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We simulate numerically the time evolution of 1000 interacting hard spheres in a finite box with periodic
boundary conditions, and repeat the simulations many times for a selected random distribution of initial
conditions. We use the resulting data to compute, directly, the smallest nonzero eigenvalue of the collision
operator for this gas. We also give exact expressions for the transport coefficients and compare them to
approximate expressions commonly seen in the literature.
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I. INTRODUCTION

The decay to equilibrium of gases driven out of equilib-
rium, by stirring or selective heating by laser radiation, is
governed by collision processes at the microscopic level. The
effect of these collision processes on the macroscopic phase
space distribution of the gas is contained in the collision
operators that appear naturally in the kinetic equations that
govern the time evolution of the gas as it approaches its
equilibrium state. Linearizing the kinetic equation admits
analysis in terms of linear collision operators. The eigenval-
ues of these linearized collision operators determine the rate
at which a gas decays to equilibrium and the eigenvectors
determine the modes of decay.

The eigenvalue problem for a Maxwell gas was solved by
Wang Chang and Uhlenbeck �1�. The eigenvectors of the
Maxwell gas can be used as an expansion basis for the lin-
earized collision operator for a hard-sphere gas �2� and we
follow this approach. In general, the eigenvalue spectrum
may contain continuous regions as well as discrete values
�3�. For hard spheres, the discrete eigenvalues accumulate at
a limit point, making the higher-order discrete eigenvalues
difficult to calculate �4�. Since we measure only the first few
eigenvalues, the expansion method is sufficient.

The eigenvalue expansion has also been used to model
decay processes in more complex situations such as the re-
laxation of light-induced changes of velocity distribution
tracer atoms immersed in a light insensitive buffer gas �5–7�,
and the effect of collisions on spectral line shapes �8�. The
collision operator for a gas also determines the value of its
transport coefficients.

In the sections below, we measure directly the decay rate
of the longest lived eigenmode �of the collision operator� for
a hard-sphere gas, using data from a molecular dynamics
simulation of 1000 hard spheres in a box. We begin in Sec. II
by deriving the collision matrix for a hard-sphere gas and for
a Maxwell gas since the eigenvectors of the collision matrix
for a Maxwell gas are used in the hard-sphere derivation. In
Sec. III, we give the results of the numerical simulation of
1000 hard spheres, initially held out of equilibrium and then
allowed to decay to equilibrium using Newtonian mechanics.
In Sec. IV we give exact expressions for the transport coef-
ficients and, in Sec. V, we make some concluding remarks.

II. DECAY RATES

If the momentum distribution of a dilute gas of particles
of diameter � and mass m is driven out of equilibrium, then

after a very short time its decay back to equilibrium will be
governed by the single particle phase space distribution func-
tion f�v , t�, where v is the velocity. The time evolution of this
function is governed by the Boltzmann equation �1,9–12�,

�f1

�t
=� dv2dv3dv4I�u,���3�v1 + v2

2
−

v3 + v4

2
�

���v1
2 + v2

2 − v3
2 − v4

2��f3f4 − f1f2� , �1�

where I�u ,�� is the differential scattering cross section for a
binary interaction between two particles, u is the magnitude
of the relative velocity between two colliding particles, � is
the scattering angle, and f1= f�v1 , t�. The Boltzmann equa-
tion is used to model the effects of gas collisions under a
variety of circumstances and to compute microscopic expres-
sions for transport coefficients in gases.

For small amplitude deviations from equilibrium, the
Boltzmann equation can be linearized and becomes an eigen-
value equation for the characteristic decay rates which deter-
mine the rate of relaxation of the gas to its equilibrium dis-
tribution which, for a simple gas, is the Maxwell-Boltzmann
distribution. Let us note that the Maxwell-Boltzmann distri-
bution can be written in the form f0�v�=

n0

vT
3�3/2 e−c2

, where n0

=N /V, N is the number of particles, V is the volume, c= v
vT

is

a dimensionless velocity coordinate, and vT=�2kBT

m repre-
sents the most probable velocity in equilibrium. Small devia-
tions from equilibrium can be written us f�v�= f0�v��1
+g�c��, where the dimensionless function g�c� represents
perturbations about equilibrium. We shall assume that g�c�
�1 and, as the system relaxes, g�c�→0.

If we keep terms linear in g�c�, the Boltzmann equation
can be written as an evolution equation for g�c�, namely

dg�c1�
dt

=� dc5e−c5
2
C�c1,c5�g�c5� , �2�

where

C�c1,c5� = n0vT
8ec5

2

�3/2 � dc2dc3dc4I�u�,���3�c1 + c2 − c3 − c4�

���c1
2 + c2

2 − c3
2 − c4

2�e−c2
2
��3�c3 − c5�

+ �3�c4 − c5� − �3�c1 − c5� − �3�c2 − c5�� . �3�

The function C�c1 ,c5� is called the collision kernel. Explicit
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calculation shows that it is symmetric under interchange of
c1 and c5 �see Appendix A�. The collision kernel conserves
the momentum, kinetic energy, and number of colliding par-
ticles. As we will see, its eigenvalues are either zero �due to
conservation laws� or negative allowing decay of the gas to
thermodynamic equilibrium.

The linearized Boltzmann equation given in Eqs. �2� and
�3� can be converted into a matrix equation whose evolution
is governed by a “collision matrix.” The eigenvalues of the
collision matrix give the characteristic decay rates of pertur-
bations in the gas, and the inverse of the collision matrix
determines the transport coefficients. In order to obtain the
matrix Boltzmann equation, we introduce the Burnett func-
tions �1,9,12�,

�n,l,m�c� =� 2n!

�n + l + 1
2�!

Ln
l+�1/2��c2�clYl

m�ĉ� , �4�

where Ln
l �c2� is a Laguerre polynomial and Yl

m�ĉ� is a spheri-
cal harmonic. The Burnett functions are orthonormal over c
with weighting function e−c2

. We can expand the functions
g�c� in terms of the Burnett functions,

g�c� = 	
n=0

	

	
l=0

	

	
m=−l

l

gn,l,m�n,l,m�c� , �5�

which yields gn,l,m=
dce−c2
g�c��

n,l,m
* �c�. The linearized Bolt-

zmann equation then takes the form

dgn,l,m

dt
= 	

n�l�m�

Cn�,l�,m�
n,l,m gn�,l�,m�, �6�

where

Cn�,l�,m�
n,l,m =� dc1dc5e−c1

2−c5
2
�

n,l,m
* �c1�C�c1,c5��n�,l�,m��c5� .

�7�

The function C�c1 ,c5� is a scalar quantity and can only de-
pend on �c1�, �c5�, and ĉ1 · ĉ5. This fact results in C being
diagonal in l and m and independent of m �1� so that

Cn�,l�,m�
n,l,m = Cn,n�

l �l,l��m,m�. �8�

Thus for each value of l and m, we have a independent
system and we are left with a simple matrix equation of the
form

dgn,l,m

dt
= 	

n�=0

	

Cn,n�
l gn�,l,m. �9�

The Boltzmann equation describes decay to an equilibrium
state while conserving five quantities: Particle number, three
components of momentum and energy. Thus we expect that
the collision matrix will have five zero eigenvalues, and that
all other eigenvalues will be negative.

Explicit calculation of the matrix elements Cn,n�
l requires

knowledge of the scattering cross section I�u ,��. For prob-
lems where I�u ,�� is unknown, one may assume a phenom-
enological collision kernel with undetermined parameters

�7,8,13,14�. Comparing the resulting eigenvalues and trans-
port coefficients to experimental results can then determine
the parameters of the assumed collision kernel.

The general procedure for computing matrix elements
Cn,n�

l involves use of a generating function, which is obtained
as follows. First introduce a matrix Mn,n�

l which is defined

Mn,n�
l =� dc1dc5e−c1

2−c5
2
C�c1,c5�c1

l c5
l Ln

l+�1/2��c1
2�

�Ln�
l+�1/2��c5

2�Pl�ĉ1 · ĉ5� , �10�

so that

Cn,n�
l =

1

4�
� 4n!n�!


�n + l + 3
2�
�n� + l + 3

2�Mn,n�
l . �11�

The spherical harmonic addition theorem
	m=−l

l Y
l

m*�ĉ1�Yl
m�ĉ5�= 2l+1

4� Pl�ĉ1 · ĉ5� has been used to elimi-
nate explicit dependence on m. The generating function for
Mn,n�

l can be written as

M�x,y ;t� = 	
n=0

	

	
n�=0

	

	
l=0

	

Mn,n�
l xnyn� tl

l!
. �12�

Using the identities

	
n=0

	

Ln
k�c2�xn =

1

�1 − x�k+1e−xc2/�1−x�

and

	
l=0

	

Pl�â · b̂�
tl

l!
=

1

2�
etâ·b̂�

0

2�

eit�â�b̂�cos �d� �13�

for the Laguerre and Legendre polynomials, we obtain

M�x,y ;t� =
1

2���1 − x��1 − y��3/2

�� dc1dc5e−c1
2−c5

2
C�c1,c5�

�e−xc1
2/�1−x�−yc5

2/�1−y�+tc1·c5/��1−x��1−y��

��
0

2�

d�eit�c1�c5�cos �/��1−x��1−y��. �14�

For some choices of interparticle potential, the integrals in
Eq. �14� can be done analytically. The generating function
M�x ,y , t� can be expanded in a power series in parameters x,
y and t. The coefficient of the term xnyn�tl is equal to
Mn,n�

l / l!. Once we know Mn,n�
l , we can use Eq. �11� to obtain

Cn,n�
l . Below we give expressions for Cn,n�

l for a hard-sphere
gas and for a gas of Maxwell particles.

A. Hard-sphere gas

For hard spheres, the differential scattering cross section
is I�u ,��=��2, where � is the diameter of the hard spheres.
The collision matrix is given by
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Cn,n�
l =

1

�HS
� n!n�!

8
�n + l + 3
2�
�n� + l + 3

2� 	
j=0

n,n�

	
k=0

l

�− 1

2 + n + n� + l − 2j − k�l!

�n − j�!�n� − j�!�l − k�!2n+n�+l−2j−k
Bj

k, �15�

where Bj
k= �j+k+1�!

j!k! +� j0�k0−2 �2j+k+1�!
�2j+1�!k!2k and 1

�HS
=n0��2�8kBT

�m . More details concerning the derivation of Eq. �15� are given in
Appendix A.

The matrix formed by the quantities Cn,n�
l is block diagonal in l. Let us introduce the matrix Cl such that Cn,n�

l = �Cl�n,n�. If
we use Eq. �15�, the matrix C0 is given by

C0 =
1

�HS�
0 0 0 0 0 ¯

0 0 0 0 0 ¯

0 0 − 0.754 247 0.174 574 0.0205 738 ¯

0 0 0.174 574 − 1.252 59 0.319 048 ¯

0 0 0.020 5738 0.319 048 − 1.643 74 ¯

] ] ] ] ] �


 , �16�

We find eigenvalues of C0 numerically using the first 200 rows and columns. They are


HS
0 =

1

�HS
�0, 0, − 0.671 23, − 0.911 57, − 0.982 06, ¯ , − 1� . �17�

It is well known that for hard spheres, all discrete eigenvalues are greater than − 1
�HS

�2,4,15� and accumulate to the value

HS

0 =− 1
�HS

. Our results are consistent with that observation. Only the first few eigenvalues are relevant for our hard-sphere
simulation. The contributions to Cnn�

l coming from l=0 represent perturbations that only depend on the magnitude of the
velocity. The two zero eigenvalues represent conservation of particles and conservation of energy.

For l=1, the collision matrix is

C1 =
1

�HS�
0 0 0 0 ¯

0 − 0.754 247 0.142 539 0.014 5479 ¯

0 0.142 539 − 1.212 18 0.283 177 ¯

0 0.014 5479 0.283 177 − 1.587 34 ¯

] ] ] ] ] �


 , �18�

and its eigenvalues computed from the first 200 rows and
columns are


HS
1 =

1

�HS
�0, − 0.695 03, − 0.921 14,

− 0.985 81, ¯ , − 1� . �19�

The single zero eigenvalue represents conservation of veloc-
ity in the x, y, and z directions. It contains information about
these three independent components of velocity because l
=1 represents perturbations that are proportional to c and
otherwise only depend on the magnitude of c. The l=1 ma-
trix actually represents three identical matrices with m=−1,
m=0, and m=1 since the matrix elements are independent of
m. This brings the total conserved quantities to five, the num-
ber we expect to have for spherically symmetric particles.

Perturbations that contain combinations such as cxcy are
represented by the l=2 matrix. The eigenvalues of C2 are
given by


HS
2 =

1

�HS
�− 0.958 40, − 0.995 05, ¯ , − 1� .

�20�

The matrix C2 has no zero eigenvalues. In contrast, the di-
agonal elements of the matrix C2 are

1

�HS
�− 1.131 37, − 1.380 54, − 1.668 01,

− 1.945 75, − 2.205 63, ¯ � , �21�

showing that the off-diagonal elements have substantial in-
fluence in slowing the decay rates. For l�3 it appears that
no discrete eigenvalues exist �2,4�.

B. Maxwell gas

For a Maxwell gas, the interparticle potential is given by
V�r�=V4� a

r �4 and the collision cross section for particles of

mass m is given by I�u ,��= a2

8
�2V4

m
1
uF���, where
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F��� =
4

sin �

�cos 2�

sin 2��cos 2�E�sin �� − cos2 �K�sin ���

=
2

sin � sin2 2�
� d�

d�
�−1

. �22�

The angle � is defined implicitly by the equation ����=�
−2�cos 2�K�sin ��. K and E are complete elliptic integrals
of the first and second kinds, respectively. Though this cross
section is complicated, the 1

u dependence results in �n,l,m be-
ing the exact eigenfunctions of the collision operator �1� for
the Maxwell gas. The collision matrix Cn,n�

l is therefore di-
agonal and the eigenvalues can be written as


n
l =

2�

�M
�

0

�

Gn
l ���F���sin �d� , �23�

where

Gn
l ��� = cos2n+l��

2
�Pl�cos

�

2
� + sin2n+l��

2
�Pl�sin

�

2
� − 1

− �n0�l0, �24�

and 1
�M

=n0a2�4V4

m .
For the purposes of computation, we can use the fact that

F��� is proportional to � d�
d� �−1 and cancel this factor with a

change of integration variables from � to �. This results in


n
l =

4�

�M
�

0

�/4 Gn
l ������

sin2�2��
d� �25�

which is much better suited to numerical integration than Eq.
�23�.

For the Maxwell gas, the placement of the zero eigenval-
ues is the same as in the hard-sphere case, meaning that
particle number, momentum, and energy are conserved. Be-
low we list eigenvalues for the first few values of n and l,
calculated using Eq. �25�,


M
0 =

1

�M
�0, 0, − 1.937 96, − 2.906 95,

− 3.570 15, − 4.080 46, − 4.498 34, ¯ � ,

�26�


M
1 =

1

�M
�0, − 1.937 96, − 2.906 95, − 3.570 15,

− 4.080 46, − 4.498 34, − 4.854 02, ¯ � , �27�

and


M
2 =

1

�M
�− 2.906 95, − 3.391 44, − 3.901 75,

− 4.335 62, − 4.707 28, − 5.031 86, ¯ � .

�28�

The degeneracy of eigenvalues in 
M
0 and 
M

1 arises from the
dependence of Gn

l ��� on indices n and l.

III. HARD-SPHERE SIMULATION

A. Simulation method

For a hard-sphere simulation, we begin by uniformly dis-
tributing N spheres of diameter � within a cubic cell of vol-
ume L3, with periodic boundary conditions, in such a way
that no sphere overlaps with any other sphere. Specifically, if
ri is the position of the ith sphere then for all j� i we must
have �ri−r j � ��. We then assign each sphere a velocity vi in

such a way as to approximate a distribution function f̃�v�
= f0�v��1+g0�c��, where g0�c� is our desired initial perturba-
tion. The choice of the initial perturbation will be discussed
below.

Schematically, the simulation is carried out as follows: �a�
For each pair of spheres, we compute the contact time tij,
which is the time at which the spheres i and j will collide,
should they follow straight line paths. This is found by the
contact condition �ri+vi�tij − t�−r j −v j�tij − t��=�, where t is
the current time. We solve the contact condition for tij and
choose the smallest positive value for tij − t. �b� We then per-
form a search to find the smallest tij value, t*, which repre-
sents the time of the next collision. �c� All spheres are ad-
vanced to t* following straight-line paths according to their
locations and velocities at t. �d� The colliding spheres have
their velocities altered according to the kinematics of a
purely elastic collision. �e� Then we update all values of tij
and proceed to step �b�.

We implement periodic boundary conditions by adding
two parts to the above algorithm: �1� In step �a�, we calculate
not one, but 27 values for tij, each representing sphere j
offset by −L, 0 or L in the x, y or z direction. Elastic collision
kinematics are also adjusted accordingly. �2� We calculate
the time at which each particle will strike each wall and add
this list of times to our search in step �b�. If a wall collision
occurs as the next soonest collision, that sphere is simply
moved to the opposite side of the simulation cell.

B. Data measurement

As the simulation progresses, we have access to each ri
and each vi at any iteration. With a typical particle number of
N=1000, this is clearly a vast amount of information. Since
our goal is observation of perturbation decay rates, the per-
turbation amplitudes gn,l,m are of particular interest. Let us
see how we go about extracting these values from ri and
each vi.

Assume that we are given an arbitrary continuous distri-
bution function f�r ,v , t� that exists in a volume V. We must
first determine the number of particles present and their most
probable velocity vT in equilibrium. These are given by N
=
drdvf�r ,v , t� and vT

2 = 2
3N 
drdvv2f�r ,v , t�. In order to de-

termine gn,l,m�t�, we use the equation which defines the per-
turbations,

f�r,v,t� =
N

V

1

�3/2vT
3 e−c2�1 + 	

n,l,m
�n,l,m�c�gn,l,m�t�� , �29�

where c= v
vT

. Using the orthogonality of the polynomials
�n,l,m, we can invert Eq. �29� to get an explicit formula for
gn,l,m�t�,
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gn,l,m�t� = − �3/4�n,0�l,0�m,0 +
�3/2vT

3

N
� drdc�

n,l,m
* �c�f�r,v,t� .

�30�

We now construct a phase space density function ��r ,v , t�
from ri�t� and vi�t� by writing

��v,t� = 	
i=1

N

�3�r − ri�t���3�v − vi�t�� . �31�

This phase space density function is used in place of f�r ,v , t�
in Eq. �30�. Explicitly, this is

gn,l,m�t� = − �3/4�n,0�l,0�m,0 +
�3/2

N
	
i=1

N

�
n,l,m
* �vi�t�

vT
� .

�32�

With Eq. �32� we can measure the decay of perturbations as
the system evolves. It is of interest to note that by construc-
tion, g0,0,0�t�=0, g0,1,0�t�� �cz�=0, g0,1,1�t�� �cx�− i�cy�=0,
g0,1,−1�t�� �cx�+ i�cy�=0, and g1,0,0�t��vT

2 − 2
3 �v2�=0. This en-

forces the idea that the quantities N, �c�, and �c2� are not
expressed as perturbations, and therefore are conserved.

C. Decay of perturbations

In the real-world hard-spheres problem, the time scale is
set by 1

�HS
=n0�2�4�vT

2 �see Eq. �15� and the definition of
vT�. Measuring our eigenvalues in units of 1

�HS
yields dimen-

sionless eigenvalues that are universal to any hard-sphere
system. We can compute the time scale for our simulations,
using the formula

1

�HS
=

N�2

L3 �4�
2

3N	
i=1

N

vi
2. �33�

Note that events always occur at the same rate provided that
time is measured in units of �HS. Because of this, and for
convenience, we choose to normalize all velocities before the
simulation begins such that 2

3N	i=1
N vi

2=1. Once this is done,
the time scale can be found from 1

�HS
= �N�2 /L3��4�.

We can characterize the density by the unitless ratio �

= Na3

L3 , where a= �
2 is the radius of the particle. This number

can be used to compare a given choice of N, �, and L to a
real-world situation. Room temperature ideal gases have �
�10−3 while ultracold trapped gases have ��10−8. Simula-
tions we have run up to this point have had ��10−5. Simu-
lations with lower densities take considerably longer to com-
plete, due to the dominance of wall collisions.

In order to observe decay to equilibrium, we must begin
with a distribution that is not in equilibrium. This is accom-
plished by choosing the initial velocities of the spheres such
that g0�c��0. We do not expect the specific distribution of
initial velocities to have much effect on the evolution of the
system, so we choose a form of g0�c� that gives large values
for the lowest-order perturbation amplitudes. The initial con-
dition used was

g0�c� = ��2,0,0�c� , �34�

where � is a parameter used to set the magnitude of the
perturbation. Choosing this form for the initial condition re-
sults in g0=��0,0 ,1 ,0 ,0 , . . . �. In order to observe the expo-
nential decay over the noise, � must be chosen as large as
0.5 or 0.75. While this does not satisfy g�c��1, we observed
pure exponential decay with negligible nonlinear effects.
However, some care must be taken, since too large a value
for � will create regions where the distribution function f�c�
becomes negative.

As an example, consider the decay of a given perturbation
amplitude gn,l,m. In practice, the perturbation amplitudes
gn,l,m from a single run are far too noisy to give any useful
estimation of the eigenvalues. To compensate for this, we run
up to 100 trials for a single set of parameters and store the
data from each trial in a separate file. Later, a separate pro-
gram parses these files and merges them according to

ḡn,l,m =
1

M
	
�=1

M

gn,l,m
� , �35�

where M is the total number of trials included in the merge
and gn,l,m

� indicates the data from the �th trial. Examples of
results obtained for ḡ2,0,0�t� and ḡ3,0,0�t� are shown in Fig. 1.

D. Extraction of eigenvalues

The functions �n,l,m are not the eigenfunctions of the hard-
sphere collision operator and therefore the quantities ḡn,l,m�t�
will not exhibit independent exponential decay. The true
eigenfunctions for hard spheres are given by a linear combi-
nation of �n,l,m that is determined by the eigenvectors of the
collision operator matrices Cl. We perform a linear transfor-
mation on the ḡn,l,m�t� to obtain the correct coefficients of
expansion terms of the eigenfunctions of the hard-sphere col-
lision operator,

g2,0,0

�a�

0 1 2 3 4

t
ΤHS

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

g3,0,0

�b�

0 1 2 3 4

t
ΤHS

0.00

0.05

0.10

0.15

FIG. 1. Plots of �a� ḡ2,0,0�t� and �b� ḡ3,0,0�t� obtained from nu-
merical simulation �dots� compared to calculated values �solid
curve� obtained from Eq. �9� using the same initial distribution.
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hn,l,m�t� = 	
n�=0

	

�n,n�
l ḡn�,l,m,�t� , �36�

where �l is the matrix of eigenvectors of the collision matrix
Cl. The quantities hn,l,m�t� do exhibit exponential decay. A
plot of h2,0,0 vs t

�HS
is shown in Fig. 2 for N=1000, �

=0.005 and L=2. A comparison of values of the first and
second largest nonzero eigenvalues for the hard-sphere gas,
obtained from theory and from the molecular dynamics
simulation, are shown in Table I and are in good agreement.

IV. TRANSPORT COEFFICIENTS

The coefficients of shear viscosity � and thermal conduc-
tivity �, in terms of dimensionless velocity coordinates, are
given by �9,10�

� = −
4n0kBT

�3/2 � dce−c2
cxcyĈc

−1�cycx� �37�

and

� = −
2n0kB

2T

m�3/2 � dce−c2�c2 −
5

2
�cxĈc

−1�cx�c2 −
5

2
�� ,

�38�

where the function Ĉc�g� is defined

Ĉc�g� =� dc5e−c5
2
C�c,c5�g�c5�

= n0vT
8

�3/2 � dc2dc3dc4I�u,���3�c + c2 − c3 − c4�

� ��c2 + c2
2 − c3

2 − c4
2�e−c2

2
�g�c3� + g�c4� − g�c�

− g�c2�� . �39�

In general, transport coefficients contain an integral of the
type

I =� dce−c2
A*�c�Ĉc

−1�A� , �40�

where Ĉc
−1�A�, denotes the inverse operator Ĉc

−1 acting on
function A. By expanding the function A�c� in terms of the
polynomials �n,l,m, we can express this as

I = 	
n,l,m

	
n�

A
n,l,m
* �Cl�n,n�

−1 An�,l,m, �41�

where An,l,m are the expansion coefficients of the function
A�c� �the derivation of Eq. �41� from Eq. �40� is outlined in
Appendix B�. For the shear viscosity, the function is A�c�
=cxcy and the expansion coefficients are given by

An,l,m =
i�3/4

2�2
�n,0�l,2��m,2 − �m,−2� . �42�

The integral is equal to

I =
�3/2

4
�C2�0,0

−1 �43�

and so the transport coefficient is equal to

� = − n0kBT�C2�0,0
−1 . �44�

Employing a similar procedure for � results in

� = −
5n0kB

2T

2m
�C1�1,1

−1 . �45�

For hard spheres, we can compute the inverse matrix el-
ements numerically, and obtain �C2�0,0

−1 =−0.898 056�HS and
�C1�1,1

−1 =−1.359 26�HS. The transport coefficients for a hard-
sphere gas are then given by

h2,0,0

2 4 6 8 10 12

t
ΤHS

0.5

1.0

1.5

FIG. 2. �Color online� A plot of h2,0,0�t� as it evolves in the
hard-spheres simulation. Error bars show the extent of the statistical
error. Dots show values obtained from numerical simulation. The
solid line is an exponential regression. Here N=1000, �=0.005, and
L=2. These data points come from the same data set used to obtain
Fig. 1.

TABLE I. Simulated dimensionless eigenvalues for several sets of parameters. In all cases, L=2.

N � � 
2
0 
3

0

600 0.0025 9.37�10−6 −0.68�0.10 −0.92�0.10

700 0.00375 3.69�10−5 −0.649�0.048 −0.775�0.081

800 0.0025 1.25�10−5 −0.682�0.072 −0.92�0.21

1000 0.005 1.25�10−4 −0.686�0.027 −0.95�0.12

1200 0.0025 1.88�10−5 −0.670�0.045 −1.12�0.33

1200 0.005 1.50�10−4 −0.669�0.017 −0.99�0.12

Theory −0.671227 −0.911572
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� = �0.898 056�
1

�2�mkBT

8�
�46�

and

� = �1.359 26�
5kB

2�2� kBT

8�m
. �47�

It is interesting to note that if we neglect the off-diagonal
elements, we obtain the same numerical coefficients given in
standard texts �10,11� of 5�2

8 =0.883 8835 for � and 15�2
16

=1.325 825 for �.
The numerical coefficients computed from the inverse of

the full matrix agree with the expected increase in the trans-
port coefficients for hard spheres when off-diagonal contri-
butions are included �9�. The power of this method is that
once the elements of the collision matrix are known, trans-
port coefficients can be computed quickly and accurately.
This can be especially useful for collision matrices which are
computed numerically from a scattering cross section and
collision matrices resulting from phenomenological collision
kernels.

V. CONCLUSION

We have computed the smallest nonzero eigenvalue of the
collision operator for a hard-sphere gas containing 1000 par-
ticles. The value we obtain agrees with the theoretical pre-
diction, to within the error induced by fluctuations due to the
small number of particles in the simulation. We show that the
off-diagonal elements of the collision operator make contri-
butions to the transport coefficients which are not included in
the standard derivations. Our method of analysis, in terms of
moments of the perturbation function g�c�, could also be
applied to many molecular dynamics systems.
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APPENDIX A: CALCULATION OF THE MATRIX
ELEMENTS Mn,n�

l FOR HARD SPHERES

To compute Eq. �15�, combine Eqs. �3� and �14� and split
the resulting expression for M�x ,y ; t� into three parts,
M1�x ,y ; t�, M2�x ,y ; t�, and M34�x ,y ; t�, such that

M1�x,y ;t� =� dc1dc5dc2dc3dc4G�x,y,t;c1,c2,c3,c4,c5�

��3�c1 − c5� , �A1�

M2�x,y ;t� =� dc1dc5dc2dc3dc4G�x,y,t;c1,c2,c3,c4,c5�

��3�c2 − c5� , �A2�

and

M34�x,y ;t� =� dc1dc5dc2dc3dc4G�x,y,t;c1,c2,c3,c4,c5�

���3�c3 − c5� + �3�c4 − c5�� , �A3�

where

G�x,y,t;c1,c2,c3,c4,c5�

= n0�2vT
1

�5/2��1 − x��1 − y��3/2

��3�c1 + c2 − c3 − c4���c1
2 + c2

2 − c3
2 − c4

2�

�e−c1
2−c2

2−xc1
2/�1−x�−yc5

2/�1−y�+tc1·c5/��1−x��1−y��

��
0

2�

d�eit�c1�c5�cos �/��1−x��1−y�� �A4�

so that M�x ,y ; t�=−M1�x ,y ; t�−M2�x ,y ; t�+M34�x ,y ; t�.
We will now work out the term M1�x ,y ; t� in detail as an

example. First to do the c5 integration. This results in

M1�x,y ;t� = n0�2vT
2

�3/2��1 − x��1 − y��3/2 � dc1dc2dc3dc4

� �3�c1 + c2 − c3 − c4���c1
2 + c2

2 − c3
2 − c4

2�

� e−c1
2−c2

2−xc1
2/�1−x�−yc1

2/�1−y�+tc1
2/��1−x��1−y��. �A5�

Integration over c1, c2, c3, and c4 then gives �after some
algebra�

M1�x,y ;t� = 2�2n0�2vT

�2 − x − y − t

�1 − xy − t�2 . �A6�

M2�x ,y ; t� and M34�x ,y ; t� can also be computed and are
given by

M2�x,y ;t� = 2�2n0�2vT
�2 − x − y − t �A7�

and

M34�x,y ;t� = 4�2n0�2vT

�2 − x − y − t

1 − xy − t +
t2

4

. �A8�

Recombining these three terms results in

M�x,y ;t� = 2�2n0�2vT
�2 − x − y − t

��−
1

�1 − xy − t�2 − 1 +
2

1 − xy − t +
t2

4

 .

�A9�

The fact that M�x ,y ; t� is symmetric in x and y implies that
the collision matrix is symmetric and that the function
C�c1 ,c5� is symmetric in c1 and c5. Using generalizations of
the geometric series given by expressions like �1−A−B�−�

=	 j=0
	 	k=0

	 
��+j+k�

���j!k! AjBj, We re-expand M�x ,y ; t� in powers of

x, y, and t and rewrite the coefficient using 2�2n0�2vT= �3/2

�HS
.

We then obtain Eq. �15�.
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APPENDIX B: TRANSFORMATION OF THE TRANSPORT
COEFFICIENT INTEGRAL

In this appendix, we show the steps to go from Eq. �40� to
Eq. �41�. Define B�c� as the function for which

A�c� = Ĉc�B� . �B1�

If we expand both A�c� and B�c� in terms of the polynomials
�n,l,m�c�, this becomes

	
n�,l�,m�

An�,l�,m��n�,l�,m��c� = 	
n�,l�,m�

Bn�,l�,m�Ĉc��n�,l�,m�� .

�B2�

Multiplying by e−c2
�

n,l,m
* �c� and integrating over c, we obtain

An,l,m = 	
n�,l�,m�

Bn�,l�,m�� dce−c2
�

n,l,m
* �c�Ĉc��n�,l�,m�� .

�B3�

Comparing this to Eqs. �7� and �39� we see that

� dce−c2
�

n,l,m
* �c�Ĉc��n�,l�,m�� = Cn,n�

l �l,l��m,m� �B4�

and thus if the expansion coefficients An,l,m are known, we
determine Bn,l,m as the values which satisfy

An,l,m = 	
n�

Cn,n�
l Bn�,l,m. �B5�

This is easily solved if we treat Cnn�
l as a matrix Cl, but we

know that C0 and C1 are noninvertible. However, we can
still find a solution to Eq. �B5� provided that we use a func-
tion A�c� for which A0,0,m=0, A1,0,m=0, and A0,1,m=0. In
these cases, we trivially solve the zero rows and remove
them from the matrix. The remaining matrix is then invert-
ible and can be used to find the remaining Bn,l,m. We there-
fore write

Bn,l,m = 	
n�

�Cl�n,n�
−1 An�,l,m, �B6�

where the above process and condition on An,l,m are implied.
We now turn back to the integral expression I in Eq. �40� and
substitute B�c� for Ĉc

−1�A�. Then expand the function A�c�
and B�c� in terms of �n,l,m�c�,

I =� dce−c2 	
n,l,m

A
n,l,m
* �

n,l,m
* �c� 	

n�,l�,m�

Bn�,l�,m��n�,l�,m��c� .

�B7�

We quickly see that

I = 	
n,l,m

A
n,l,m
* Bn,l,m, �B8�

and using the above expression for Bn,l,m we have

I = 	
n,l,m

	
n�

A
n,l,m
* �Cl�n,n�

−1 An�,l,m. �B9�
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