our numerical data reproduce the predicted tails
over several orders of magnitude, with the exception of
C(f)(t), where the next-to-leading tail dominates the figures.

The velocity autocorrelation for the motion parallel to a
wall is displayed in Fig. 1(a) for a colloid gradually ap-
proaching the bounding surface. Without trap the correlation
functions remain positive for all times. The long-time behav-
ior exhibits the > decay with an amplitude that depends
sensitively on the distance to the wall. For the weak har-
monic restoring force under consideration here, the VACF
follows the free behavior up to intermediate times; at longer
times the VACF is strongly influenced by the trap. In particu-
lar, the VACF exhibits two zeros as is the case also without
the bounding wall. Note that the first zero is by orders of
magnitude earlier than the characteristic time scale of the
trap 7; however, it is much later than the Langevin momen-
tum relaxation time 7,. Between the two zeros a negative flat
plateau emerges that extends to time scales longer than 7.
The very late decay is governed by the +~°? tail of Table II;
however, its onset exceeds the range of the figure.

The VACEF in the direction perpendicular to the wall is
exhibited in Fig. 1(b). For a typical experimental particle
with momentum relaxation time 7,=0.57; and without con-
fining potential the curves exhibit a single zero. In this case
the amplitude of the leading long-time behavior ' be-
comes negative and the next-to-leading order /> dominates
at an intermediate-time interval [see Eq. (17)]. The correla-
tion functions without trapping thus approach zero from the
negative side by an algebraic decay that is fairly insensitive
to the distance from the wall. The zero on the other hand
shifts rapidly to shorter times as the wall is approached.
From Eq. (17) one infers an asymptotic scaling behavior
~72/Tf for the zero far away from the wall. For the two
curves corresponding to the distant particle, 7,/ 7,=8,16, the
772 decay is visible for intermediate times close to the zero,
as has been reported earlier [16]. For a weak trap 7yl Ty
=107 the curves follow the ones of the unconstrained mo-
tion down to a signal of 107> and start to deviate strongly at
later times. Again a flat negative plateau characteristic of the
weak restoring force is attained. The decay from this inter-
mediate plateau occurs at larger times compared to 7, fol-
lowed by a rapid algebraic decay ¢+ without passing
through another zero (not shown). For different parameters
7, and 7,, one finds also a scenario with three zero crossings.
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ICy(#)/Cy(0)]

T,, decreases

(a) g
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—_
A
-

T,, decreases

(b) t/7;

FIG. 1. (Color online) Double-logarithmic representation of the normalized VACF for the motion (a) parallel and (b) perpendicular to the
wall. The parameter 7,/7,=0.5 corresponds approximately to a silica bead in water. Full lines correspond to weakly trapped particles
7/ T = 1073, whereas the dotted lines are without trapping (74/ 7,=0). The wall is gradually approached, 7,,/7,=16,8,4,2, corresponding to
h/a=4,2.83,2,1.41 and the initial decay shifts to the left. The straight lines are guides to the eye for the 1> power law.

To study the hydrodynamic memory effects for the colloi-
dal motion close to the wall, we choose a trapping potential
that is as weak as possible. Then the time scale 7
=6mna/k is much larger than the remaining time scales of
the problem 7,, 74, and 7,, and one is tempted to argue that
the trap is irrelevant in the regime of interest. However, as is
discussed in Fig. 1 the trap has significant impact on the
velocity correlation functions even if the characteristic time
scales differ by orders of magnitude. The reason for such a
behavior is twofold: first, the hydrodynamic memory leads to
a scale-free power-law long-time decay and the parameters
7, Tp and 7, determine merely the amplitude of the alge-
braic behavior rather than a characteristic decay time. Sec-
ond, for the point-particle limit to apply accurately, h/a=3
and the VACFs become small at times = 7,, where the tail
% is expected to set in. Thus already a weak trap has a
strong influence on the signal where the interesting hydrody-
namic memory effect dominates the VACFs.

B. Power spectral density

An alternative way to investigate the interplay between
fluid inertia and a trap is to focus on the power spectral
density, an approach that has been pursued by Berg-Sgrensen
and Flyvbjerg [36,37]. There the fluctuating position x(z) of
the bead in a finite time interval [-T/2,T/2] is decomposed
into Fourier modes xp(w)=[ T/T%Zx(t)exp(iwt)dt, where the
angular frequencies w are integer multiples of 27/T. For
long observation times, T—o the power spectrum S(w)
=(|Jxr(w)|>)/T becomes a quasicontinuous function for fre-
quencies w>2/T. Since the corresponding velocities fulfill
vr(w)=—iwxr(w) up to irrelevant boundary terms, the power
spectrum can be also expressed as w’S(w)={(|v(w)[*)/T.
Then with the help of the Wiener-Khinchin theorem
0”S(w)=[{v(t)v(0))exp(iwt)dt and the fluctuation-dissipa-
tion theorem (13), the power spectral density can be obtained
from the admittance as

(k)
(o 2T R ) o0

(0]

Since the trap modifies the admittance according to Eq. (12),
we find for the power spectrum

~ 2ksT Re[W(w)™']
{0 Re[ V()" +{o Im[P(w) ']+ K}

S(w) (21)

This result is again valid for all cases, i.e., in bulk, parallel,
and perpendicular to the bounding wall. For the zero-
frequency limit in the case of a limiting wall we find

2kyT
$0)=—7, S,00)= 22
0="05 5.0=-25 22)

l 1

using the zero-frequency limit of the admittance at the wall.
Without trap, the power spectrum S(w) would diverge for
w—0 as can be seen from Eq. (20), reflecting the fact that
the particle can take excursions without bounds. The 1/K?
dependence on the trap strength arises from two aspects.
First, the motion of the particle is harmonically confined
leading to equilibrium fluctuations (x*)=k,T/K. Second, the
time scale to reach equilibrium may be estimated by balanc-
ing the restoring force yielding 1/uK. For the bulk motion
this is identified with 7,=67na/K=1/ uyK, whereas close to
the wall the reduction in the mobilities w, and @, due to the
obstruction of the hydrodynamic flow has to be taken into
account.

At the scale of the trap relaxation rate 1/7, the main
feature of the power spectral density as displayed in Fig. 2 is
the saturation at a height given by Eq. (22) at low frequen-
cies. A rapid decrease in the power spectrum is manifested at
higher frequencies. Ignoring inertial effects of the fluid and
the particle, the power spectra assume a Lorentzian shape
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FIG. 2. (Color online) Semilogarithmic representation of the power spectral density for a weakly trapped Brownian particle 7,/ 7
=107 close to a limiting wall for the ratio 7,/ 7=0.5 [(a) lateral direction and (b) vertical direction]. The distances to the wall are the same
as in Fig. 1. The normalization is chosen as the zero-frequency limit of the power spectrum in bulk Sy(w=0)=2kgT/uoK>. The increase in

the initial value is due to the wall according to Eq. (22).

2UpT 1
uK? 1+ (0/uk)*

SB(w) = (23)

where =g, uy, o, 1 the corresponding mobility. For the
weak traps employed here, this gives an accurate representa-
tion of the power spectral densities for dimensionless fre-
quencies w7y, of order unity.

To highlight the deviations from the simple Lorentzian,
we display the ratio S(w)/S"(w) for the parallel and perpen-
dicular motions in Fig. 3. The differences arise at the fre-
quency scale 1/7;, where the motion of the hydrodynamic
vortex sets in. At higher frequencies the full power spectrum
decays more rapidly than a Lorentzian due the inertia of the
particle and the fluid. Interestingly, the deviations are stron-
gest in bulk and they fade out only slowly as the frequency is
decreased. The wall suppresses these inertial effects, consis-
tent with the notion that the rigid interface carries away part
of the particle’s initial momentum. Hence the obstruction of
the vortex pattern, manifested in the time-dependent VACF
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as reduction of the %2 tail to a 52 power law decay, is
also visible in the power spectral density by a faster approach
to the Lorentzian shape for low frequencies w7, =<1. Note
that for the perpendicular motion the power spectral density
becomes larger than a Lorentzian very close to the wall. This
phenomenon is related to the change in sign of the long-time
anomaly of 2 in Eq. (17). The overshoot disappears if
denser colloidal particles are used, i.e., T,/ Ty is increased.
However, the vanishing of the overshoot does not coincide
with the sign change of the power-law tail at 7,/ 7,=5/9 but
occurs at larger ratios of approximately 1.5 for the param-
eters used here. For comparison we have also included in
both panels the harmonic-oscillator prediction for the bulk
motion following Uhlenbeck-Ornstein,

2kyT 1

$UNw) = ,
uok? (1 - szka)z + (07)?

(24)

neglecting both the added mass due to the displaced fluid as
well as the vortex motion. As can be inferred from Fig. 3, the
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FIG. 3. (Color online) Power spectral density with respect to a Lorentzian [Eq. (23)] in the frequency regime where fluid inertia plays a
role for the (a) parallel and (b) perpendicular motions. The parameters correspond to the ones of Fig. 2. Also included is the harmonic-

oscillator prediction according to Uhlenbeck and Ornstein.
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wall suppresses the hydrodynamic memory, and for the par-
allel motion the power spectral densities are typically in be-
tween the bulk behavior where hydrodynamics is included
and the Uhlenbeck-Ornstein shape.

For the weak trapping regime under consideration, the
time scale 7, is much larger than the other ones. Then one
may assume that the processes of the relaxation of the mo-
mentum to the surrounding fluid and the relaxation of the
position in the trap are decoupled, which suggests approxi-
mating the power spectral density as

$to) = S0,

(25)
where again the appropriate mobilities u=pug, ), and
similarly for the admittances )(w) have to be inserted for the
different cases. We have checked that for the parameters used
here this constitutes an excellent approximation for all fre-
quencies. Consequently, Fig. 3 essentially displays the real
part of the admittances for different distances to the wall.
The reason that the curves superimpose is that the zero-
frequency limit serves as a background that overlaps the in-
teresting nonanalytic behavior discussed in Sec. IV. Conse-
quently one cannot use Eq. (25) as input in the numerical
Fourier transform since it does not result in the correct long-
time behavior. Concluding, although the power spectral den-
sity allows for simple approximations on different frequency
scales, their deviations encode subtle correlations that are
manifested and more directly accessible in the time-
dependent VACF.

VI. COMPARISON TO EXPERIMENTS

Recently, we have performed experimental tests for a
small silica sphere trapped by a laser focus in the vicinity
of a surface [24]. The trajectory of the particle is mea-
sured interferometrically [11] with a spatial resolution
in the subnanometer range [12]. We employ an infrared (A
=1064 nm) diode-pumped Nd:YAG laser (IRCL-500-
1064-S, CrystaLaser, USA) with a cw output power of 500
mW. The beam is first expanded 20X and then focused using
a 63X water-immersion objective lens of a numerical aper-
ture (NA)=1.2 resulting in a stable optical trap for the col-
loid. An InGaAs quadrant photodiode (G6849, Hamamatsu
Photonics, Japan) is placed at the back focal plane of the
condenser lens recording the modulation of the optical power
due to the displacement of the particle near the beam focus.
The photodiode signal is amplified and digitized using a data
acquisition card with a dynamic range of 12 bits. The de-
tected positions contain N=107 points separated by 2 us,
which corresponds to a sampling rate of f,;=500 kHz and a
recording time of #,=20 s.

The Brownian particle is a silica sphere of radius a
=1.5 pum and mass density p,=1.96 g/ cm® immersed in
water (p;=1 g/cm®,7=10" Pas) at ambient temperature.
The characteristic time scale corresponding to the particle’s
inertia Tp=mp/6771]a=2a2pp/9 n=1 us is about half the one
of the fluid inertia Tf=a2pf/ 7=2.25 us. Using optical twee-
zers, we approach the particle incrementally toward a sphere

PHYSICAL REVIEW E 79, 031402 (2009)

FIG. 4. (Color online) (a) Three-dimensional (3D) lateral view
of the experiment; spheres are drawn to scale. A silica particle of
radius a=1.5 um trapped by the laser focus is placed next to the
surface of a significantly larger silica sphere. This 100 wm sphere
is immobilized between the two cover glass surfaces of the sample
chamber. (b) Optical image of the probing particle’s position rela-
tive to the wall created by the big sphere. The 3 um probing par-
ticle was placed at a distance ~=11.5 um away from the 100 um
sphere’s surface and gradually approached. The velocity correlation
functions, as well as the diffusion coefficients for the motion paral-
lel and perpendicular to the wall are measured.

of diameter 100 wm, which is much larger than the size of
our particle. Then sufficiently close to the large sphere the
curvature can be ignored and the particle undergoes Brown-
ian motion close to a planar wall around the trap’s center (see
Fig. 4). The large sphere is immobilized since it is in close
contact with the two cover slides of our fluid chamber (size
~2 c¢cm X 0.5 cm and thickness =100 wm). In this setup
we have equal sensitivity for the motion parallel and perpen-
dicular to the surface under consideration since both direc-
tions are perpendicular to the axis of the laser beam. The
sample is mounted onto a piezostage and the 100 um sphere
can be positioned at a distance & relative to the trapped par-
ticle by moving the piezostage in all three dimensions with a
precision of =1 nm.

To study the hydrodynamic memory effects induced by
the presence of a wall rather than the motion due to the trap
confinement, we have applied the weakest trapping force
possible. Yet, the optical trap should still be strong enough
not to loose the particle from the laser focus during the ex-
periment. Hence, we have optimized the trapping strength in
order to suppress the effects of the trap on the VACF without
loosing too much sensitivity at the detector. A series of ex-
periments revealed that k=2 uN/m fulfills all these re-

031402-8



PERSISTENT CORRELATION OF CONSTRAINED ...

PHYSICAL REVIEW E 79, 031402 (2009)

h=6.81tm

t-3/2

|Cyj(t)/Cy(0)]

107

107

()

FIG. 5. (Color online) Log-log plot of both normalized VACF, C\(t)/C\(0) and C,(¢)/C,(0), for a sphere (a=1.5 um,7,=1 us,7,
=2.25 us) trapped in a weak optical potential (k=2 uN/m,7,=14 ms). The increasingly anisotropic VACF is measured at three distances
from the wall (h=9.8, 6.8, and 4.8 um, corresponding to 7,,=96, 46, and 23 us, respectively). Positive correlations are represented by full
symbols and negative ones by open symbols. The characteristic power laws are represented by thick lines as guide for the eyes.

quirements. Note that the corresponding time scale 7
=14 ms exceeds the parameters of the bulk motion 7, 74 by
4 orders of magnitude and the one of the wall 7,, by more
than 2 orders of magnitude even for the farthest distance
studied. However, this weak trapping force has still signifi-
cant influence on the VACF at the time scale where the hy-
drodynamic memory becomes apparent.

We have recorded the particle’s position ry(z,),r (z,) at
equidistant instances of time #,:=nAt and Ar:=1/f,, where
nely, and derive coarse-grained velocities as vy(z,)
=[r(t,+At)—r(2,)]/ Azr. The velocity autocorrelation func-
tions are then evaluated as time-moving averages C(r)
=N""=N Av(t,+1)Av|(t,) and similarly for the motion per-
pendicular to the wall. The normalized VACFs C(r)/C;(0)
and C,(r)/C (0) are displayed in Fig. 5 for different dis-
tances h from the wall. For large separation 4#=9.8 um both
VACFs coincide within our error bars down to where the
signal reaches the level of 1%. This regime is clearly domi-
nated by bulk behavior and, in particular, the well-known
algebraic decay 3% characteristic for the unconstrained vor-
tex diffusion is recovered. At the time scale Tw=pfh2/ 7 the

vortex generated by the thermal fluctuations of the Brownian
particle reaches the wall and the correlation functions split as
the motion becomes anisotropic. The wall leads to a more
rapid decay and for the parallel motion a power law
enters the observation window. The signal of the perpendicu-
lar motion is anticorrelated at these time scales. Later times
lead to only weak signals that we cannot resolve within our
noise level of 107*. For the VACFs the trap manifests itself in
two zeros in the parallel motion; the second of which is
outside our observation window. The perpendicular motion
exhibits a first zero which is shifted to earlier times by the
presence of the optical trap—a second zero induced by the
harmonic restoring forces remains unobservable. Since for
silica in water 7,/ 7,=0.44 <5/9, the theory ignoring the trap
also predicts an anticorrelated signal in the long-time behav-
ior for the perpendicular motion. However, the negative sig-
nal we observe is dominated by the restoring force of the
optical trap. Approaching the wall to £=6.8 um and
4.8 um, the characteristic time 7,=46 us, respectively
23 us, decreases and the splitting into parallel and perpen-
dicular motion shifts to earlier times. For the parameters cho-
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FIG. 6. (Color online) Normalized time-dependent diffusion co-
efficients, Dy(r)/D and D, (¢)/D, with the bulk diffusion constant
D=kgT/6mna for the direction parallel and perpendicular to the
wall at the same distances / as in Fig. 5. The experimental data are
represented by symbols and the full lines correspond to the theoret-
ical fits.

sen, the bulk behavior is dominated by the ' tail and the
splitting sets in at higher values of the correlation functions
rendering it easier to observe. The crossover in the parallel
VACF from the bulk dominated behavior 132 to the wall
dominated algebraic decay > becomes more and more pro-
nounced. The zero due to the trap is dragged to shorter times
since the surface constrains the colloid’s motion increasingly.
The perpendicular component C, (r) decreases more rapidly
and practically enters our noise floor at the expected zero
induced by the trap. The asymptotic expansion for the long-
time behavior of C(¢) suggests that a power law of /2
with positive amplitude should be present at intermediate
times. Such a behavior may be inferred from the data for a
narrow regime of times, but the presence of the trap sup-
presses its amplitude by a factor of 2.

Next, we define the time-dependent diffusion coefficients

DH(I) = f C”(t,)dl‘, ) (26)
0

and similarly for the motion perpendicular to the wall. From
the recorded time  series, D”(t)=N‘12nN=1[rH(t,,+t)
—ry(t,)]v)(z,) is directly evaluated. We have checked that this
gives the same result as integrating the VACF. The diffusion
coefficients Dy(r),D, (¢) corresponding to the distances h
=9.8, 6.8, and 4.8 um of Fig. 5 as well as the motion in bulk
(h=37.8 um) are displayed in Fig. 6. The most prominent
feature is a plateau extending to the time 7, where the trap-
ping becomes effective. The height of each plateau ap-
proaches the diffusion coefficients parallel and perpendicular
to the wall that are obtained by the Einstein-Smoluchowski
relation from the mobilities, Dy=kpTw and D | =kgTw, . The
reduction in the zero-frequency mobilities due to the wall in
Eq. (9) ignores higher-order correction terms in a/h which
can be calculated exactly [8]. For the distances studied here,
h/a>3, the point-particle limit is accurate within 2% and
the correction terms can be safely ignored. Since the VACF
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exhibits long-time tails, the approach to the plateau is slow.
Ignoring the trap, we expect asymptotically for r— < in lead-
ing order in a/h

Dy(1) =D<1 - 9_a> -p— (i)_m, (27)

8h AT\ 7y

where D=kT/6mna denotes the bulk diffusion constant.
Even for the weak trapping used in the experiment, the maxi-
mum in the time-dependent diffusion coefficient deviates
from the asymptotic value by a few percent. The maximum
corresponds to the zero crossing in the VACF, which for the
parallel motion is entirely due to the trap. At longer times the
diffusion coefficient D|(¢) decreases and eventually reaches
zero. The diffusion constant is given by the Green-Kubo re-
lation Dy=[;C\(t')dt' or the long-time limit of the time-
dependent diffusion coefficient. Hence, at long times no dif-
fusion occurs, which is consistent with the observation that
the harmonic restoring forces localize the particle at suffi-
ciently long times. Then the data at long times are sensitive
to the precise value of the trap time 7, and we have used this
observation to optimize the fit for the trap stiffness. Since the
laser power is held at a constant value for all distances, the
trapping time should be identical for all data. Figure 5 shows
that the terminal decay to zero can indeed be fitted by a
single 7,; however, for the closest distance 7=4.8 um the
trap appears to be slightly weaker. We attribute this observa-
tion to deformations of the laser field at such close distances
to the large sphere. Nevertheless, the overall agreement is
excellent and validates the theoretical approach on a quanti-
tative level of a few percent. In particular, we conclude that
even at the closest distance the point-particle limit is accurate
not only for the stationary diffusion coefficient but also for
the time-dependent motion.

In the experimental setup the planar wall has been real-
ized by inserting a much larger spherical particle in the fluid
chamber. Although theoretical models have not addressed the
Brownian motion close to a curved interface, some back-on-
the-envelope calculations may be made to confirm the valid-
ity of the approximation. First, the zero-frequency mobility
or steady diffusion constant will be modified and the sup-
pression of mobility predicted by Lorentz [Eq. (9)] should
include terms of order /R, where R denotes the radius of the
large immobilized sphere. For the experiments far away from
the wall, =9.8 um, the suppression is less than 20%, and
h/R~1/5 suggests that the curvature effect adds another
4%. Close to the wall, h=4.8 um, the suppression is already
35%, yet for the curvature an additional 2% should be an-
ticipated. One may also ask at what time scale 7, the ef-
fects of curvature should be manifested in the correlation
functions. Assuming that curvature is relevant if the fictitious
flat wall is separated from the immobilized sphere by more
than #, simple geometric considerations lead to 7.,
=2pRh/ 7. In our experiments these times are at least a fac-
tor of 10 larger than the corresponding 7,, and the signal is
indistinguishable from noise.

VII. CONCLUSION

Optical trapping interferometry allows monitoring the
motion of a single colloidal particle on time scales where its
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momentum plays an important role. Due to the hydrody-
namic memory of the fluid friction, the velocity autocorrela-
tion function (VACF) exhibits an algebraic long-time decay
rather than an exponential relaxation. If the colloid is placed
in close vicinity to a bounding wall the vortex diffusion is
significantly hindered leading to a more rapid decay of the
VACEF. Although weak optical trapping is employed, where
the trap relaxation time scale exceeds the ones of the fluid by
orders of magnitude, the influence of the confining harmonic
potential becomes significant. At times where the algebraic
decay due to the wall should be visible the trap introduces
additional features in the signal which have to be disen-
tangled carefully. To analyze experimental data the full fre-
quency dependence of the admittance including the trap has
to be used to obtain a consistent interpretation.

Our study should be useful to analyze experiments of col-
loidal particles close to an interface and/or in visco-elastic
fluids in a straightforward way. Employing the time domain
rather than the frequency domain should make the interpre-
tation of data on visco-elastic solutions, e.g., conducted by
Atakhorrami et al. [38] more transparent and significant and
improve the trapping force calibration method based on the
power spectral density suggested by Fischer and Berg-
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Sgrensen [39]. In visco-elastic media the viscosity becomes
itself frequency-dependent which is readily incorporated in
the admittances. The velocity autocorrelation functions can
be calculated numerically once the frequency dependence is
known. Provided the experimental data exhibit little noise
one may determine the frequency-dependent elastic moduli
by adjusting the numerically generated curves to the experi-
ment. Similarly, the admittances change as the properties of
the interface change by adding surfactants, by capillary fluc-
tuations, by surface viscosity, etc. If the admittances for each
case are known one may use the fluctuating bead as a probe
for the local environment and determine material properties
on scales ranging from nano- to micrometers.
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