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Appreciation of stochastic Loewner evolution �SLE��, as a powerful tool to check for conformal invariant
properties of geometrical features of critical systems has been rising. In this paper we use this method to check
conformal invariance in sandpile models. Avalanche frontiers in Abelian sandpile model are numerically shown
to be conformally invariant and can be described by SLE with diffusivity �=2. This value is the same as value
obtained for loop-erased random walks. The fractal dimension and Schramm’s formula for left passage prob-
ability also suggest the same result. We also check the same properties for Zhang’s sandpile model.
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I. INTRODUCTION

The concept of self-organized criticality �SOC� was first
introduced by Bak et al. �1� through invention of sandpile
models. These models are still the simplest examples of the
class of models which show self-organized criticality. A de-
finitive step in analyzing sandpile models was taken in �2�, in
which Dhar introduced a generalization of Bak, Tang, and
Wiesenfeld model. This generalized model was called the
Abelian sandpile model �ASM�, because of the presence of
an Abelian group governing its dynamics. Many different
aspects of the model have been considered, for a good re-
view see �3�. It has been shown that the model could be
mapped to spanning trees �4� and is related to c=−2 confor-
mal field theory �5,6�.

There is also another non-Abelian sandpile model intro-
duced by Zhang �7�, which is a continuous version of ASM.
Although they have different microscopic details but it is
expected they fall in a same universality class; this is sup-
ported by numerical evidence �8,9�.

A relationship between ASM and loop-erased random
walk �LERW� has been shown in Ref. �10�. The loop-erased
random walk was proposed by Lawler �11�. Such a walk is
produced by erasing loops in an ordinary random walk as
soon as they are formed. It turns out that the distribution of
the LERW is related to the solution of the discrete Laplacian
�12� with appropriate boundary conditions. It is also related
to the Laplacian random walk �13,14�. The connection be-
tween LERW and ASM arises in the following way �10�:
starting from a random walk one can produce a tree from it
called backward tree. Then one can show that the chemical
path on this tree is equivalent to the LERW obtained from
the original random walk. Thus statistical properties of
chemical paths on spanning trees and LERW’s are the same.
Using this identification, some analytical and numerical re-
sults have been developed. In �15� the upper critical dimen-
sion of the ASM was determined and in �16� the above result
was confirmed numerically.

Soon afterwards it was realized that LERW belongs to a
family of conformally invariant curves called Schramm-
Loewner evolution, SLE�, with diffusivity constant �=2
�17,18�. In this paper we show that LERW appears in certain
geometrical aspect of the sandpile dynamics. In contrast with

the previous results, we do not consider the chemical path of
the spanning trees but consider the curve separating the
toppled and untoppled sites, i.e., the avalanche frontier.

This paper is organized as follows. In Sec. II we give
some background on the ASM and its properties. Also we
introduce Zhang sandpile model very briefly. Section III is
devoted to the definition and some references on the SLE.
Finally in Sec. IV we present the numerical algorithm its
results and discussion.

II. SANDPILE MODEL

We consider the Abelian sandpile model defined on a two-
dimensional square lattice L�L. On each site i the height
variable hi is assigned, taking its value from the set �1,2,3,4�.
This variable represents the number of sand grains in the site
i. This means that a configuration of the sandpile is given by
a set of values �hi�.

The dynamics of the system is relatively simple. At each
time step, a grain of sand is added to a random site, i. Then
site is checked for stability, that is, if its height is more than
4, it becomes unstable and topples: it loses four grains of
sands, each of them is transferred to one of the four neigh-
bors of the original site. It is common to write hj→hj −�ij
for all j with � being discrete Laplacian. As a result of a
toppling, the neighboring sites may become unstable and
topple and a chain of topplings may happen in the system. If
a boundary site topples, one �or two� grains of sand may
leave the system, depending on the imposed boundary con-
dition taken. The chain of topplings continue until the system
becomes stable, i.e., all the height variables become less than
or equal to four. Thus in each time step, the dynamics takes
the system from a stable configuration Cm to another stable
configuration Cm+1. The relaxation process is well defined: it
always stops because sand can leave the system at the bound-
aries and produces the same result independent of the order
in which the topplings are performed which is because of the
Abelian property.

Under this dynamics the system reaches a well-defined
steady state. All the stable configurations fall apart into two
subsets: the transient states that do not occur in the steady
state and the recurrent states that all occur with the same
probability. It has been shown that the total number of recur-
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rent states is det � �2�. The criterion that decides whether a
configuration is recurrent or not is not a local one. There are
some specific clusters, called forbidden subconfigurations
�FSCs� that if any of them is found in a stable configuration,
it would be a transient configuration. The simplest FSC is a
cluster of two adjacent height-one sites. In general an FSC is
a height configuration over a subset of sites, such that for any
of the sites in this subset, the number of its neighbors within
the same subset, is greater than or equal to its height. Such
subsets could be as large as the whole system, thus in general
you cannot decide easily if a configuration is recurrent or
not.

An interesting question would be what is the probability
of finding a site with height h or what is the probability of
finding a specific cluster of height variables. Even more in-
teresting, is the joint probabilities of such events. These
questions have been answered for the case of weakly allowed
clusters �WACs� �4�. WACs are the clusters that are not FSC,
but if you remove a grain of sand from any of its sites it
becomes FSC. The simplest example is one-site height-one
cluster.

The correlation functions of all such clusters obey a
power law with the same exponent; all the clusters have scal-
ing exponent equal to two. From point of view of critical
systems, one expects that in the scaling limit ASM should be
expressed via a field theory. There have been found many
indications that a specific conformal field theory called the
c=−2 theory is related to ASM. First of all a connection
between ASM and spanning trees has been found �4�, there-
fore it should be related to q→0 Potts model, which is
known to be related to the c=−2 theory. Also the exponents
of the WAC fit in this theory. In �5� the critical and off-
critical two- and three-point correlation functions of 14 sim-
plest WACs were calculated and using these results the scal-
ing fields associated with these WACs were obtained. This
result was generalized to arbitrary WAC in �19�. These iden-
tifications were done only by comparing the correlation func-
tion. In �6� the fields were derived from an action and the
way the probabilities are calculated in ASM are translated
directly to field theory language to obtain the relevant fields.
The c=−2 theory is a logarithmic theory �20�, and it contains
some fields that have logarithmic terms in their correlation
functions. Such fields are related to one-site clusters with
height more than one �21� although still a direct way to show

it is missing. The action of c=−2 is S����̄�̄�, where � and

�̄ are Grassmannian variables. It is easy to see why the action
is related to ASM, just note that the number of recurrent
configurations is det � and all occur with the same probabil-
ity. So the partition function of the system is det �. This
determinant could be written in terms of integrating over
Grasmannian variables which leads to the above action in the
scaling limit.

Interestingly, it was observed in �12� that the probability
distribution of LERW may be written in terms of a Grasman-
nian path integral, reinforcing the connection between
LERW and ASM.

Different properties characterizing an avalanche is the
other subject usually investigated in ASM. We call the total
number of topplings the size of avalanche and denote it by s.

The number of distinct lattice sites toppled is denoted by d
which is clearly less than or equal to the size of avalanche.
This variable shows the area of the system which is affected
by the avalanche. The duration t of an avalanche is the num-
ber of update sweeps needed until all sites are stable again.
The other characteristic is the linear size of an avalanche
which is measured via the radius of gyration of the avalanche
cluster and is denoted by R. It was widely assumed In the
critical steady state the corresponding probability distribu-
tions obey power-law behavior

P���� � �−��, �1�

where � can be s, d, t, or R.
However it is shown that while the distribution of ava-

lanche areas obeys finite-size scaling that of total number of
topplings does not, rather it is characterized by a multifractal
spectrum �22�. In this paper we concentrate on the area dis-
tribution and hence will assume that finite-size scaling holds.
If one is interested in other properties of avalanches such as
total number of topplings, either he or she has to consider a
multifractal spectrum or to consider waves of toppling �16�.

The above exponents are calculated numerically �23,24�,
also using specific assumptions some �different� analytic re-
sults have been obtained �25�. The exponents are not inde-
pendent, as an example because the region that the sites
topple is a compact one and does not have holes in it, the
area s of the region should be proportional to R2 statistically.
This induces the relation �r=2�s+1 between the exponents.

Other versions of sandpile models have been considered
�7,26�. In �7�, Zhang introduced a model in which the height
variables were continuous and are called energy. At any time
step a random amount of energy is added to a random site. If
the energy of the site becomes more than a specific amount,
called threshold, it becomes active and topples: it loses all its
energy, which is equally distributed among its nearest neigh-
bors. In his original paper, Zhang observed, based on results
of numerical simulation, that for large lattices, in the station-
ary state the energy variables tend to concentrate around dis-
crete values of energy; he called this the emergence of en-
ergy “quasiunits.” Then, he argues that in the thermodynamic
limit, the stationary dynamics should behave as in the dis-
crete ASM. Zhang model does not have the Abelian property,
therefore little analytic results is at hand. However the nu-
merical simulations show that it exhibits finite-size scaling
property Eq. �1� �9,27�.

These scaling relations imply that there should be some
related geometric structures in the avalanches. We consider
avalanche clusters in the steady state in which all sites have
experienced toppling at least once. Then, in the following
sections using theory of SLE, we investigate the statistics of
the avalanche boundaries �see Fig. 1�.

III. STOCHASTIC LOEWNER EVOLUTION

Critical behavior of various systems can be coded in the
behavior of their geometrical features. In two dimensions,
the criticality shows itself in the statistics of interfaces, e.g.,
domain walls. The domain walls are some nonintersecting
curves which directly reflect the status of the system in ques-
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tion. For example, consider one of the prototype lattice mod-
els which can be interpreted in terms of random nonintersect-
ing paths, Ising model, which we consider it in the physical
domain, i.e., upper half plane H. To impose an interface
growing from zero on the real line to infinity, a fixed bound-
ary condition can be considered in which all spins in the
right and left sides of the origin are up and down, respec-
tively. At zero temperature the interface is a straight line and
increasing the temperature leads the interface to a random
nonintersecting curve. In the 1920s, it has been shown by
Loewner �28� that any such curve in the plane which does
not cross itself can be created, in the continuum limit, by a
dynamical process called Loewner evolution with a suitable
continuous driving function �t as

�gt�z�
�t

=
2

gt�z� − �t
, �2�

where, if we consider the hull Kt, the union of the curve and
the set of points which cannot be reached from infinity with-
out intersecting the curve, then gt�z� is an analytic function
which maps H \Kt into the H itself.

For the mentioned Ising model, at zero temperature the
interface can be described in the continuum limit by
Loewner evolution with a specific constant driving function.
At higher temperatures less than critical temperature Tc, the
driving function might be a complicated random function. At
T=Tc, the system and the interfaces as well are conformally
invariant �in an appropriate sense�, i.e., they are invariant
under local scale transformations. Schramm showed �17� that
the consequences of conformal invariance for a set of ran-
dom curves are such that the driving function in the Loewner
evolution should be proportional to a standard Brownian mo-
tion Bt �which is known as stochastic-Schramm Loewner
evolution or SLE��. Therefore �t=	�Bt so that 
�t�=0 and

��t−�s�2�=��t−s� �for more precise mathematical definitions
and theorems see the review paper �29� and references
therein�.

The diffusivity � classifies different universality classes
and is related to the fractal dimension of the curves Df as

Df = 1 + �/8. �3�

After invention of SLE, many of its properties and appli-
cations have been appeared by both mathematicians and
physicists. Its connection with conformal field theory has
also been made explicit in a series of papers by Bauer and
Bernard �30�. It has been also appeared in various physical
subjects such as two-dimensional turbulence �31,32�, spin
glasses �33�, nodal lines of random wave Functions �34�,

experimental deposited WO3 surface �35�, and also in two-
dimensional Kardar-Parisi-Zhang surface �36�. The connec-
tion between SLE and some lattice models in the scaling
limit is also proven or conjectured today. For example, two-
dimensional LERW is a random curve, whose continuum
limit is proven to be an SLE2 �17�. Self-avoiding random
walk �SAW� �37� and cluster boundaries in the Ising model
�38� are also conjectured to be SLE8/3 and SLE3, in the scal-
ing limit, respectively.

One of the calculations, which has been made by SLE
which will be referred later, is the probability that the trace
of SLE in domain H passes to the left of a given point at
polar coordinates �R ,��. It was studied by Schramm using
the theory of SLE in �39�. Because of scale invariance, this
probability depends only on � and has been shown that

P���� =
1

2
+

	
 4

�
�

	
	
8 − �

2�
� 2F1
1

2
,
4

�
;
3

2
;− cot2����cot��� .

�4�

In the following, we will use these statements to show
that the avalanche frontiers in the both ASM and Zhang’s
model can be described by SLE2.

IV. NUMERICAL DETAILS: TEST FOR CONFORMAL
INVARIANCE

In this section, using the scaling relations and theory of
stochastic Loewner evolution introduced in previous sec-
tions, we show that the conformal field theory which de-
scribes the sandpile models algebraically, can be derived
from a quite different approach, i.e., investigation of the sta-
tistics and symmetries of some well-defined geometric fea-
tures during the sandpile dynamics. To this end, we consider
the avalanche clusters in the steady-state regime during the
dynamics: including all sites which topple at least once at
each time step when adding a grain to a random site of the
system makes it unstable �see Sec. II�. Then we get an en-
semble of the boundary of these clusters as suitable candi-
dates to study their statistics and possible conformal invari-
ance. We compare our results with similar ones for known
models which their relations with sandpile models is made
explicit, i.e., LERW.

To investigate the statistical behavior of the avalanche
boundaries �loops� in the ASM model, we first calculate their
fractal dimension by using the scaling relation between their
radius of gyration R and their perimeter length l, i.e., l
�RDf. As shown in Fig. 2, the fractal dimension is very close
to the one for LERW which is proven to be 5/4, �the best fit
to the data yields Df =1.24�0.02�.

It is also discussed in �40� that the mean area of the loops
scales with their perimeter length as A� l2/Df. The inset of
Fig. 2 shows the comparison of this relation with one calcu-
lated for avalanche boundaries in ASM model. The same
results can be obtained for the avalanche boundaries in
Zhang’s model which have not been shown here.

This fractal dimension Df is consistent with the fractal
dimension of SLE2 curves in the scaling limit �see Eq. �3��.

FIG. 1. �Color online� An avalanche cluster �left� consisting all
sites that have toppled at least once and its frontier �right�.
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This suggests that the scaling limit of the avalanche frontiers
may be conformally invariant in the same universality class
of LERW.

A simple way to check this proposition can be done using
Eq. �4�. Since in this equation it is supposed that the curves
are in domain H, so we have to be careful about reference
domain. We assume that any avalanche frontier is in the
plane, and then we can consider any arbitrary straight line
which crosses the loop at two points x0=0 and x� as real line.
Then we cut the portion of the curve which is above the real
line. To have a curve starting from origin and tending to
infinity, we use the map 
�z�=x�z / �x�−z� for all points of
the curve �41�. Doing so for all frontiers, we would have an
ensemble of such curves and we can check Schramm’s for-
mula �Eq. �4�� for them.

Figure 3 shows the result for avalanche frontiers of both
ASM and Zhang’s model. The result is most consistent with
the prediction for SLE2 curves.

Now we are in a position to extract the Loewner driving
function �t, in Eq. �2�, for these avalanche boundaries and

examine whether they are Brownian motion. This is another
direct check which shows the behavior of the curves under
local scale transformations. We use successive conformal
maps according to the algorithm introduced by Bernard et al.
�32� based on the approximation that driving function is a
piecewise constant function.

The procedure is based on applying the map Gt,�
= x���x��x�−z�+ �x�

4 �z−��2+4t�x�−z�2�x�−��2�1/2� / �x�
2 �x�

−z�+ �x�
4 �z−��2+4t�x�−z�2�x�−��2�1/2� on all the points z of

the curve approximated by a sequence of �z0=0 ,z1 , . . . ,zN
=x�� in the complex plane, where �=
−1��� and again

�z�=x�z / �x�−z�, in which the dimensionless parameter t is
used for parametrization of each curve. At each step,
by using the parameters �0=
−1��0�= �Re z1x�− �Re z1�2

− �Im z1�2� / �x�−Re z1� and t1= �Im z1�2x�
4 / �4��Re z1−x��2

+ �Im z1�2�2�, one point of the curve z0 is swallowed and the
resulting curve is rearranged by one element shorter. This
operation yields a set containing N numbers of �tk

for each
curve.

Figure 4 shows analysis of statistics of the ensemble of
the driving functions. Within the statistical errors, it con-
verges to a Gaussian process with the linear behavior of

��t�2� and the slope �=2.1�0.1.

The predicted universality class for avalanche frontiers of
sandpile models with diffusivity �=2 is consistent with the
central charge of conformal field theory with c=−2, given by
the relation c= �8−3����−6� /2�, which is supposed to de-
fine the ASM model �5,6�.

All these evidences show another example that the theory
of SLE can define �or predict� the conformal field theory
which describes the system.

V. CONCLUSION

In this paper, we analyzed the statistics of avalanche fron-
tiers that appear in the geometrical features of sandpile dy-
namics. Using the theory of SLE, we found numerically that
the curves are conformally invariant with the same properties
as LERW, with diffusivity of �=2. This relation with LERW
which has been obtained in a quite different way, with re-
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spect to the previous studies, suggests that logarithmic con-
formal field theory with central charge c=−2, defining the
system is in agreement with that obtained from algebraic
approach.

The avalanche front is expected to be an SLE2 from cir-
cumstantial evidence. The ASM model has been argued to be
related to c=−2 logarithmic conformal field theory which is
turn is related to SLE with � equal to either 2 or 8. However
as �=8 is a space filling curve, not a good candidate for the
avalanche front leaving us with �=2. A more definite reason-
ing, we note that the way an avalanche is formed one can
define a burning algorithm: at each step, the site i topples if

its height hi is larger than the number of those of its nearest
neighbors which have not toppled in the previous step. This
burning algorithm leads to a tree that spans the whole area of
the avalanche. Hence the avalanche front is expected to be
the dual of the spanning tree thus must have �=2. It is worth
to mention that actually the waves of toppling are described
by spanning trees and hence an avalanche is superposition of
a few spanning trees. However if there are not many waves
one expects that the frontiers have the same statistics as the
waves. An improvement of this results may be obtained us-
ing wave-frontier statistics. Work in this direction is in
progress.
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