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Formation of aeolian ripples and sand sorting
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We present a continuous model capable of demonstrating some salient features of aeolian sand ripples: the
realistic asymmetric ripple shape, coarsening of the ripple field at the nonlinear stage of ripple growth,
saturation of ripple growth for homogeneous sand, typical size segregation of sand, and formation of armoring
layers of coarse particles on ripple crests and windward slopes if the sand is inhomogeneous.
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I. INTRODUCTION

Aeolian ripples form regular patterns on sand beaches and
desert floors and indicate the instability of flat sand surfaces
under the wind-induced transport of sand grains. The ripples
are oriented perpendicularly to the wind direction and have
asymmetric cross sections: their concave lee (downwind)
slopes are steeper than the slightly convex stoss (upwind)
slopes but usually do not reach the sand angle of repose
[1,2]. The flattened crests of sand ripples often end with a
brink.

To analyze the mechanics of sand transport by wind, Bag-
nold [3] proposed to distinguish two types of sand grain
movement: saltation and creep. Anderson [1] distinguished
also reptation of sand particles. Saltating grains move by
long jumps which end in a high-energy impact with the sur-
face. These impacts take place at almost uniform shallow
angles of descent varying from 9° to 15° to the horizontal
[4]. At an impact the saltating grain loses part of its kinetic
energy but usually rebounds high enough to be accelerated
by the wind again, and continues its saltation. Each impact
can also cause ejection from the sand bed of several low-
energy grains which can make short jumps, mostly down-
wind, and/or roll a little upon the bed surface before they are
trapped into the bed again. These are reptating and creeping
grains, respectively, but for brevity we will call all low-
energy ejecta “reptating grains.” Bagnold’s explanation of
the flat sand surface instability, arising whenever the wind is
able to drive sand grains into saltation, was based on the
observation that the rate of saltation impacts is higher on the
windward than on the lee slopes of any small undulation of
the bed surface. This explanation remains the basis of mod-
ern understanding of the initial stage of flat surface instabil-
ity, although Bagnold’s hypothesis that the ripple wavelength
is equal to the characteristic length of the saltation jump has
been challenged by several researchers (see [1,2]). It seems
now commonly accepted that saltation trajectories are widely
distributed and, typically, many times longer than the initial
ripple wavelength; the ripple wavelength is not constant but
grows with time; and the essential physics lies in the varia-
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tion of reptation flux. The saltating grains gain their momen-
tum from the wind, supply the energy necessary for repta-
tion, and decelerate the wind near the bed surface. As the
dynamic equilibrium between the amount of saltating par-
ticles and wind shear stress establishes, the probability of
direct entrainment of the bed particles into motion by wind
becomes small.

Formation of aeolian ripples is strongly influenced by size
sorting of the sand. Ripples composed of homogeneous sand
are small and flat because the surface grains are destabilized
by saltation impacts and carried away by the wind, stronger
on the ripple crests; these grains may be deposited in troughs
[3]. The final wavelength of such ripples, measured after a
long period of a unidirectional wind, was correlated with the
grain size [5]. Ripples made of inhomogeneous sand become
much bigger because coarser grains form an armoring layer
on the ripple crests and stoss slopes; significantly less crude
particles are found in the troughs. The armoring layer may be
very thin, almost a monolayer (see [5]), or may become thick
near the ripple crest (see, e.g., [3], Fig. 51). Probably, the
inhomogeneous sand ripples continue growing until the wind
starts to carry away also coarse grains from their crests. In
contrast to ordinary ripples, no significant correlation be-
tween the wavelength and the mean grain size has been ob-
served for megaripples [5]. Aeolian ripples larger than those
commonly found in fine sands were variously termed ridges,
granule ripples, megaripples, or gravel ripples; such ripples
were studied at various locations on Earth (see, e.g.,
[2,3,5,6]) and, recently, also on Mars [7,8].

Bagnold has postulated the following conditions neces-
sary for megaripple growth: (i) availability of coarse grains
with diameters 3—7 times larger than the mean diameter of
grains in saltation; (ii) a constant supply of fine sand in sal-
tation to sustain forward motion of coarse grains by creep;
and (iii) wind velocity below the saltation threshold of the
coarse grains.

Formation and stabilization of ripples is observed on time
scales of minutes and hours, respectively, but, according to
Bagnold [3], it takes decades or centuries to form huge
megaripples. Sharp, however, noted that, provided a suitable
supply of coarse grains is available, it might take only weeks
of sufficiently strong wind to form good granule ripples at
the Kelso Dunes in California [2]; the coarse grains in this
case composed 50-80 % of the surface material. Wind tunnel
experiments [6], performed with sand collected from granule
ripples, showed that, starting with a flat bed, the usual ripples
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form, coarsen, and gradually turn into megaripples.

In [1], Anderson modified Bagnold’s model for aeolian
ripples: the key role in ripple formation was given to repta-
tion jumps, their distribution being described by the “splash
function” [9]. Linear stability analysis of this model yields
that the initial ripple wavelength is determined by, and is
several times larger than, the mean length of reptation. The
model, however, demonstrates unrealistic behavior at the
nonlinear stage of ripple growth which begins very early; it
is, therefore, unable to describe the progressive increase of
ripple wavelength observed in the field and wind tunnel ex-
periments. It was supposed [10] that the model can be im-
proved by accounting for possible rolling of reptating par-
ticles down the slopes of sand surfaces.

This idea was used by Landry and Werner in their cellular
automata model [11], where not only did saltation impacts
compel sand bed grains to jump a short distance downwind;
endowing the grains with some initial pseudomomentum en-
abled reptating particles to roll after landing upon the bed
surface. The model was able to reproduce a nontrivial
mechanism of ripple field coarsening via solitonlike interac-
tions with only partial mass exchange between ripples.

To account for rolling and trapping of reptating particles
on the bed surface in a continuous model, Anderson’s model
can be supplemented by the Bouchaud, Cates, Ravi Prakash,
and Edwards (BCRE) equations [12] for surface flow of sand
and sand surface evolution. Such an approach has been em-
ployed in [13] (see also [14]) to study the linear stability of
sand beds under saltation. Another continuous model for
sand ripples has been proposed in [15], where the BCRE
equations were simplified (see also [16]) and the simulation
extended to the nonlinear stage of ripple growth. The latter
model was able to simulate realistic shapes of aeolian ripples
and ripple coarsening.

Although the key role of sand inhomogeneity is well
known, existing mathematical models of aeolian ripples
were, with only a few exceptions, written for homogeneous
sand. One of these exceptions is the stochastic cellular au-
tomaton model for bidisperse sand [17], where grading re-
sulted from the difference in ejected grain trajectories for
crude and fine particles. Grains of both sizes were allowed to
saltate; this can be justified for the considered mixture: the
diameter ratio for crude and fine particles was only 1.39,
much smaller than the ratio 3—7 supposed to be necessary for
formation of megaripples [3]. To obtain a realistic sand
ripple shape and segregation pattern using this model, the
authors had to introduce significant wind compression over
the ripple crests by setting a “ceiling height” for the wind
flow at about one wavelength above the mean bed surface.

In a discrete bidisperse model of aeolian ripples [18],
Makse considered different types of segregation and claimed
the most important of them is often the percolation of fines
through the layer of rolling (reptating) particles toward the
bed surface. However, this mechanism of segregation is
hardly relevant to formation of sand ripples because the roll-
ing layer is very thin: its effective thickness is less than one
particle diameter (see, e.g., the close-up video [19]). As in
[17], Makse assumes that both types of particles saltate,
which means the diameter ratio is small.

A continuous mathematical model for a two-size mixture
of grains was recently introduced by Yizhaq ([20]; see also
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[21]). The model takes into account the variability of salta-
tion flux caused, as are the changes in reptation flux, by
variations of impact rate due to surface undulations but at
much further upwind locations, at a distance of the order of
the mean length of the saltation jump. Linear stability analy-
sis of this model shows the presence of two maxima in the
growth rate of unstable modes: one of them is attributed to
standard ripples, the other, with a wavelength several times
longer, to megaripples. This model, however, does not ac-
count for sand segregation and describes megaripples not as
the overgrown (because of sorting and armoring effects)
usual ripples but as a separate aeolian form between ripples
and dunes.

We conclude that existing mathematical models of aeolian
sand ripples either ignore size segregation of sand or are not
applicable for the size ratios typical of sand in natural ripples
and, especially, megaripples. The general physical picture of
ripple formation, presented by Bagnold in his classical work
on aeolian sand transport [3] should possibly be modified
mainly in only the one respect of the ripple wavelength. Our
work is an attempt to derive a continuous mathematical
model of aeolian ripples in accordance with Bagnold’s and
Anderson’s views but also employing a simplified BCRE-
type model [16] for the surface flow of sand, describing ex-
change between the sand bed and saltation cloud as in [22]
and, last but not least, accounting for inhomogeneous com-
position of the sand and size segregation.

II. MATHEMATICAL MODEL

The model is written for a bidisperse mixture of fine and
coarse grains. Impacts of saltating particles destabilize sand
grains from the bed surface layer and make them reptate. The
wind shear velocity is assumed below the threshold neces-
sary to drive the coarse particles into saltation, so only small
particles are able to saltate. The equation of sand balance on
the bed surface can be written as

oh

o= -E T E, ()
where h(x,t) is the bed surface, ¢ is time, x is the coordinate
along the wind direction, the lateral coordinate is ignored for
simplicity, indices s and r correspond to saltation and repta-
tion, respectively, and indices f and ¢ denote fine and coarse
particles, respectively. E{ and EY are the rates with which
particles from the surface layer are expelled by saltation im-
pacts into reptation, I/ and T'¢ are the rates with which
reptating particles are stopped and incorporated into the bulk,
and CDSf is the rate of exchange between the saltating popula-
tion of fines and the sand bed.

The ejection rate of sand particles from the surface layer
should be proportional to the saltation bombardment inten-
sity. If g, is the flux of saltating particles and [, is the mean
length of the saltation jump, the intensity of bombardment by
saltating grains is proportional to g,/l;. On the other hand,
if the saltating grains strike the bed surface at the angle vy to
the horizontal and the bed is inclined at an angle « (see Fig.
1), the incident angle of attack is #=a+ 7y and the bombard-
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FIG. 1. One-dimensional scheme: saltating grain reaches the bed
surface at the angle vy to the horizontal; the surface is inclined at an
angle a; O=a+ vy is the incident angle of attack.

ment intensity should be proportional to sin 6 (or sin 6/sin y
for a given ).

This is true for stoss slopes and also lee slopes that are not
too steep. If #=<0, the corresponding part of the surface is in
shadow and unreachable by saltating grains. Furthermore,
shadowing is a nonlocal phenomenon, and we assume that
part of the surface is in shadow also if saltating grains ap-
proaching it with straight trajectories at the angle vy to the
horizontal strike the bed surface somewhere upwind first. In
shadow regions the ejection rate for both particle types is set
to zero. Introducing the shadow indicator function Sy(x,t),
equal to zero if the point (x,k(x,7)) is in shadow and to one
otherwise, we postulate the erosion rates

, sin 0 , sin
E = VfSqu—,—go(Ef), Eo= 15,02
sale SIN Y lsalt sy

[1- ()],
(2)

where v/ and 1 are dimensionless coefficients and ¢(&) is
the “shielding factor.” This factor describes shielding of fine
particles by the coarse ones and depends on the surface con-
centration of fine particles, ®’, and the diameter ratio (we
omit the latter dependence for notation simplicity). When
there are no fine particles on the sand bed surface, £/ should
be zero. Similarly, E\ has to be zero wherever there are only
fine particles on the surface. Thus, the shielding factor
should satisfy the conditions ¢(0)=0, ¢(1)=1. In our simu-
lations the shielding factor was chosen as the size-weighted
surface concentration,

Kd
HNz——m—
o) = (- &)

where d' and d° are the diameters of fine and crude particles,
respectively.

A reptating particle ejected by an impact at a point X
makes a jump and lands on the bed surface at a point x with
the probability density given by the splash function p
=p,(x,x) introduced by Ungar and Haff [9]. We assume that
reptating particles lose most of their momentum in collision
with the rough bed surface but do not stop immediately upon
landing and may roll upon the bed surface, usually not far
from the landing point, before they get trapped. Rolling of
these particles is described by the modified quasistationary
BCRE equations (see [15,16])
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S(VIRN = QTE] T, (ViR = QTE]-TS. (@)
ox ox

where Vf and V¢ are the horizontal projections of particle
velocities and R/ and R¢ are the equivalent partial thicknesses
of rolling layers, so that V{Rf and V;R¢ are horizontal projec-
tions of the fluxes of rolling particles; Q/[ E/] and Q°[E<] are
the rates of precipitation of particles ejected from the bed by
saltation impacts (see [1,15]):

OE]]= f ) E/(%.1)p}(X.x)dX, (5a)

OE] = f ES(%.0)pS (7o) dF. (5b)

We assume that rolling of destabilized grains upon the
sand surface is due to the gravity force and wind drag; our
simple steady-state velocity approximation is based on the
assumption of equilibrium between these forces and an ef-
fective friction force caused by collisions of a particle with
the bed grains and proportional to its velocity. The gravity
force tends to carry a rolling particle downslope; the steeper
the slope, the stronger is this force. The wind drag acts in the
direction of the wind; the higher the shear velocity, the stron-
ger is the force. As the simplest relations for rolling particle
velocities we assume

V{:— fﬁ—h+wfu*, Vf:—,uf%+wcu*, (6)

ox § ox $
where &/ and u¢ are constant mobilities of particles, ' and
¢ characterize the drag forces, and u:‘ is the wind shear
velocity in the saltation layer near the bed surface. We em-
phasize that in our model wind drag is unable to remove a
particle from the sand bed: the drag influences only the roll-
ing (creep) of reptating particles until they are captured into
the bulk again.

Rolling particles never form a thick layer on the surface
during the ripple growth and it can be assumed that, for a
fixed bed surface incline, the rate of the rolling-to-steady-
state transition I' is proportional to the amount of rolling
particles on the surface, R. Furthermore, the steeper the free
surface, the lower is the stopping rate. For slopes steeper
than the sand angle of repose, a,=~30°, rolling sand grains
do not stop at all. Following [15,16] we assume, as a simple
but physically reasonable approximation for subcritical
slopes, that I' is also proportional to (tan? a,—|VA|?) and thus
obtain

2 2
F{=¢Rf(1— i ) Fi=fR“(1— [V ) 1)

tan” «, tan’ «,

where 7y and 9 characterize trapping and immobilization
rates of particles upon a horizontal surface. These rates de-
pend on the composition of surface layer,

Y= (&), =y, (8)

where 7, has the dimension of frequency and is the trapping
rate for particles rolling upon a horizontal bed of particles of
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the same size; /(&) and ¢*(&’) are “segregation functions.”
If a particle rolls upon a bed of larger particles, it is stopped
more quickly than on a bed consisting of smaller grains.
Thus, if the surface concentration of fines decreases, the
stopping rate of both fine and coarse particles should in-
crease. On the other hand, the higher is the diameter ratio of
particles the more pronounced is segregation. Finally, we
need to satisfy the condition ¢/(1)=¢¢(0)=1. Taking these
simple arguments into account, we define the segregation
functions as

¢/(zf)=1+kr<i—1)(1—zf), (9a)
dy

1 +kr<%— 1)(1 - &)
i
) , (9b)

A
1+k (—C -1
4,

where kr is a dimensionless segregation coefficient.

Exchange of fines between the sand bed and saltating
cloud occurs in our model wherever the saltation flux is not
in equilibrium with the local surface shear stress. Even if the
flux is the equilibrium one for the incoming wind blowing
above the flat bed surface, it becomes locally under- or over-
saturated due to the surface shear velocity variations caused
by surface undulation. The equilibrium sand flux is often
calculated by means of the Lettau and Lettau formula [23];
for volumetric flux it reads

eqq, ) _ ~ _Pair o0 *
g) = O - ), (10)
Psand8

where C;=4.1, p,;, and pg,,q are the densities of air and sand,
respectively, g is the acceleration of gravity, u;k is the thresh-
old shear velocity necessary to keep saltation motion, u™* is
the shear stress above the saltation layer, and u, =max(u,0).
Since we are going to model only a small part of the ripple
field, we assume the flux of sand transported by wind
through this area is determined by external conditions. Most
of this sand is transported by saltation and we will make no
difference between the total sand flux and the saltation flux
q,. If the wind is locally oversaturated, sand is deposited onto
the sand bed and we approximate the exchange rate as

™) - g,

o =1 if g, > q*(u®). (11)

lsat

Here [, is the “saturation length” used (see [22,24,25]) to

describe the relaxation of sand flux toward equilibrium and,

as in [26], we linearized the original formula [22].
Otherwise, if the wind is locally undersaturated, the fines

from the bed are winnowed away at a rate, we assume, pro-

portional to their surface concentration:

o = R,fqe‘*(u*) - q,

N

if g < g*(u”). (12)
sat

Due to exchange between the sand bed and sand transported

by wind above and upon the bed surface, the composition of

the surface layer changes. To simulate this, we assume that
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bombardment by saltating grains makes the surface layer
agitated and mixing in this layer becomes possible. In our
model the mixing is described by diffusion,

S
ox &( (x,l,h(x,t)—y)%), -0 <y <h(x,t),

ot dy
(13)

where «/(x, v,1t) is the concentration of fine particles in the
sand bed, y is the vertical coordinate, diffusion in the x di-
rection is neglected, and, of course, «/(x,/(x,?),?) is the sur-
face concentration of fines denoted above as ®/(x,r). The
diffusion coefficient D is proportional to the bombardment
intensity, has the same dimension as saltation flux, and
should decay quickly with distance from the bed surface. We
set

D=y, 5 -y, (14)
lsalt sy
where & is the thickness of the diffusion layer and D, is a
dimensionless constant.

To derive the boundary condition at the bed surface, let us
consider the cumulative distribution of fine sand along the x
axis, mf(x,t)=ff(;‘”)/(f(y,x,t)dy. Since the diffusion in the x
direction is neglected,

om’ o
oG -F (15)
at S r r

Making use of the diffusion equation (13), we also obtain

om' o b ont
—= —«| + —dy
ot at |y ) ot
. Frd
= — +D(x,t,0) — ,
at y=h [?y y=h

and, taking (1) and (15) into account, arrive at the boundary
condition

ar’
D(x,z,())g" + (O + T - B+ T B

=—®+ TV FE, y=h(x1). (16)

To complete the model we need yet to specify the splash
functions p} and p¢ and describe spatial variations of the
shear velocity for a given relief.

Although not much is known about the reptation jump
distribution, previous studies (see, e.g., [1]) suggest that the
system is not too sensitive to details of this function behavior
and an approximation sufficient for qualitative simulation
can be obtained by combining existing experimental data and
simple physical arguments. Here we employ the one-
dimensional approximation of the splash function for fine
particles by the density of the normal distribution derived in
[15] using experimental data by Willets and Rice [4].
Namely, we assume that the jumps of fine reptating particles
ejected from the bed at the point x; are distributed approxi-
mately as
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1 (xz—xl - (dhiax)|,, )2
2 ol '

(17)

PZ(Xl,xz) o-f /_ exp|:—

Here the mean jump depends on the surface slope,
lf:(&h/ ox)=L(1-2.010h/dx); the standard deviation 0";
~1.25L; and the mean jump of a fine reptating particle on
the horizontal sand surface, L=l’:(0), is chosen below as the
unit of length. The reptation jump of a crude particle hit by a
small saltating grain must be shorter than the jump of a fine
one; we assume a similar distribution with [°=k,, o“= 0"k,
and the proportionality coefficient depending on the diameter
ratio: k,=k,(d°/d)<1.

Calculation of local variations of surface shear stress and
velocity in a turbulent flow over a given relief is difficult.
The asymptotic solution [27] for turbulent flow over an iso-
lated low hill has been refined in a series of works and em-
ployed for simulation of sand dunes in [24]; it yields 7
=7y(1+7), where 7, is a given shear stress and

R A(lf e B—(xr)) (18)

Here A and B are positive, depend weakly on the ratio of
characteristic hill length to the roughness length of the sur-
face, and can be taken constant as an approximation. The
integral term in (18) is the Hilbert transform of dh/dx and
should be understood in the Cauchy principal value sense.
Important features of this solution are complete scale invari-
ance expected in the fully turbulent regime (the same
speed-up for small and large perturbations of the same
shape) and the characteristic upwind shift of shear stress per-
turbations with respect to surface variations. The influence of
parameters A and B on the isolated dune shape is discussed
in [26]; a similar expression for the shear stress in a turbulent
flow of liquid over a rippled surface has been recently de-
rived in [28]. We also employ the solution (18) in our model
but, since periodic boundary conditions are assumed, we use
an equivalent expression for the Hilbert transform of peri-
odic functions (see, e.g., [29]):

e[ oea( ™

f))dg (19)

Here L, is the period (the length of the part of the sand bed
considered in our model). This gives

| Lo w(x—@) Jh
T(x,t)—Alefo &x(g,t)cot( L d§+B ( )]

(20)

We note that, although this solution has qualitatively correct
scaling and upwind shift, it should yet be verified for peri-
odic reliefs and does not take into account the feedback ef-
fect of saltation upon the air flow. The feedback can, prob-
ably, influence at least the values of parameters A and B.
The shear velocity above the saltation layer is determined
as u*=11/ p,;,. We define also the nominal value of the shear

velocity u: =\7y/ pur» and the corresponding equilibrium
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volumetric sand flux ggl=¢ eq(u ), determined by (10). The
shear velocity us (close to the bed surface inside the saltation
layer) is decreased by saltation drag and, in equilibrium
above the ﬂat sand surface, becomes close to the threshold
velocity u . To account for its variation due to uneven relief
1n Eq. (6) we assume u”™ is proportional to u* but scaled as

u and not as u’, i.e., U —(ut /uo)u .

0 b
III. SCALING

We now rescale the model variables and rewrite the equa-
tions in dimensionless form. Let
R R¢

R'=—_ R =—

1 t
x,s ,3h, :_-xs 9h9 t’:_s ’ -
By’ = Ty b o i R

T
(Bl EC' T/ T¢,0",0°, @'} = Z{E’f,Ei,F{,Ff,Q’,QC,CD_’:},

u T

/_q‘i‘ k1o ! I _

4= "¢qr W' =—, T=", K=K
0 u 7o

Here the unit of length is the mean reptation jump of fine
particles upon a flat horizontal surface, L=lf:(0); the unit of
time is chosen as the time needed for the equilibrium flux of
saltation particles ¢! to expel into reptation a layer of thick-
ness L from the flat horizontal bed of fine particles, T
=Ll g,/ vV 4o Characteristic thicknesses of the rolling layers
are chosen as the equilibrium ones ensuring the balance be-
tween sand ejection and immobilization on a flat horizontal
bed surface if the saltation flux is ¢;! and the bed consists of
only one type of particle:

Vf eq V‘ eq
R} do e Zdo
lsa]t’)’O lsaltYO

The scaling of balance equations yields (the primes are omit-
ted)

oh N
—=—® V- E 4+ T - E, (21)
ot
J fah wfu*
—( — ) QIE]-T., (22)
ox L'yoax L~y0

y c, ¥
L L 1 s
ox Ly, v ax V' Ly, " ”

(23)
where
inf  _ . V°
E{:Sﬂs%ﬂkf), E=s, qus. o1 - o),
(24)
O'[E]]= f w EJ(%,0)p}(%,x)d% (25a)
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©

QTE]=| E&npy(F.x)dz, (25b)
2
= Rf¢f(,<f)(1— [V ) (262)
tan’ a,
2
:—R“ﬁ(ﬁ)( [V ) (26b)
tan’ a,
j;;h[ “Uu*) -q,] if o> ¢*w®),

(Iﬂ; = (27)
R0y — ] i g, = ).
Vflsat

The rescaled surface shear stress is 7=1+7, where 7 is de-
termined by (20) with the length L, measured in units of L.
In the new variables u*=v7 and ¢4 (u*)=[(u* —u, “),/(1
—u, *)]u*2. The diffusion equation (13) and its boundary con-
d1t10n (16) remain unchanged but the diffusion coefficient is
rescaled:

Do S0 0(@ (h- y)) (28)

+

vf *sin y

IV. PARAMETERS

Available experimental data on aeolian transport are
scarce and we tried to make a reasonable choice of model
parameters guided also by the results of numerical simula-
tions and our limited theoretical understanding of compli-
cated interactions between wind, sand bed, saltating and
reptating grains, etc. Intuitively, it seems the reptation jumps
of crude particles should be about (d°/d’)? times shorter than
those of fines. On the other hand, this dependence can, pos-
sibly, be too strong. Indeed, collision of a saltating grain with
the sand bed is not a simple event (see, e.g., [4,30]): usually,
the saltating grain enters the bed, emerges out of it some
distance away from the point of impact, and compels several
sand grains to reptate. We suppose that if, however, a large
particle is hit, the saltating grain often rebounds immediately
and transfers its momentum mainly to that particle; in our
simulations below we assumed =Fk, =o'k, with k,
=(d’/d")*. We note, however, that using k,=(d’/d")* does not
change the results significantly. In both cases rolling upon
the bed surface has more influence on the reptation of coarse
particles expelled from the bed by saltation impacts than
their short initial jumps.

We assume for simplicity that the mobilities of fine and
coarse particles are equal, u=u/, and account for different
rolling distances of these particles by employing different
trapping rates (26) in Eqgs. (22) and (23). This is achieved,
first, by introducing a significant segregation coefficient k.
=1 [see Eq. (9)] and, second, by assuming the wind drag has
possibly stronger influence on the crude rolling particles than
on the small ones because larger particles, expelled by salta-
tion impacts and rolling in the shear flow upon the bed sur-
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face, are protruded further into the wind. The closeup video
[19], showing saltation and reptation in a wind tunnel, does,
possibly, confirm this assumption. We chose the drag coeffi-
cients o/ and w® proportional to the size of dragged particles:
o'/ o' =d/d.

Exchange of sand between the bed and saltation cloud,
accounted for in our model, leads to erosion on ripple crests
and deposition in troughs; this flattens the ripples and in-
creases the ripple index, the wavelength to height ratio. We
set w//Lyy=1.25, which is less than the value 2 employed in
[15], where such exchange was ignored, to obtain a natural
index value. We assume that saltation impacts eject the fine
particles from the bed surface easier than the crude ones; on
the other hand, the fines are less exposed to these impacts.
We set the ejection rate coefficients inversely proportional to
the size of ejected sand particles, v//1°=d‘/d’'. Following
[17, 31] we take, as a characteristic value, u; =40 cm s~! and
set u, *=22 ems™! (which corresponds to ¢/=0.02 cm) in d1—
mens1onal units; the dimensionless values are uo—l and u
=0.55. Since o/w/=d‘/d’ and v/ =d‘/d, we have
o'uy | Uyy=(1F/v)wu | Ly, [see Eqgs. (22) and (23)]; in our
simulations the common value of these dimensionless com-
plexes was 0.14 or 0.16. The angle to the horizontal at which
saltating grains strike the bed surface, y, was 11° (similar
results were obtained for y uniformly distributed between 9°
and 15°).

We assumed the characteristic value of [/, is about 50 cm
(see [32]); I is of the order of several meters (see [25,31]);
in our simulations we set [y //,,=0.1. The mean reptation
jump of fine particles, L=#(0)=0.3 cm, is about 15 fine par-
ticle diameters. Calculating ¢{!=0.056 cm®*s™' from Eg.
(10), we obtain T=Ll,/V/g5!~270/v' s. In our simulations
we used /=4 and small ripples formed during a realistic
time, from several minutes to an hour. It may be noted that
different authors give different estimates for [, and [.
Thus, according to Anderson, I,,=~30 cm (see [1]), and
Bagnold has found experimentally that [, =~2.5 m (see [3]).
Choosing [, =25 cm and keeping the ratio [y /l,=0.1
yields Bagnold’s estimate for the saturation length. In this
case, if we leave unchanged also other dimensionless com-
plexes in our simulations, the only difference is a twice
smaller time scale 7, which is acceptable for a qualitative
model like ours.

The thickness of the diffusion layer should be of the order
of several fine grain diameters; we took 6p=0.07 cm and set
D():O.S.

For the characteristic ratio of ripple length to sand surface
roughness, 103—10%, the parameters in Eq. (20), estimated
theoretically in [24,33] without accounting for the saltation
feedback on the wind, were A=35 and B~ 1. We found, how-
ever, that without increasing the value of B it is difficult to
obtain a realistic armoring layer on the stoss slopes of
ripples; in our simulations we used A=5 and B=2.

Since we consider only a small part of the ripple field, the
incoming sand flux ¢, is determined by external conditions
and we neglect its variation in the considered area caused by
erosion and deposition of sand. One possible approach is to
keep the sand flux constant during the simulation, assuming,
for example, that we model formation of ripples in a small
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FIG. 2. Homogeneous sand: initial growth and coarsening of
sand ripples.

part of the ripple field where, initially, the surface was made
flat artificially.

V. NUMERICAL APPROXIMATION

The model equations with periodic boundary conditions
in x were discretized and solved numerically. We regularized
the equation for surface evolution (21) by adding a small
diffusion term, &,*h/dx* with &,=1072, and used an explicit
finite difference scheme. Note that diffusion smooths the free
surface and makes the Hilbert transform of dh/dx in (20)
well defined. The quasistationary BCRE equations for sur-
face flow of sand, (22) and (23), were also regularized, as in
[16], by adding diffusion terms xR’/ dx* and exd*R¢/ dx?,
respectively; ep=1072. Piecewise linear finite elements were
employed to discretize these equations in space. Sufficient
resolution in space was obtained with about 1000 equidistant
nodes in horizontal direction.

To solve the moving boundary problem (13) and (16) we
fixed the boundary using the coordinate transform z=h(x,7)
—y and arrived at the advection-diffusion problem

Ik’ e Ix’
= TE )+ T - E + r’_Ei)a_z
d P
=—(D(x,t,z)—>, 0<z<oo, (29)
9z oz
o
>
2
o
©
2
©
3
@
£
0 20 40 60 x(cm)

FIG. 3. Homogeneous sand: downwind translation of mature
ripples.
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time: 0 to 1 hour

0 40 80 120 x(cm)

FIG. 4. Mature ripples (see Fig. 3) stretched 2:1 in the x direc-
tion and used as initial sand surface. The ripple height quickly
adapts itself to the new ripple wavelength, which remains twice
longer than in Fig. 3.

i : o
—D(x,t,O)ﬁ— + (- D+ T - E 4+ T - EO W
4

=-®/+V-F, z=0, (30)
which was explicitly discretized in time and solved (at each
time step and for each node of a uniform x grid) on a finite
interval 0=sz=<L_, where L_ was sufficiently large. Since the
diffusion coefficient is zero for z= Jp, no boundary condi-
tion is needed at z=L,. Here it was necessary to use a total
variation diminishing scheme (we used the “superbee” flux
limiting method; see [34,35]) to eliminate the approximation
viscosity that causes unphysical smearing of concentration
variations inside the sand bed.

Initially, the bed had a flat surface slightly perturbed by a
random noise; the bed composition was uniform; the bed
depth L, was not more than twice larger than the diffusion
length Jp; and the z grid contained only 12 or 16 equidistant
nodes. As the ripples formed, nonuniformity of bed compo-
sition penetrated deeper into the bed. The sand bed was,
therefore, automatically extended when necessary by adding
several lower layers with the initial composition of sand; the
adaptive mesh generation accelerated our computations. In
our longest simulations of inhomogeneous sand ripples
(=7x10° time steps) the number of nodes in the z direction
grew up to 200.

Since the probability density (17) is negligible outside
small areas several standard deviations long, computation of
the integrals in (25) is fast. Finally, the Hilbert transform in
(20) is a cyclic convolution efficiently computed by means of
the fast Fourier transform.

s
}f ‘
§

180 x(cm)

FIG. 5. As in Fig. 4 but ripples stretched 3:1 in the x direction.
Both the ripple height and wavelength change; the new saturated
ripple wavelength is twice shorter than the initial one and 1.5 times
longer than the wavelength of ripples formed on the initially flat
surface.
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VI. SIMULATION RESULTS

A. Homogeneous sand

For sand consisting of the fine particles only, our model is
similar to the model of [15] with two extensions. First, in the
new model we account for mass exchange between the bed
and saltation cloud; second, drag force is acting on the
reptating particles. The initial stage of ripple growth (Fig. 2)
is very similar to that in [15]: ripples appear and become
asymmetric shortly after the appearance of shadow regions;
then coarsening of the ripple pattern takes place. The coars-
ening does not occur via simple merging of ripples when
smaller ripples, moving faster, overtake the larger ones. As
noted before (see [11,15,36]), when an overtaking ripple
comes close to a larger one, the trough between them be-
comes shallow and there appears a “two-headed” ripple.
Then, typically, a small ripple, smaller than the overtaking
one before the interaction, runs further downwind. Our
model reproduces this solitonlike interaction with partial
mass exchange; such a two-dimensional picture corresponds
well to the dynamics of ripple terminations and bifurcations,
leading to ripple field coarsening [37], if the dynamics is
observed in a cross section of the ripple field.

As the ripples grow, their velocity and evolution slow
down. Previous mathematical models (see, e.g.,
[11,15,20,38]) could not simulate the ripple wavelength satu-
ration and showed only an increasingly slower, possibly
logarithmic, growth in time. This was not completely satis-
factory because both field observations and wind tunnel ex-
periments [3,39,31] suggest that ripple growth saturates. In
our simulations the saturation of ripple growth was much
better reproduced (see Fig. 3), and resulted, as was suggested
by Bagnold, from removal of sand by wind from the ripple
crests and its deposition in the troughs. The simulated mature
ripples have wavelength 9.6 cm and height about 0.7 cm;
their ripple index is thus about 14.

Recently, Andreotti er al. [31] presented interesting results
of a wind tunnel study of aeolian ripples. First, starting an
experiment with a flat sand surface, they observed slowing
down of ripple growth and coarsening but were unable to run
the experiment long enough to make saturation evident.
Therefore they repeated the experiment starting with a ripple
pattern of the obtained wavelength imprinted upon the sand
surface artificially; this allowed them to observe saturation.
Their further experiments showed that, under the same con-
ditions, there is a range of stable ripple wavelengths: if the
imprinted initial ripple pattern wavelength was changed
slightly, the wavelength persisted, although the ripple ampli-
tude could adjust itself before the saturation took place. Sig-
nificant change of the initial surface wavelength leads to pat-
tern reconstruction via splitting or merging of ripples. These
results are nicely reproduced in our simulations (see Figs. 4
and 5), which started with an initially rippled sand surface
with wavelengths two and three times longer, respectively,
than the wavelength of saturated ripples formed under the
same conditions on the initially flat sand surface.

The influence of drag was not very significant (see Fig.
6); we believe that drag plays a more important role (see
below) for coarse particles having much shorter reptation
jumps.

PHYSICAL REVIEW E 79, 031303 (2009)
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FIG. 6. Simulated mature ripples (homogeneous sand). Top plot:
no drag, »=0. Bottom plot: with drag, wfuj/l{y0=0.14. The
lengths are in centimeters.

B. Inhomogeneous sand

Solution of the advection-diffusion equation (29) is time
consuming and to model several hours of inhomogeneous
sand ripple evolution we needed several days of CPU time. It
was, therefore, not possible to model formation of mega-
ripples, which needs at least weeks or even months of strong
winds. Nevertheless, we were able to follow the initial stage
of this process.

Numerical simulations were performed for sand mixtures
with diameter ratios d°/d’=3 and 5, consisting in both cases
of 90% (volume) of fine particles and 10% of coarse par-
ticles, i.e., /(x,y,0)=0.9. We found that for such mixtures
switching off the wind drag acting upon the reptating par-
ticles prevents formation of ripples in our model: the coarse
grains remain almost unmovable under saltation strikes and,
even if their concentration is small, efficiently stabilize the
sand surface. If, however, their reptation is assisted by the
wind drag, ripples form (Figs. 7 and 8). In this case, after an
initial stage of ripple growth, similar to that for homoge-
neous sand, size segregation gradually develops. The ripple
stoss slopes and crests become depleted of fine particles
while the concentration of fines in the troughs increases (Fig.
9). On the stoss slopes the armoring layer of crude particles
is very thin; however, the whole crests of grown-up ripples
contain significant concentration of coarse grains.

Although the ripples at t=13 h (Figs. 7 and 8) are not
large, their growth has slowed down and is controlled by
creep of coarse grains on the free surface and diffusion of
fines through the surface layer of coarse particles. In com-

O.St

—05 ; ; i ]
0 20 40 60 X

0
- ‘ ) ‘ ,
20 40 60 X

-0.5
15 : : : 3
0 20 40 60 X
_O'SM/
15 ‘ ‘ ]
0 20 40 60 X
0.2 0.4 0.6 0.8 1

FIG. 7. (Color online) Ripple growth for bidispersed sand mix-
ture containing 10% of crude grains; size ratio d°/d’=3; rescaled
drag coefficient wfuj/ l’:y0=0.16. Times, from top to bottom: 0.3,
1.7, 5.6, and 13.5 h. The sand flux is constant and equal to the
oversaturated flux with saturation ratio 1.1 for the flat bed of fine
particles. The lengths are in centimeters. The bottom plot shows the
color scale for the concentration of fine particles.
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FIG. 8. (Color online) As in Fig. 7 but for size ratio d°/d'=5
and rescaled drag coefficient wfu;k/ l-’:yO=0.14. Times, from top to
bottom: 0.3, 1.7, 5.6, and 13 h.

parison to homogeneous sand ripples growing under similar
conditions, these ripples are of similar size but less uniform.
Since smaller ripples move faster than large ones, this is a
sign that the evolution and coarsening of the ripple field are
far from finished.

In these examples (Figs. 7 and 8) the sand flux was kept
constant, g,=1.1¢g", where gg'=gg’ (ug) is the equilibrium
flux determined by formula (10). Other approximate formu-
las relating the transport rate of blown sand to wind friction
velocity and mean grain size have also been used with some
success (see, e.g., [40] and the references therein). On the
other hand, in our model exchange between the sand bed and
saltating grain population is determined locally; it depends
not only on the sand flux but also on local surface layer
composition and shear velocity [see Egs. (11) and (12)].
Given the nominal shear velocity u , for each rippled bed of
inhomogeneous sand one can deﬁne the equilibrium sand
flux ¢y, corresponding to zero total mass exchange, i.e., the
root of the nonlinear equation [®(g,)dx=0. We found that
such equilibrium-on-average sand flux ¢;J depends strongly
on the bed surface undulations and sand composition. This
seems to be in contradiction with the robust estimates ob-
tained, e.g., using Eq. (10) without taking such details into
account. However, our simulations showed that, when the
very first small ripples appear on the initially flat surface, the
flux ¢ quickly increases and becomes greater than the fixed
sand ﬂux q,- The wind becomes undersaturated; fine particles
are winnowed away and the surface concentration of crudes
increases on the stoss slopes and ripple crests. This acts as a
feedback which gradually decreases the difference between
qa and g, (see Fig. 10) and also slows down the exchange
between bed and saltation cloud. We suppose that if the act-
ing sand flux ¢, is not kept constant artificially, as in our

il ININLTINEY
MANWMAMAMAMAMIA M\/\/\/\M

0 20 40 60 xcm 60 xcm

FIG. 9. (Color online) Surface concentration of fines (top) and
rippled bed surface (bottom); d/d’=5. Left: ¢=0.5h, right:
t=13 h.
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FIG. 10. Equilibrium-on-average sand flux: evolution induced
by formation of ripples accompanied by size segregation of sand.
As the ripples grow, gq¢ becomes close to the acting flux g;.

simulations of a small part of the sand bed, but determined
nonlocally by conditions in a much larger area, joint evolu-
tion of ¢ and g, may lead to an equilibrium flux close to

a§'=q5(uy).

VII. CONCLUSIONS

The formation of aeolian ripples is influenced by a variety
of different factors and, correspondingly, significant variation
of ripple forms is found in nature. A realistic model of sand
ripples should account for complex interactions of several
physical processes: saltation and reptation, turbulent grain-
loaded air flow above a given relief, entrainment of sand
particles into such flow, and, finally, size segregation of sand
accompanying and influencing these processes. Each of the
processes continues to be an issue of intensive study and,
although general physical understanding of aeolian sand
transport has much improved recently, quantitative descrip-
tion remains hardly possible.

Using the simplest mass balance equations and crude em-
pirical constitutive relations, we tried to derive a mathemati-
cal model of sand ripples capable of demonstrating the sa-
lient features of ripple evolution: the realistic asymmetric
ripple shape, coarsening of the ripple field, saturation of aeo-
lian ripple growth for homogeneous sand, and typical size
segregation if sand is inhomogeneous. The proposed bidis-
perse model can be considered a simplified scheme of mate-
rial fluxes; details of this scheme can be changed easily and
this makes it a convenient tool for studying the effect of
different physical assumptions and mathematical approxima-
tions.

Our model accounts for the exchange of sand between the
bed and saltation cloud as the mechanism for ripple stabili-
zation suggested by Bagnold [3]: as the ripples grow, more
sand is winnowed away from their crests and deposited in
the troughs. Numerical simulations confirmed that this model
describes saturation of ripple growth for homogeneous sand
much better than previous models. In accordance with the
wind tunnel experiments [31] we could also reproduce the
existence of a range of stable ripple wavelengths.

We suppose that linear growth of the initial and final
ripple wavelengths with the wind speed, also reported in
[31], can be explained by nonequilibrium conditions in the
wind tunnel employed in that work: the tunnel was more
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than twice shorter than needed (see [3], p. 26) to attain stable
conditions of equilibrium between the wind strength and sal-
tation flux. At equilibrium, the wind near the bed surface and
saltation grain trajectories are almost independent of the in-
coming wind strength, so such scaling of the ripple wave-
length would be difficult to explain. In accordance with
Anderson’s model, the initial ripple wavelength in our work
scales, under equilibrium conditions, only with the average
reptation jump.

For inhomogeneous sand having a realistic ratio of coarse
to fine particle sizes, sand ripples in our model form only if
the reptation of coarse grains is assisted by the wind drag.
Size segregation of sand in ripples occurs due to the different
modes of fine (saltation and reptation) and crude (reptation)
grain motion. Our model accounts for this difference and
takes into account also additional segregation mechanism
due to the different immobilization rates of reptating fine and

PHYSICAL REVIEW E 79, 031303 (2009)

coarse grains on the bed surface. Using this model we were
able to simulate qualitatively the correct segregation pattern
and formation of armoring surface layers of crude particles
in natural ripples. Although we were not able to perform
simulations on the time scale of megaripple formation, mod-
eling the initial stage of ripple growth indicated that for in-
homogeneous sand growth of ripples continues further with-
out saturation.
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