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We study the shear-induced diffusion effect and the transition to irreversibility in suspensions under oscil-
latory shear flow by performing an analysis of the entropy production associated with the motion of the
particles. We show that the Onsager coupling between different contributions to the entropy production is
responsible for the scaling of the mean square displacement on particle diameter and applied strain. We also
show that the shear-induced effective diffusion coefficient depends on the volume fraction, and use lattice-
Boltzmann simulations to characterize the effect through the power spectrum of particle positions for different
Reynolds numbers and volume fractions. Our study gives a thermodynamic explanation of the transition to
irreversibility through a pertinent analysis of the second law of thermodynamics.
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I. INTRODUCTION

When a suspension of non-Brownian particles is sub-
jected to an oscillatory shear flow, the dynamics of the par-
ticles presents a transition to irreversibility which has been
recently observed in experiments �1–3�. In these experi-
ments, the suspension of polymethylmethacrylate particles
having sufficiently large sizes �diameter d�230 �m� is con-
tained in a cylindrical Couette cell and taken out of equilib-
rium by applying an oscillating shear flow proportional to
�̇ cos��t�, where �̇=��0 with �0 the applied strain and � the
characteristic frequency of the oscillation. At small enough
Reynolds numbers it is observed that the motion of the par-
ticles is oscillatory and reversible, according to a classical
result of hydrodynamics �4�. When increasing the Reynolds
number or the concentration of particles, the trajectories of
the particles become chaotic and then their reversible behav-
ior is lost. This effect is manifested through a shear-induced
diffusion which has been characterized through the mean
square displacement �MSD� of the particles �1,2,5�. The
MSD scales in the form ��x2��d2�̇t, and thus allows one to
define an effective diffusivity scaling as D�d2�̇.

Characterizing the motion of the particles through the
MSD clearly suggests that a statistical description of their
dynamics is possible. Previously, this description was offered
in Ref. �5� by postulating a diffusion equation in which the
diffusivities were constructed by analyzing the temporal be-
havior of the position correlation function of the particles.
This approach allows the use of direct experimental measure-
ments or simulation results in order to describe particular
systems �3�. Other theoretical and numerical studies have
characterized the relation between the transition to a chaotic
motion of the particles with the shear-induced diffusion ef-
fect �1,2,5,6�.

In this paper, we offer a general description of this shear-
induced diffusion effect and the associated transition to irre-
versibility which is based on the application of the second
law of thermodynamics, and on previous works devoted to
analyze the dynamics of a suspension of Brownian particles

in the presence of flows �7,8�. We calculate the entropy pro-
duction of the system in the phase space of the particles and
find the corresponding Onsager couplings �7–9�. One of
these couplings is responsible for the dependence of the dif-
fusion tensor on the imposed velocity gradient, even in the
limit of small specific thermal energy, kBT /m→0, with kBT
the thermal energy and m the mass of a particle �7�. This
dependence of the diffusion tensor on the velocity gradient
leads to the shear-induced diffusion effect that depends cru-
cially on hydrodynamic interactions �10–14�, and the break-
ing of the fluctuation-dissipation relation at the mesoscopic
level �7,15–22�.

The paper is organized as follows. In Sec. II we use non-
equilibrium thermodynamics in phase space to formulate the
mesoscopic model based on a Fokker-Planck equation. Sec-
tion III is devoted to deriving a Smoluchowski equation hav-
ing an effective diffusion tensor accounting for the shear-
induced diffusion observed in experiments. In Sec. IV we
present lattice-Boltzmann simulations characterizing the
shear-induced diffusion effect via the power spectrum of par-
ticle movements affected by hydrodynamic interactions. Fi-
nally, in Sec. V we discuss our main results.

II. MESOSCOPIC ENTROPY PRODUCTION
FOR THE DYNAMICS OF A SUSPENSION

IN EXTERNAL FLOW

We consider a suspension of N noninteracting spherical
particles of radius a and mass m in a fluid which moves with
velocity v�0�r� , t�. Since the system is in contact with a heat
bath that evolves in time, it is necessary to determine the
physical nature of the coupling forces in order to adequately
describe its dynamics. This objective can be achieved by
taking into account two factors. The first one is that the evo-
lution of the system can be described at the mesoscopic level
by means of the normalized N-particle probability distribu-
tion function P�N���N , t�, which depends on the instantaneous
positions 	r�
N��r�1 , . . . ,r�N� of the particles and their veloci-
ties 	u�
N��u�1 , . . . ,u�N� through the phase space vector �N
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= �	r�
N , 	u�
N�. The second factor takes into account the fact
that the interactions between the system and the heat bath
involve dissipation. This suggests the use of the nonequilib-
rium entropy s�t� as a thermodynamic potential from which
the entropy production ��t� can be calculated, and used to
obtain the explicit expressions for the coupling forces �23�.

To proceed in a systematic way, we will first notice that
the probability distribution function satisfies the conservation
law

�P�N�

�t
+ �

i=1

N

u� i · �� r�i
P�N� = − �

i=1

N
�

�u� i

· J�u� i
, �1�

where �� r�i
represents the gradient operator with respect to the

position vector r�i and J�u� i
is a diffusion current defined in

phase space. Integration of Eq. �1� over the phase space co-

ordinates �N, under the assumption that P�N� and J�u� i
vanish at

the boundaries, leads to the continuity equation: �� /�t

=−�� · ��v�� in which the average density field ��r� , t� of the
suspended particles is defined by �14�

��r�,t� = m
 �
i=1

N

P�N���N,t���r�i − r��d�N, �2�

and the mean velocity field v��r� , t� is

v��r�,t� =
1

�
m
 �

i=1

N

u� iP
�N���N,t���r�i − r��d�N. �3�

Here d�N=d	u�
Nd	r�
N is the volume element in the phase
space of the particles.

One of the purposes of this section is to derive explicit

expressions for the currents J�u� i
which at this point implicitly

contain the mentioned coupling forces between the system
and bath. Once these expressions are obtained, the evolution

equation for P�N� can be written. As we have mentioned, J�u� i
can be obtained from the entropy production of the system
which follows from the Gibbs entropy postulate �14�

�s�t� = − kB
 �
i=1

N

P�N� ln
P�N�

PLE
�N���r�i − r��d�N, �4�

where �s is the entropy change with respect to a local equi-
librium �LE� reference state characterized by the local equi-
librium distribution function

PLE
�N� = exp� m

kBT
��B − �

i=1

N
1

2
�u� i − v� i

0�2�� . �5�

Here �B is the local equilibrium chemical potential per mass
unit and v� i

0=v�0�r�i , t�.
Following the rules of mesoscopic nonequilibrium ther-

modynamics �9�, we take the time derivative of Eq. �4� and
use �1�, an integration by parts over �N space, assuming that
the fluxes vanish at the boundaries, leads to a balance equa-
tion for the entropy s in which the entropy production con-
tains three contributions: �=� j=1

3 � j. The first contribution is
related to the diffusion process in 	u�
 space,

�1 = −
m

T

 �

i=1

N

J�u� i
·

��

�u� i

��r�i − r��d�N, �6�

where the nonequilibrium chemical potential ���N , t� is
given by

���N,t� =
kBT

m
ln P�N� +

m

2 �
i=1

N

�u� i − v� i
0�2. �7�

The second contribution comes from diffusion of particles

with respect to the mean velocity, with diffusion current J�i
= �u� i−v� i�P�N�:

�2 = −
m

2T

 �

i=1

N

J�i · �� r�i
�u� i − v� i

0�2��r�i − r��d�N. �8�

The third contribution corresponds to diffusion with respect

to the flow velocity, whose current is J�i
0= �u� i−v� i

0�P�N�,

�3 = −
m

T

 �

i=1

N

J�i
0 · F� i��r�i − r��d�N, �9�

where F� i=�v� i
0 /�t is a nonstationary force related to the varia-

tion of the fluid velocity with time.
According to the second law of thermodynamics, the en-

tropy production of the system must be positive definite �
	0 for irreversible process. To satisfy this condition, non-
equilibrium thermodynamics establishes linear relationships

between currents and forces �23�. In particular, for J�u� i
we

obtain

J�u� i
= − �

j=1

N

P�N�
�� ij ·
��

�u� j

− �
j=1

N

P�N����ij · �u� j − v� j
0� · �� r�j

v� j
0

+ �
j=1

N

P�N����ij · F� j , �10�

where the tensors 
�� ij, ���ij, and ���ij are related to the Onsager

coefficients L��uiuj
, L��uirj

, and L��uivj
in the form �14�


�� ij = L��uiuj
/TP�N�, ���ij = L��uirj

/TP�N�, ���ij = L��uivj
/TP�N�.

�11�

The Onsager coefficients obey Onsager’s relations in which
time-reversal symmetry must also be applied to the external

drive: L��uirj
=−L�� riuj

, �24�. From Eq. �10� it follows that the
system of particles is coupled to the heat bath by means of
thermal and entropic forces �first term on the right-hand side
of the equation� and mechanical forces �last two terms of the
equation�.

Substituting Eq. �10� into the continuity equation for the
probability �1�, we arrive at the multivariate Fokker-Planck
equation describing the evolution of the N-particle distribu-
tion function,
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�P�N�

�t
+ �

i=1

N

�r�i
· �u� iP

�N��

= �
i,j=1

N
�

�u� i

· ���u� j − v� j
0� · 
�� ij − ���ij · F� j�P�N�

+
kBT

m

�� ij ·

�P�N�

�u� j
� , �12�

where we have used Eqs. �7� and �10� assuming that the
coefficients are symmetric tensors. Finally we introduced the

friction tensor 
�� ij, leading to the relation �7�


�� ij = 
�� ij − ���ij · �� r�j
v� j

0. �13�

It is important to mention that the combination ���ij ·�� r�j
v� j

0,
entering in Eqs. �12� and �13�, implies that the fluctuation-
dissipation theorem connecting the drift and diffusion terms
of the Fokker-Planck equation is no longer valid due to the
presence of the shear �7,15,16,22�. This important conse-
quence following from Eq. �12� is related to the shear-
induced diffusion effect, as we will show in the next section.
In the case of a diluted suspension, similar results for the
diffusion term of the generalized Fokker-Planck equation
have been obtained by means of the kinetic theory of gases
in Ref. �21�.

The coefficient ���ij is related to the force exerted on the
surface of a particle moving through a fluid under flow con-
ditions. For a spherical particle, ���ij has been calculated ex-
plicitly in terms of the generalized Faxén theorem in Ref.

�25�, and used in Ref. �8� to obtain ���ij =�0�̃��ij with

�0 =
1

6

m

kBT
a2
0

2�1 + 2a
� , �14�

where 
0=6��a /m is the Stokes friction coefficient per
mass unit and � the viscosity of the fluid, 
= �−i� /��1/2 is
the inverse viscous penetration length, � is the frequency
and � the corresponding kinematic viscosity �8,25�. The ten-

sor �̃��ij is related to the friction tensor 
�� ij and obeys the rela-

tion �̃��ii=1�� with 1�� the unit tensor. In Ref. �8� it has been

shown that ���ij is related to inertial effects due to the change

in time of v�0 and has the form ���ij =�1���ij, with �=�p /� f, �p
the density of the particle, and � f the density of the heat bath.
From Eq. �14� it follows that �0 incorporates finite-size ef-
fects on the dynamics of the system through the surface term
a2 and frequency-dependent corrections to the diffusion co-
efficient through 
.

Equations �12�–�14� imply that the diffusion coefficient in
velocity space, �kBT /m�
�� ij, does not vanish in the limit
kBT /m→0 and, therefore, also imply that the nonthermal
contribution to the diffusion coefficient associated with the
Onsager coefficient �ij may have important consequences for
the dynamics of a non-Brownian suspension of particles. We
will show these consequences in the next section.

The friction tensors 
�� ij are affected by the hydrodynamic
interactions among particles and their dependence can be in-
ferred from its relation with the mobility tensors ��� ij:


�� ij ·��� ij =1���ij. At a lower-order approximation, the multipole
expansion of ��� ij takes the form �11�

��� ij � 
0
−11���ij + 
0

−1�3

4

a

rij
�1�� + r̂ijr̂ij��1 − �ij�

−
3

4

a

rijs

�1�� + r̂ijs
r̂ijs

�� . �15�

Here r̂ij and r̂ijs
are the unit relative vectors between particles

and between particle j and the wall. r�ij =r�i−r� j is distance
between particles whereas rijs

is the magnitude of the vector
that points from sphere i to the mirror image with respect to
a wall of sphere j. For i= j, Eq. �15� reduces to well-known
results for the mobility of a particle in the presence of a wall:
�=
0

−1�1−B1a / l�, with l its distance to the wall. The coeffi-
cient B1 may take different values depending on the direction
of the motion of the particle with respect to the plane of the
wall �26�.

III. SHEAR-INDUCED DIFFUSION

We will analyze in this section the diffusion regime oc-
curring at times t�
0

−1. Since experiments and simulations
give the self-diffusion coefficient �1,27�, we will focus our
description on the dynamics of a single particle whose re-
duced distribution function �k�r� , t�=m�P�N���r�k−r��d�N satis-
fies the continuity equation

��k

�t
= − �� · ��kv�k� , �16�

which follows by integrating Eq. �12� over the phase space
of the particles and where v�k�r� , t�=m�k

−1�u�kP
�N���r�k−r��d�N.

The Smoluchowski equation for �k can be derived after
calculating the explicit expression for �kv�k. This task can be
carried out by calculating the evolution equations for the
momentum field �kv�k and for the pressure tensor of the kth
particle, defined as

P�� k�r�,t� = m
 �u�k − v�k��u�k − v�k�P�N���r�k − r��d�N. �17�

Following the method indicated in Ref. �7�, we take the time
derivative of the definition of �k�r� , t�, use Eq. �12� in the
result, and perform an integration by parts assuming that the
currents vanish at the boundaries. After rearranging terms we
arrive at the equation

�k
dk

dt
v�k + �� · P�� k = −
 �

i=1

N


�� ki · �v� i
�2� − v� i

0���2���r�k − r��dr�kdr�i

+ ��F� , �18�

where we have used the expression ���ij =�1���ij and defined
the convective derivative dk /dt=� /�t+v�k ·� /�r�, and the
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two-particle reduced distribution function ��2��r�k ,r�i , t�
=m�P�N�d�ki

N−2. Here, d�ki
N−2 is the phase-space volume ele-

ment of the N−2 particles including the measure associated
to the velocities u�k and u� i. In v� i

�2� the superscript indicates a
dependence on r�k and r�i. The right-hand side of Eq. �18�
represents the total drag force exerted by the fluid on the
particles. The first term on the right-hand side is the friction
force including the presence of hydrodynamic interactions
that modifies the local value of the velocity field in terms of
the distribution of particles in the system.

The evolution equation for the pressure tensor P�� k can be
derived by following a similar procedure:

dk

dt
P�� k + 2��
01�� + �v�k +

1

2
�� · v�k1�

�� · P�� k�s

=
2kBT

m

0�k�1�� −

m

6kBT
a2
0�1 + 2a
��� v�k

0�s

− 2�
 �
i=1,i�k

N


�� ki · �v�k
�2� − v�k

0��v� i
�2� − v� i

0�

���2���r�k − r��dr�kdr�i�s

, �19�

where, to obtain the second term on the right-hand side, we
have used the expressions �13� and �14� for i= j. The upper
symbol s means the symmetric part of a tensor. The last term
on the right-hand side of this equation contains the contribu-
tion of the hydrodynamic interactions to the pressure tensor
of the particle k. This contribution enters through the cross-
correlation functions of the local velocities indicating how
hydrodynamic interactions modify the stresses in the system.
In order to obtain a closed expression for the pressure tensor

P�� k, it thus becomes necessary to calculate the evolution
equation for the cross-correlation function

C�� ki�r�,t� =
 �u�k − v�k��u� i − v� i�P�N���r�k − r��d�N. �20�

The evolution equation for C�� ki can be obtained in a similar
way as we did to derive Eq. �19�. The result is

dk

dt
C�� ki + 2���� v�k +

1

2
�� · v�k1�

�� · C�� ki�s

=
2kBT

m

 �

j=1

N


�� kj
s � ji�

�2���r�k − r��dr�kdr�i

− 2�
 �
j=1

N


�� kj · �v� j
�2� − v� j

0��v� i
�2� − v� i

0���2���r�k − r��dr�kdr�i�s

,

�21�

where k� i. To derive Eqs. �20� and �21�, we have neglected
the contributions arising from higher-order moments of the
time-ordered hierarchy since they relax faster than the ones
present in those equations �7�.

At times t�
0
−1, we can obtain from �19� the following

constitutive equation for P�� k:

P�� k �
kBT

m
�k�1�� −

m

6kBT
a2
0�1 + 2a
� � v�k

0�s

− �
0
−1
 �

i=1,i�k

N


�� ki · �v�k
�2� − v�k

0��v� i
�2� − v� i

0�

���2���r�k − r��dr�kdr�i�s

, �22�

where we have used that ��� v�k�ij
0
−1�1, �� ·v�k
0

−1�1, in ac-
cordance with the experiments �1�. For times t�
0

−1, Eq.
�21� can be rewritten in similar form as Eq. �22� by extract-
ing the term j=k from the sum on the second term at the

right-hand side, multiplying the resulting relation by 
0
−1
�� ki

and performing the sum over i. One obtains the expression

kBT

m

0

−1
 �
i=1,i�k

N


�� ki · 
�� ki�
�2���r�k − r��dr�kdr�i

�
 �
i=1,i�k

N


�� ki · �v�k
�2� − v�k

0��v� i
�2� − v� i

0���2���r�k − r��dr�kdr�i,

�23�

where we have used 
�� kk=
01�� , kept terms of the order
�a /rij�2, and neglected terms of the order �a /rij�4 and higher.
This approximation is valid up to intermediate volume frac-
tions of the suspended particles.

A. Effective medium approximation

The Smoluchowski equation for �k can be obtained from
�16�, �18�, �22�, and �23� by assuming an effective medium
approximation in which the test particle k performs its mo-
tion in a fluid incorporating the effects of hydrodynamic in-
teractions in average form �28�. In our description, this as-
sumption does not consider the possibility of direct collisions
among particles, and thus we expect that it is valid up to
intermediate volume fractions of the suspended particles.
Operationally, this approximation can be implemented by
substituting the averages appearing on the right-hand sides of
Eqs. �18�, �22�, and �23� by integrals over a continuum vari-
able. Thus, the last term on the right-hand side of Eqs. �22�
and �23� may be written as


 �
i=1,i�k

N


�� ki · �v�k
�2� − v�k

0��v� i
�2� − v� i

0���2���r�k − r��dr�kdr�i

�
 
�� �r��� · C�� *�r� − r��,t�dr��, �24�

where we have introduced the nonlocal velocity cross-

correlation function C�� *�r�−r�� , t�. In similar form, for the mo-
mentum field we have the relation

SANTAMARÍA-HOLEK, BARRIOS, AND RUBI PHYSICAL REVIEW E 79, 031201 �2009�

031201-4




 �
i=1,i�k

N


�� ki · �v� i
�2� − v� i

0���2���r�k − r��dr�kdr�i

�
 
�� �r��� · �v� − v�0�r�,r���
�2��r� − r��,t�dr��, �25�

where we have defined �v� −v�0�r�,r���v��r�−r�� , t�−v�0�r�−r�� , t�.
Using Eqs. �13� and �14�, the right-hand side of Eq. �23� can
be rewritten as


 �
i=1,i�k

N


�� ki · 
�� ki
s ��2���r�k − r��dr�kdr�i

�
 
�� *�r�����2��r� − r��,t�dr��

=
 
�� �r��� · 
�� �r�����2��r� − r��,t�dr�� −
m

6kBT
a2
0

2�1 + 2a
�

���� v�0�† ·
 �
�� �r��� · �̃���r����†��2��r� − r��,t�dr��, �26�

where the superscript † means the transpose of a tensor and

we have used the fact that �� v�0 does not depend on position.

The tensor 
�� *�r���=
�� �r��� ·
�� �r��� has been defined to simplify
the notation in subsequent relations. In the long-time limit
the substitution of Eqs. �24� and �26� into �22� yields the
constitutive equation for the pressure tensor,

P�� �
kBT

m
���1�� −

m

6kBT
a2
0�1 + 2a
��� v�0�

− 
0
−2
 
�� *�r�����2��r� − r��,t�dr���s

, �27�

where we have assumed that the second term on the left-hand
side of Eq. �21� may be neglected �see Eq. �22��.

Using now Eq. �25� in �18� and taking the long-time limit
t�
0

−1, from the momentum equation we obtain

�� · P�� � −
 
�� �r��� · �v� − v�0�r�,r���
�2��r� − r��,t�dr�� + ��F� .

�28�

The explicit expression for the constitutive relation of the
diffusion current �v� of the particles follows by assuming that
the spatial variation of the velocity field is small enough in
order to make the expansion

v��r� − r��,t� − v�0�r� − r��,t� � v��r�� − v�0�r�� + O„��v�0�2
… ,

�29�

where we have used v� �v�0+O��� ln �� �7�.
Factorizing the two-particle distribution function in the

form �29� ��2��r�−r�� , t����r���g�r�−r�� , t�, with g�r�−r�� , t� the
two-particle correlation function, we define the effective
quantities

B�� �r�,t;�� = 
0
−1
 
�� �r��� · 
�� �r���g�r� − r��,t;�,T�dr�� and

�30�

E�� �r�,t;�� = 
0
−1
 
�� �r��� · �̃���r���g�r� − r��,t;�,T�dr��,

where we have taken into account the fact that the two-
particle correlation function g may in general depend on the
volume fraction and the temperature �30�.

After using these results in Eqs. �26�–�28�, we obtain the
following constitutive equation for the diffusion current:

�v� � �v�0 −
kBT

m
B�� −1 · ��� · A�� �� + ��B�� −1 · F� − D�� �r�,t� · �� � ,

�31�

where we have identified the effective diffusion tensor

D�� �r�,t� = �kBT/m���� +
a2

6
�1 + 2a
���1�� + �̃�� � · �E�� − 1��� · �� v�0�s.

�32�

Here ��� =
0
−1�̃�� is the effective mobility tensor and we have

introduced the dimensionless tensors

�̃�� = 
0B�� −1 − 1�� and �33�

A�� = �1�� − 
0
−1B�� +

m

6kBT
a2
0�1 + 2a
��E�� − 1��� · �� v�0�s

.

Equations �30�–�32� show that the transport coefficients in
the coarse-grained description contain hydrodynamic interac-
tions in effective form through the configurationally aver-

aged tensors B�� and E�� . When �� v�0=0� , then the diffusion ten-

sor reduces to D�� �r� , t�= �kBT /m���� �r� , t ;��, that is, in
equilibrium the diffusion tensor depends on hydrodynamic
interactions through the mobility tensor ��� , as expected. The
coarse-graining performed in this section thus leads to incor-
porate the contribution of hydrodynamic interactions in the
dissipation of the reduced system by modifying the diffusion
coefficient making it anisotropic and position and time de-
pendent. Substituting now Eq. �31� into �16�, we finally ob-
tain the Smoluchowski equation

��

�t
= − �� · ��v�0 − �
0

−1�1�� + �̃�� � · f� − ��
0
−1�1�� + �̃�� � · F� �

+ �� · �D�� · �� �� , �34�

where we have defined the force f� due to hydrodynamic

interactions as f�=−�kBT /m��� ·A�� .
Equations �32�–�34� constitute the main result of this sec-

tion. The effective diffusion tensor D�� contains two contribu-
tions. The first one depends on the thermal energy per mass
unit �kBT /m� and is therefore related to Brownian motion
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whereas the second one does not depend on thermal fluctua-
tions.

In the limit of vanishing specific thermal energy, kBT /m
→0, Eq. �32� leads to

D�� =
a2

6
�1 + 2a
���1�� + �̃�� � · �E�� − 1��� · �v�0�s. �35�

This expression has the same scaling on particle diameter
and shear rate as that observed in experiments and Stokesian

dynamics simulations �1,27�. The presence of �̃�� �r� , t ;�� and

E�� �r� , t ;�� implies that the shear-induced diffusion is mediated
by hydrodynamic interactions. We then conclude that hydro-
dynamic interactions are responsible for the randomization in
the motion of the suspended particles when an oscillatory
strain is applied on the system.

B. The mean square displacement

We will assume that the fluid velocity v�0�r� , t�=r� ·��� �t� is
imposed along the x direction with ��� �t� the time-dependent
shear rate whose only nonvanishing component is �yx
= �̇ cos��t�. The shear rate is related to the applied strain �0
by �̇=�0�. For convenience, we will assume that inertial

effects are negligible and that effective mobility �̃�� and E�� do
not depend on time and position. This hypothesis is valid
when the distribution of the suspended particles does not
change significantly, that is, when g�r��−r� , t ;���g�r�� ;��.

The MSD of the particle‘s position vector can be calcu-
lated by taking the time derivative of the expression

�r2� =
 �x2 + y2�� dr� , �36�

where we have considered the two-dimensional case. Substi-
tution of Eq. �34� into the result and an integration by parts
leads to

d

dt
�r2� = 2�̇ cos��t��xy��t� + 2 Tr�D�� � , �37�

where �xy��t�=�xy� dr�. In similar form, we must derive the
evolution equations for �xy��t�, �x2��t�, and �y2��t�. After
solving the obtained set of differential equations, for low
shear rates and frequencies ��̇�1,��1� we may expand the
MSD in a power series of �̇ and � to obtain

�r2� � 4D0��̃xx + �̃yy�t

+
1

6
�̃xy�E − 1�d2�̇t�1 +

24

d2�E − 1�
D0t� , �38�

where D0=kBT /m
0 is the one-particle diffusion coefficient

and d=2a, having assumed �̃xy = �̃yx and E�� =E1�� . In the limit
kBT /m→0 when the particles are non-Brownian we obtain

�r2� �
1

6
�̃xy����E��� − 1�d2�̇t . �39�

When Eq. �39� is expressed in terms of the number of oscil-
lations n of the imposed flow, with t=2�n /�, it gives �r2�

��� /3��̃xy�E−1�d2�0n. This relation shows that hydrody-
namic interaction introduce a volume fraction dependence to
the MSD of the particle, thus giving an explanation based on
thermodynamic arguments for the scaling relation obtained
in the experiments �1�.

In the limit of massive particles, from Eq. �34� it is also
possible to derive the evolution equation for the average po-

sition of the particle defined through R� �t�=�r�� dr�. By taking
the time derivative of this definition and integrating by parts
one obtains

d

dt
R� �t� = R� �t� · �� v�0�t� − �
0

−1G�� 1�R� ;�� ·
d

dt
�� v�0�t�

+
a2

6
G�� 2�R� ;�� · �� v�0�t� , �40�

where we have introduced the quantities G�� 1= ��1�� + �̃�� � ·r�� and

G�� 2= ��� · ��1�� + �̃�� � · �E�� −1����� and the angular brackets indicate
an average over �. Equation �40� is a nonlinear equation for

R� �t� in which the nonlinearities are a consequence of hydro-

dynamic interactions through the terms G�� 1 and G�� 2. In a first
approximation, the last term at the right-hand side of Eq.
�40� establishes that hydrodynamic interactions become sig-
nificant when the Reynolds number defined by Re�dv0 /�
satisfies the condition

Re 	
24d2�

�
h��� , �41�

where � is the kinematic viscosity of the heat bath and the
function h��� takes into account that �G2�ij is a function of
�. In obtaining this relation we have neglected the second
term at the right-hand side of �40� since 
0

−1 is a very small
quantity and scaled time with � and lengths with d. Equa-
tions �39� and �41� show that the transition to irreversibility
is mediated by hydrodynamic interactions that introduce a
dependence on volume fraction of the shear-induced diffu-
sion coefficient.

IV. SHEAR-INDUCED DIFFUSION FROM
LATTICE-BOLTZMANN SIMULATIONS

In this section, we analyze the shear-induced diffusion
effect by means of lattice-Boltzmann simulations. This
method allows us to study the dependence of the effective
diffusion coefficient as a function of the relevant parameters
of the problem, the Reynolds number Re and the volume
fraction �. The power spectrum of the components of the
trajectories of the particles is used to show that the random-
ization of particle movements is due to an increasing number
of modes produced by hydrodynamic interactions as Re and
� increase.

We use the two-dimensional model D2Q9 for the lattice-
Boltzmann method with the Bhatnagar-Gross-Krook �BGK�
approximation �31,32�. In this model, the space is discretized
in a two-dimensional square lattice with nine velocities
�ci , i=0, . . . ,8� allowed. The particle distribution functions
f�r , t� at site r and time t evolve according to the equation
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f i�r + �tci,t + �t� − f i�r,t� = −
1

�
�f i�r,t� − f i

�eq��r,t�� ,

�42�

where � is the dimensionless relaxation time related to vis-
cosity and f i

�eq� are the local equilibrium distribution func-
tions,

f i
�eq� = wi��1 + 3ci · u +

9

2
�ci · u�2 −

3

2
u2� . �43�

In this equation, wi=4 /9, 1 /9, 1 /36 are the weights associ-
ated with the lattice �33� for each set of velocities �ci�
=0,1 ,�2 and � and u are the density and velocity defined by

��r,t� = �
i

f i�r,t�, u�r,t� =
1

�
�

i

f i�r,t�ci. �44�

The viscosity is related to the dimensionless relaxation time
by �=cs

2��−1 /2�, where cs=1 /�3 is the speed of sound in
the D2Q9 model.

The no-slip boundary conditions are simulated on the
solid particles and the torques and forces are also evaluated
to update the particle position at all times �34�. The interac-
tions among particles are implemented with the method pro-
posed in Ref. �35� and with the corrections proposed in Ref.
�34�. The walls of the cavity use the bounce-back boundary
condition, which consists in reversing the incoming particle
distribution function after the streaming process.

The numerical simulations are carried out in a cavity of
H*=11.33 and W*=44.66 where the dimensions are scaled
with the radius of the particle. The relaxation time and the
radius of the particles are kept constant in all simulations at
�=20.0, r=4.5, and f*=10.0 and we have varied the Rey-
nolds number and the volume fraction. The dimensionless
frequency was scaled with the magnitude of the shear rate.

In the first set of numerical simulations, we fixed the par-
ticle concentration �=0.14 and the dimensionless frequency
f*=10, varied the Reynolds number, and determined the ef-
fective diffusion coefficient Deff as shown in Fig. 1. A linear
dependence of Deff on Re has been obtained to a good ap-
proximation, as expected from experiments and theoretical
results. Using the definition Re=d2�̇ /�, from Eq. �39� we
may also obtain the linear relation for the effective diffusiv-
ity as a function of the Reynolds number: Deff
= �̃xy����E���−1��Re /6. The data obtained from simula-
tions can be used to give a rough estimate of the magnitude

of hydrodynamic interactions in terms of the parameter
�̃xy����E���−1�. Given d=9 and �=11.25 we obtain
�̃xy����E���−1��10−4. This small value indicates that
three-dimensional �3D� lattice-Boltzmann simulations are re-
quired in order to do a quantitative comparison with experi-
ments.

In order to better discern the mechanisms leading to the
shear-induced diffusion, we calculated the power spectrum
�PS� of the components of the trajectories for fixed � and Re,
as can be seen respectively from Figs. 2 and 3. In Fig. 2�a�,
we present the PS of x�t� for four different values of Re and
�=0.14. The insets represent three different trajectories for
the same particle with the same initial condition for Re
=0.01, 0.07, and 0.08. For the lowest Reynolds number
�solid line�, the PS presents more pronounced peaks located
at the excitation frequency and its harmonics. The trajectory
in the inset �i� �solid line� corresponds to this spectrum and
shows a very regular behavior. From the PS for the case of
Re=0.04 �dotted line� it follows that the dynamics in the x
component keeps the main peak and harmonics at the same
position than in the previous case, but small peaks start to
appear between the harmonics. This is a consequence of the
hydrodynamic interactions between the particles that give
rise to new frequencies in the dynamics of the system. In the
case Re=0.07 �dashed line� there is a shift of the harmonics
and the new frequencies are better defined. The correspond-
ing trajectory �dashed line� is shown in the inset �ii�. Finally,
for Re=0.08 �short-dashed line� the harmonics disappear and
the energy is more homogeneously distributed for frequen-
cies larger than the one imposed. The corresponding trajec-
tory �dotted line�, shown in the inset �iii�, is irregular. In Fig.
2�b� we present the PS corresponding to the y movement of
the particle for different Re at a fixed �. From this set of PS
we can appreciate that both the x and y movements are
coupled with the exciting frequency, as well as the fact that
the harmonics have a small shift and the energy is distributed
in more frequencies. The PS of x�t� and y�t� shown in Figs.
2�a� and 2�b� agree with theoretical results in two ways.
First, they indicate a coupling between different modes, as in
Eq. �37�. Second, the power spectra reflect that hydrody-
namic interactions become important only for Reynolds
numbers larger than a certain value, as established by Eq.
�41�.

The theoretical results �35� and �39� indicate that the
shear-induced effect is caused by hydrodynamic interactions
and, although it is not explicitly shown, one then expects that
the effect also depends on particle concentration. This was
confirmed by performing another set of simulations keeping
Re=0.08 constant and varying � to analyze the influence of
hydrodynamic interactions on the dynamics of the particles
through the PS of x�t� and y�t�. The results are shown in
Figs. 3�a� and 3�b�, respectively. For the lower volume frac-
tion �=0.006 36 �one particle� the PS for x�t�, Fig. 3�a�, has
only one peak at the exciting frequency. This result is ex-
pected from theory, Eq. �40�, since for sufficiently small
strains and frequencies the leading contribution corresponds
to the first term on the right-hand side, which is proportional
to the applied strain. For the y�t�, Fig. 3�b�, the peak is
shifted to the right from the exciting frequency, showing a
weak coupling between the x and y motions. For �

100

2 × 10−6

4 × 10−6

6 × 10−6

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

D
e
f

f

Re

FIG. 1. Effective diffusion coefficient as a function of Re �sym-
bols� for a fixed particle concentration of �=0.14 and f*=10.0. The
solid line is a linear fit with slope of 5.68�10−5.
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=0.012 70 �two particles�, x�t� presents harmonics which dis-
appear at frequencies much larger than the exciting one
whereas for y�t� the peak at the exciting frequency appears
with an incipient presence of harmonics, implying that hy-
drodynamic interactions are weak. For �=0.025 40 �four
particles� three harmonics can be identified for both x�t� and
y�t�. For �=0.050 90 �eight particles� a larger number of
harmonics can be identified in x�t� with about half of the
energy in comparison with the exciting frequency. For the
y�t�, the harmonics are clearly identified and have the same
energy as the exciting frequency. New frequencies arise be-
tween the harmonics implying that hydrodynamic interac-
tions introduce new modes in the dynamics of the particles.
This result is expected from the evolution equation �40�
which predicts that, for strains or particle concentrations
larger than a certain critical value, new modes will appear in

the behavior of R� �t� due to the contributions of the nonlinear

terms. Finally, for �=0.102 �16 particles�, the only peak for
x�t� and y�t� is located at the exciting frequency and the
energy is now homogeneously distributed in more frequen-
cies. These results indicate that an increase in particle con-
centration enhances the effects of hydrodynamic interactions,
which in turn are responsible for distributing the energy in a
growing number of modes. They also reflect the fact that
hydrodynamic interactions also introduce a dependence on
volume fraction through the dependence on the volume frac-
tion of the coefficients �̃xy��� and E���.

V. CONCLUSIONS

In this paper, we have analyzed the shear-induced diffu-
sion effect in suspensions under oscillatory shear by means
of a thermokinetic theory based on the calculation of the
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FIG. 2. Power spectrum for the same particle at different Reynolds numbers for �a� the x and �b� the y movement. The cross in the insets
indicates the initial position of the particle, the same in the three cases. Notice that maximum displacement increases with increasing
Reynolds number.
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entropy production at the mesoscopic level. We have found
that an Onsager coupling between thermal and nonthermal
effects containing hydrodynamic interactions is responsible
for this effect.

By calculating the entropy production of the N-particle
system in contact with a heat bath and identifying the corre-
sponding forces and currents, we have derived a Fokker-
Planck equation for the N-particle phase space distribution
function having an effective diffusion coefficient in which
the coupling between thermal and nonthermal effects breaks
the validity of the fluctuation-dissipation theorem. After con-
tracting the description over velocity space, assuming that
the diffusion regime is well established and using an effec-
tive medium approximation, we derived a Smoluchowski
equation for the single-particle distribution function contain-
ing an effective diffusion tensor incorporating the cross ef-
fects of the imposed flow and hydrodynamic interactions,
Eq. �32�. In the limit kBT /m→0, this diffusion tensor yields
the same scaling on particle diameter and applied strain as
found in experiments and simulations, D�d2�̃xy����E���
−1��0 /6. Our analysis may also explain the influence ther-
mal noise on this effect.

The lattice-Boltzmann simulations we performed were
used to show in more detail the dependence of the shear-
induced diffusion on the Reynolds number and the particle
volume fraction. To this effect we have used the power spec-
trum of the components of particle trajectories. As expected
from theory, we found a linear dependence of the diffusion
coefficient Deff as a function of the Reynolds number Re.
When Re is increased for fixed � as well as � for fixed Re,
we obtained that the power spectrum shows an increasing
contribution of new modes, period doubling, and finally, for
large Re and �, a loss of characteristic frequencies indicating
a stochastic behavior induced by hydrodynamic interactions,
in accordance with theoretical results expressed through the
mean square displacement �39�. It is important to emphasize
that the 2D simulations performed clearly indicate that up to
intermediate volume fractions the hydrodynamic interactions
are responsible for the shear-induced diffusion effect, in
agreement with the theoretical prediction. A more precise
description could be carried out from 3D simulations in order
to perform a quantitative comparison with experiments.

The expression for the shear-induced diffusion coefficient
in Eq. �39� and the condition �41� show that the transition to
irreversibility is due to hydrodynamic interactions and that it
depends on the volume fraction, in accordance with experi-
ments and theoretical simulations. Therefore, our study gives
a theoretical explanation of the shear-induced effect and the
transition to irreversibility based on the pertinent analysis of
the entropy production at mesoscopic level, and therefore
shows that the irreversibility inherent to the chaotic behavior
of the macroscopic motions of the particles is perfectly com-
patible with the second law of thermodynamics.
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