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We show that there are two classes of the closure equations for the Ornstein-Zernike equation: The analytical
equations for the bridge functional B=B�an� like hypernetted-chain approximation, Percus-Yevick approxima-
tion, etc., and nonanalytic equation B=B�nan�, where B�nan�=B�rg�+B�cr� and B�rg� is the regular �analytical�
component of the bridge functional, and B�cr� is the critical �nonanalytical� component of B�nan�. The closure
equation B�an� defines coordinates of the critical point and other individual features of critical phenomena, and
B�nan� defines all the known relations between critical exponents. It is shown, that the necessary condition for
existence of the nonanalytic solution of the OZ equation is the equality 5−�=��1+��, where � ,� are the
critical exponents, values of which can change in a narrow interval. We also show that the transition from the
analytical solution to the nonanalytic one is accompanied by a break of the pressure derivative. The boundaries
between the areas, where each of these solutions exists, are indicated on the phase diagram.
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I. INTRODUCTION

Actually, now the critical phenomena theory has been re-
duced to a scaling theory. The scaling theory states that in a
vicinity of a critical point we have the following:

�1� The dependence of thermodynamic parameters a on
the density � and the temperature �=kBlT has the form as
follows:

�a� �a = b�x�,

where �a=a−ac, �x=�−�c or �x=�−�c; �c ,�c are the co-
ordinates of a critical point, and �=� ,� , . . . are the critical
exponents, i.e., some fractional numbers.

�2� The relations of a type

�b� 	 = 
�2 − ��, 3
 = 2 − �, etc.,

link the various critical exponents.
�3� The relations �a� and �b� are universal, i.e., they are

identical for all fluids.
However, experiment shows that the dependence �a on

�x is expressed by a more complicated formula �see �1��,

�c� �a = b�x��1 + b1�x�1 + ¯ � .

Furthermore, the critical exponents can slightly deviate from
the values predicted by the scaling theory �see �2��. It is very
important that the scaling theory contains only restricted in-
formation about the critical phenomena: In this theory it is
impossible to determine the critical point coordinates �c ,�c,
to calculate amplitudes b in relations �a�, etc. Therefore, we
must consider the scaling theory as the first approximation to
the general theory of critical phenomena.

The scaling theory is a phenomenological theory because
it deals only with the macroscopic characteristics of sub-
stance. A statistical theory is necessary to determine the mi-
crostructure of fluids. The attempts to build such a theory
were made repeatedly. We can indicate two attempts that are
more successful than the others: The hierarchical reference

theory �HRT �3�� and SCOZA �4–6�. However, these theories
are not consecutive statistical theories, as they are partially
based on the scaling theory hypotheses. The theory of critical
phenomenon, that is different from these approaches, was
developed in �7�. It is based only on the fundamental equa-
tions of the statistical mechanics. The present paper develops
this theory.

II. ASYMPTOTIC OF CORRELATION FUNCTIONS

All critical phenomena are accompanied by the appear-
ance of gigantic fluctuations. In statistical mechanics, their
values are determined by asymptotic behavior of correlation
functions: The slower is the correlations attenuation, the
greater is the characteristic size of fluctuation. The simplest
method of investigation of the asymptotic of correlation
functions is based on the analysis of the Ornstein-Zernike
�OZ� equation, which expresses a condition of the chemical
potential constancy �see �8��. In the Fourier components this
equation becomes �see �8��

1 + �ĥ�k;�,�� =
1

1 − �Ĉ�k;�,��
,

�ĥ�k;�,�� =
�Ĉ�k;�,��

1 − �Ĉ�k;�,��
, �1�

where

ĥ�k� = 4��
0

�

h�r�
sin�kr�

kr
r2dr ,

Ĉ�k� = 4��
0

�

C�r�
sin�kr�

kr
r2dr , �2�

and h�r�=exp�−
�r�+w�r��−1 is the total correlation func-
tion, 
�r�=��r� /� is the dimensionless interaction potential,
C�r�=h−w+B�h� is the direct correlation function, and
B�h�r�� is the bridge functional. The relations �1� and �2� are*g2302@migmail.ru
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unambiguous consequences of the Gibbs distribution.
As far as we are interested in the distances r→�, we

should research the OZ equation �1� in a limit k→0. To do
this we must take into account, that by definition �see �8��

����,�� =
�

�P��,��/��
,

�� = 1 + �ĥ�0�,
1

�

�P��,��
��

= 1 − �Ĉ�0� , �3�

where �� is the isothermal compressibility and P is the pres-
sure.

It is possible to show, that at k→0 the direct correlation
function becomes �see the Appendix�

C�k� = C�0� + k2C*�0� + k34�a�
0

�

��x�
dx

x4 , �4�

where Ĉ�0�=4��0
�C�r�r2dr and Ĉ*�0�= 4�

3! �0
�C�r�r4dr. Sub-

stituting Eq. �4� into Eq. �1� and omitting the term with k3,
we obtain

�ĥ�k� →
�Ĉ�0� − k2�Ĉ*�0�

�1 − �Ĉ�0�� + k2�Ĉ*�0�
.

By definition in the critical point �P /��=0 and, therefore,

�cĈ�0;�c ,�c�→1. Supposing

Ĉ�0;�,�� = Ĉ�0;�c,�c� + �Ĉ�0;�,��

and taking into account that �Ĉ�0�→0 at �� ,��→0, we
obtain

�ĥ�k� →
1 − ���Ĉ�0� + k2Ĉ*�0��

���Ĉ�0� + k2Ĉ*�0��
.

The expression in the square brackets in the numerator can
be omitted, as far as with approach to the critical point

�Ĉ�0�→0 and k→0. At the same time in the denominator

nothing can be neglected, as far as �Ĉ�0��k2Ĉ*�0�. As the
result we have

�ĥ�k� →
1

�Ĉ*�0�

1

�2 + k2 , � = ��Ĉ�0�/Ĉ*�0� . �5�

After the inverse Fourier transform we obtain

h�r� = A
e−�r

r
, 4��A =

1

�Ĉ*�0�
=

6

4���0
�C�r�r4dr

. �6�

These are well-known formulas which were obtained by
Ornstein and Zernike. Let us remark, that they are true only

in the vicinity of the critical point where �Ĉ�0�→0; far from

the critical point �Ĉ�0� have a finite value and, therefore,
here

�Ĉ�0� � k2Ĉ*�0� → 0 and �ĥ�k� → 1/��Ĉ�0� = const.

From �3� and �6� follows, that the isothermal compress-
ibility in the critical point is

�� = 1 + 4���
0

�

h�r�r2dr = 4��
A

�2 → � for � → 0 �7�

and that the pressure

1

�

�P

��
= 1 − �Ĉ�0;�,�� = ��Ĉ�0;�,�� → 0,

1

�c
P��c,�c� = const. �8�

Both these predictions of the OZ theory were confirmed by
experiment. Furthermore, if we make approximation of the
bridge functional B�h� by the closure equation B�h�, as it is
done in the theory of fluids, we shall obtain the opportunity
to calculate the coordinates of a critical point using �8�. If the
closure equation is selected successfully enough, the values
�c ,�c obtained this way are sufficiently exact. Thus, for ex-
ample, the equation of closure MSV1 for the Lennard-Jones
�LJ� potential gives �c�0.28, �c�1.32 �see �9��, which dif-
fers several percentages from the data of numerical experi-
ment �c�0.304, �c�1.312. Probably, we can obtain more
exact values of the coordinates if we use a more precise
closure equation.

Despite of all this, now the OZ theory is considered as
invalid because it gives rise to incorrect critical exponents
�see �10��. However, the OZ equation is an unambiguous
corollary of the Gibbs distribution and, therefore, an unam-
biguous corollary of the statistical mechanics postulates. On
these grounds, I believe that the statement about an inaccu-
racy of the OZ equation and all formulas obtained from it, is
too hasty.

III. TWO SOLUTIONS OF THE OZ EQUATION

Analytic solution. Usually it is supposed that the direct
correlation function C=C�an��r ;� ,�� is the analytical func-
tion of density � �index �an��. If we expand this function into
a series on �� and take into account, that in the critical point
�P /���=�2P /���2=0, we shall obtain

1

�

�P

��
= �Ĉ�0� = 	

j=1

�

j�� j−1aj���, where a1��c� = a2��c� = 0.

�9�

The classical critical exponents at once follow from this
equation. However, the OZ equation belongs to the class of
strongly nonlinear equations. The equations of this class may
have many solutions. We shall show now, that the OZ equa-
tion aside from the analytical solution has also a nonanalytic
solution �index �nan��.

Non analytic solution. We will begin the search of the
nonanalytic solution with the postulate that exponential de-
pendence h�r�=Ae−�r /r from distance r �see Eq. �6�� should

1In �9� these equations are referred to as the equation of Vompe-
Martynov �VM�. Historically they are more correctly named as
equation of Martynov-Sarkisov-Vompe �MSV�.
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be the same in any case because it is an unambiguous con-
sequence of the OZ equation �1� and three conditions, fulfill-
ing of which is obligatory in the critical point vicinity,2

�Ĉ�0� → 0, k → 0, and �� → � . �10�

If this condition is true, the nonanalytic solution can differ
from the analytical one only by a form of dependences A
=A�� ,��, �=��� ,��. This dependence is defined by the di-
rect correlation function �see �5� and �6��. Therefore, first we
must define the direct correlation function C�nan�

=C�nan��r ;� ,��.
The direct correlation function. Obviously, isothermal

compressibility, which is determined by formula �7�, can
tend to infinity in the critical point not only if ��
A /�2,

where A=1 /�Ĉ*�0��0, but also in the case of

A = A0�� → 0, �� = 4��
A0��

�2 = 4��
A0

�2−� → � , �11�

where 0���2 is a new critical exponent. However, for-
mula h=A0�� exp�−�r� /r���r� describes only the
asymptotic of the total correlation function. A more general
form of h�r� is the expression h�r�=��r�+��r� �the proof of
this statement is given in �7��. In this case, the bridge func-
tional B�h�=B��+�� can be expanded into a series of de-
grees �
��→0. It gives

B = B�rg���� − b�� + ¯ = B�rg���� − b�A0��e−�r

r

�

+ ¯

= B�rg���� + B�cr���� , �12�

where the regular component of the bridge functional
B�rg���� is an analytical function of � and �, whereas the
critical component B�cr�����C�cr��r�=−b�A0�� e−�r

r �� is
nonanalytic function of the same variables �here � is one
more critical index�. We set x=r, where x is dimensionless
distance, which is gauged in the correlation radii R=1 /�. In
this case we obtain C�cr�=−bA0

����1+��e−�x /x�. Probably, it is
necessary to take into account �in the expansion equation
�12�� the high terms of a series, that possibly define the cor-
rection terms in the formula �C�. However, here we shall
restrict ourselves by the two first terms. Thus we assume that
B�h�=B�rg����+B�cr����. It is apparent, that B�rg����
�B�an��h�, as far as B�an��h� depends on h, whereas B�rg����
depends on �. Besides it is necessary to take into account,
that in a vicinity of a critical point the radius of correlation
R=1 /��R�, where R� is that distance, on which the inter-
action potential ��r� practically turns into zero. Owing to
this, the critical component C�cr��r� cannot influence on the
distribution of particles on small distances—here, all are de-
termined by the regular component C�rg����r��. Because of
this, let us assume that C�cr��r� is equal to zero on distances
r�aR, i.e., let us assume

b = �0 at x � a ,

1 at x � a .
�

As will be shown below, a�2.29.
So, we shall consider that

C�nan��r� = �h − w + �2B�rg����� − B�cr����

= C�rg��r;�,�� + C�cr����r��

= � C�rg� at x � a, r � a/� ,

C�rg� + C�cr� at x � a, r � a/� .
� �13�

At �→0 the interval of existence of the critical compo-
nent a /��r�� disappears. Consequently in the critical
point, where �=0, the state of the system is defined only by
C�rg� on all intervals 0�r��. Simultaneously, the total cor-
relation function takes the form h=A�e−�r /r��=0=A /r. Due to
this, the integrals into Eq. �2� are divergent at infinity.

Conditions of existence of nonanalytic solution. Substitut-
ing Eq. �13� into Eq. �8� for derivative pressures and expand-
ing C�rg���c+�� ,�c+��� in a series on ��=�−�c, we obtain

1

�

�P

��
= 1 − �Ĉ�0;�,�� � �1 − 4��c�

0

�

C�rg��r;�c,�c�r2dr

+ �Ĉ�nan��0;�,�� , �14�

where

�Ĉ�nan��0� = �Ĉ�rg� + �Ĉ�cr�

= 	
j=1

�

jbj����� j−1

+ 4��A0
����1+��−3�

a

�

e−�xx2−�dx . �15�

These formulas differ from Eq. �9� only by replacement of

coefficients aj��� on bj��� in �Ĉ�rg��0�=	 j=1
� j�� j−1bj��� and

appearance of an integral term in Eq. �15�. In the critical
point, where �=0, this integral must disappear. It is possible
only if ��1+��−3�0. We shall assume that this condition is
fulfilled. In this case, at the critical point Eq. �14� takes the
form

1

�c

�P��c,�c�
��

= 1 − 4��c�
0

�

C�rg��r;�c,�c�r2dr = 0. �16�

In this equation C�rg� there is a known analytical function of
� ,�, which is defined by the closure equation as it is done in
the fluid theory. As a result, Eqs. �14� and �15� are reduced to

1

�

�P

���
= �Ĉ�0;�,��

= 	
j=1

�

jbj����� j−1

+ 4��A0
����1+��−3�

a

�

e−�xx2−�dx . �17�

2I wish to remind the reader that the conditions �Ĉ�0�=0, ��=�
are a result of the condition �P /��=0, whereas the condition k=0 is
a result of gigantic fluctuations in the critical point vicinity.
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Substituting �11� and �14� in the asymptotic OZ equation

ĥ�0�=1 / �1−�Ĉ�0�� and taking into account Eqs. �11� and
�15�, we obtain

4��
A0

�2−� =
1

�C�rg��0;�,�� + 4��A0
����1+��−3�a

�e−�xx2−�dx
.

�18�

In order to fulfill this equality for arbitrary �=��� ,��, it is
necessary, that �C�rg��0;� ,�� tends to zero faster than an
integral term with approach to the critical point. If this con-
dition is fulfilled, this term in Eq. �18� can be neglected.
After equaling exponents at � in the left- and right-hand
parts of Eq. �18�, we obtain

2 − � = ��1 + �� − 3, 5 − ��1 + �� = � . �19�

This equality is a necessary condition of existence for the
nonanalytical solution. It is known in the critical phenomena
theory for a long time. However, the physical meaning of
this condition was unknown �see �10��.

One more necessary condition for the existence of a
nonanalytic solution we can obtain from a condition

�Ĉ�rg��0�+ Ĉ�cr��0�→ Ĉ�cr��0� at �→0. As far as

�Ĉ�rg��0;�,�� = 	
j=1

�

jbj����� j−1,

then the regular component disappears faster than the critical
one only if

bj��c� = 0 at j = 1, . . . ,4 �20�

�in the case of analytical solution the weaker condition
a1��c�=a2��c�=0 was true; see �9��.

Definition of the constant a. If the conditions �19� and
�20� are fulfilled, we obtain

4��
A0

�2−� =
1

4��A0
��2−��a

�e−�xx2−�dx
.

Canceling this equality on �2−�, we obtain the equation for
the definition of the amplitude A0,

4��A0 =
1

4��A0
��a

�e−�xx2−�dx
. �21�

At the same time substitution Ĉ�nan��r�= Ĉ�rg��r�+ Ĉ�cr��r� into
Eq. �6� gives

A = A0�� =
6

�4���2�0
�C�r�r4dr

=
6

�4���2�0
��C�rg��r� + C�cr��r�r4dr

=
6

�4���2�0
�C�rg��r�r4dr + �4���2�−�A0

��a
�e−�xx4−�dx

.

�22�

At �→0 the contribution of the regular component into the
denominator �22� can be neglected, as �−�→�. Canceling

after this the left- and right-hand sides of this expression on
��, we will obtain one more formula for definition of ampli-
tude A0,

4��A0 =
6

4��A0
��a

�e−�xx4−�dx
. �23�

Equating values A0 from �21� and �23�, we shall obtain the
equation for definition of a constant a for a given value of an
index �,

�
a

�

e−�xx2−�dx =
1

6
�

a

�

e−�xx4−�dx . �24�

Index � should be located always in an interval 4.0��
�5.0, because for �=4 the nonanalytic solution becomes
analytical, and for �=5 index �=0 �see Eq. �19��. It follows
from Eq. �24� that interval 4.0���5.0 for � correlates with
interval 2.28�a�2.30 for a. Supposing that a�2.29, we
shall obtain

A0 =
13.3

�4���0.344 . �25�

At last, from Eq. �5� it follows that

�2 =
�Ĉ�0�

Ĉ � �0�

=
�0

��C�rg��r;��,���r2dr + A0
��2−��a

�e−�xx2−�dx

1

6
�

0

�

C�rg��r;��,���r4dr +
1

6
�−�A0

��
a

�

e−�xx4−�dx

.

�26�

This formula determines the dependence �=���� ,��� in the
critical point vicinity; in the same critical point this expres-
sion degenerates into identity 0=0.

IV. CRITICAL EXPONENT

Pressure. Let us expand ��� ,��=���c+�� ,�c+��� into a
series on �� ,�� and take into account the condition
���c ,�c�=0. After this we obtain

���,�� = ����� + ����
 + ¯ , �27�

where � ,
 are new critical exponents, and �� ,�� are the
amplitudes corresponding to them. At ��=0 this relation is
reduced to ���� ,0�=�����. Substituting this expression
into Eq. �17� and taking into account Eq. �20�, we shall ob-
tain

1

�c

�P���,0�
���

= 4��cA0
��������2−��

a

�

e−�xx2−�dx

+ 	
j=5

�

jbj��c��� j .

After integration over �� it gives
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1

�c
�P��,�c� − Pc� = ���� + 	

j=5

�

bj��c��� j , �28�

where

� =
A0

���
2−�

�2 − ��� + 1
4��c�

a

�

e−�xx2−�dx = const,

� = �2 − ��� + 1. �29�

Substituting �=4, �=0.2 and �=5, �=0 into �= ��−1� / �2
−��, we obtain an inequality 1.7���2.0. Approaching the
critical point the sum 	 j=5

� jbj��c��� j−1 decreases as ��5,
whereas the nonanalytic term varies by the law ���, where
4���5. Therefore, near the critical point we can neglect
this sum. After this, Eq. �28� turns into the following expres-
sion, which is well known in the scaling theory �see �8,10��:

P = Pc + �c����. �30�

Coupled equations for critical exponents. Substituting �
from Eq. �27� into Eq. �11� we obtain

R =
1

�
=

1

����� + ����
 , �31�

One can see that R
1 /��� at ��=0 and that R
1 /��
 at
��=0. The last relation is well known in the scaling theory,
where 
�0.63 �see �8,10��.

We can obtain, after substitution � from Eq. �27� into Eq.
�11�,

�� =
4��cA0

������ + ����
�2−� . �32�

At ��=0 the relation �32� is reduced to ��cr�
1 /��	, where
the critical exponent 	=
�2−��. This relation is also well
known in the critical phenomena theory �see �8,10��.

Until now, we considered behavior of thermodynamic pa-
rameters either at the critical isochors ��=0, ���0, or at
the critical isotherm ���0, ��=0. Let us consider now
their behavior in the case when we approach to a critical
point along a ray ��=k��. Substituting this expression into
�27�, we shall obtain �=����
�1+ ���k� /������−
�. As far
as ��
, in this case the logarithmic decrement � will tend
to �=����
, and equalities �31� and �32� will transform into

R 

1

��
 , �� 

1

��	 . �33�

These relations appear in the scaling theory just in such form
�see �8,10��.

Let us consider Eq. �17� for the pressure derivative. In the
case of approaching to the critical point along the ray ��
=k��,

1

�

�P

���
= 	

j=5

�

jbj����� j−1 + A��	 = 	
j=5

�

jbj����� j−1 + Ak	��	.

Integration of this expression on �� and setting �=����


gives

P = Pc + �	
j=5

�

bj����� j + A
��	+1

	 + 1
. �34�

All relations, obtained in this section, do not depend on an
interaction potential—they are an unambiguous consequence
only of the condition of existence of the nonanalytic solu-
tion, Eq. �19� �and, certainly, the consequence of Eqs. �7� and
�8�, defining the pressure and the compressibility�. Therefore,
they are universal, i.e., do not depend on the fluid nature.

Critical exponents. It is usually supposed, that the critical
exponents � ,� ,	 presented above are universal too. How-
ever, this point of view contradicts the statistical mechanics
results. Really, the exact solutions for face-centered lattice of
crystal and for volumetric-centered lattice give �=0.297 for
the first case and �=0.318 for the second case �see �11��. As
far as the crystal lattice is formed as a result of the particle
interaction, apparently, the different lattices are matched by
different interaction potentials. Although this dependence is
rather feeble, it really exists. This conclusion is confirmed by
the OZ equation. We show above that the index � should lie
in the interval 4���5. To determine the more precise value
of � we must formulate a new condition, basing only on the
statistical mechanics postulates. I was not able to find this
condition. Besides the data of experiments unambiguously
indicate, that the critical exponents of different fluids differ a
little from each other. On these facts, I came to the conclu-
sion, that the index � is the individual characteristic of a
given fluid. If my idea is right, it means, that in the theory of
critical phenomena we must preset the value of � as well as
we preset the potential in the Gibbs theory.

All critical exponents are divided into two groups. The
first group, including �, �, and �, determines the dependence
of the thermodynamic parameters on the density. The values
may be uniquely defined by the coupled equations
5−��1+��=� and �= ��−1� / �2−�� if only the value of � is
known. The second group incorporates the critical exponents

 and 	=
�2−�� defining the dependence of thermodynamic
parameters on temperature ��. For their definition it is nec-
essary to know an index 
. Probably, they are also the indi-
vidual characteristic of fluids. In any case, the fact that the
temperature always appears in all statistical mechanics equa-
tions only as the ratio ��r� /�, points to this. Therefore, dif-
ferent potentials �i.e., different fluids� must correspond to the
different values of critical exponents. However, this depen-
dence, most likely, will be feeble too, as far as the potential

stands under the integral in �Ĉ�rg��0;� ,��.
Thus, I believe, that only the coupling equations, which

determine the dependence of one index of a given fluid from
another, are universal; absolute value of the critical expo-
nents in these equations can vary at transitions from one fluid
to another.

V. PHASE DIAGRAM OF FLUIDS

Two solutions. We have shown above that the OZ equa-
tion has only two solutions satisfying the condition of turn-
ing of the isothermal compressibility into infinity at the criti-
cal point; there are no other solutions that would satisfy this
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condition. From the formal point of view, both solutions are
equivalent. However, at small densities the analytical solu-
tion must be true, because in the gas area of the phase dia-
gram all thermodynamic parameters can be expanded into a
series on the integer density degrees �proof of this is given in
�12,13�. In its turn, the nonanalytic solution should be valid
in the critical point vicinity, as from this solution follows the
correct value of the critical exponents. The question arises:
How does one solution transform into another? The trivial
answer is the following: The critical component of direct
correlation function C�cr� tends to zero with removal from the
critical point. It is not appropriate obviously as far as C�cr�


�2−� and, hence, the critical component of the direct cor-
relation function is also increasing with the increase of �.
Only one possibility is left: To suppose that the area of one
solution’s existence is separated from the area of the other
solution’s existence by a curve of singular points of the sta-
tistical sum. However, what is the nature of these points? It is
necessary to search the answer to this question in the analysis
of the pressure and its derivatives, as far as the OZ equation
is closely related with P and �P /��. It is a well-known fact,
that the pressure is a continuous function of the density and
the temperature on all phase planes. Therefore, the appear-
ance of the singular points can be linked only with the be-
havior of the pressure derivatives, as far as they can vary by
step �that always occurs on the phase equilibrium curve�.

Regular area. At small densities the pressure always can
be expanded in a virial series P=	�kBk��� �see �12,13��.
Inside of the series existence interval 0���Re��� any sin-
gularities cannot exist; as the singular points can lay only on
the curve �=Re���, where this series diverges.

As shown in �14�, below critical temperature the curve
�=Re��� coincides with the curve of the vapor condensation
�=�cnd���. In the critical point, the curve �=Re��� has a
point of inflection. After this, it goes to infinity with further
rise of temperature �see Fig. 1�. As it is known, on the curve
of evaporation at ���c the derivative of pressure is changed
by the jump from �P

�� � �P�−�

�� �0 in gas area up to �P�+�

�� =0 in
two-phase area. Approaching the critical point the jump of

derivatives becomes less and less, and in the critical point
itself it becomes equal to zero. However, at ���c, the curve
of a virial series divergence �=Re��� also is a line of points,
where the derivative �P /�� is changing by a jump. It will be
obvious in Fig. 2 that the derivatives are a smooth function
of � at ��Re��� and it becomes equal to infinity only in the
points �=Re��� �this jump becomes notable only at the con-
sideration of a large number n of terms of a virial series�.
The reason of appearance of such jumps can be only the
transition from the regular solution to the critical one. It is
difficult to suggest another explanation.

Supercritical area. Let us consider now the area B in Fig.
1, which is located on the right-hand side from �=Re���.
This area is limited from below by the critical isotherm,
where �P�+� /��� becomes equal to infinity. In order to con-
firm this assertion, we shall consider Eq. �17�. Differentiating
this equality on temperature, we shall receive

1

�

�2P���,���
������

= const�2 − ���1−� ��

���
+ 	

j=5

�

j
�bj����

���
�� j−1.

As ��� ,��=�����+����
, where 
�0.63 �see �31��, the
derivative �� /��
=0.63�� /��0.37. From this follows that
�� /���→� at ��=�−�c→0. Therefore, at any ��0,

�2P

����
= �, � = �c, �c � � � �cr��c� . �35�

It is obvious that the critical isotherm is a line of singular
points. This line, most probably, is ended on the crystalliza-
tion curve �cr=�cr���, because there are not any indications
that it can be ended somewhere between
�=�c and �=�cr��c�.

The hypothesis according to which the critical isotherm is
the singular points line on an interval �c����cr, was con-

FIG. 1. The phase diagram of simple fluids. Dashed line is the
line of the virial series divergence. Dashed-dotted line is the critical
isotherm.

FIG. 2. Dependence �P /�� on density � for the Lennard-Jones
potential at isotherms �=1.10, 1.280, 1.285, 1.30 �the data �14�. At
subcritical temperature, ���c�1.283, the derivative on the binodal
turns into zero by jumping; at supercritical temperature, ���c it
turns into infinity. The curves are calculated with the use of 70
terms of a virial series. Reference �14� shows that the more terms of
a series that are taken into account, the jump of the derivative
becomes sharper.
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firmed by Baxter for a system of sticky spheres �see �15��.
By solving the Percus-Yevick equation, he found, that the
analytical solution of this equation exists only at ���c. At
the critical isotherm �=�c this solution disappears �see
�15,16��. Until now, this result has been considered as an
artifact. However, it follows from the formula �35� that it is
true, because on the line of singular points the solution must
change by a jump.

The experimental data also show that near the critical iso-
therm appears the area of anomalous behavior of fluids. For
example, in water the derivative of the sound velocity on the
temperature �cs /�� has a minimum at the critical isotherm
for any density and the less the value of �� is, the more
evident this minimum is. Simultaneously the parameter of
water solubility has a rupture at the critical isotherm �see
�1,17� and Fig. 3�. It is interesting that the sizes of area of
anomalous behavior of the water exceed many times the size
of the region that we usually call “the vicinity of the critical
point.”

Thus, the area B in Fig. 1 is separated from all other areas
by the lines of the hidden phase transitions, where �2P /��2

or �2P /���� is changed by the jump.
I would like to make two remarks.
�A� In various fluids the area B can have various forms

and distinct sizes, as the radius of convergence of a virial
series �=Re��� should be different for different fluids.

�B� We can distinguish inside B the area of similarity in
which the inequality C�cr��C�rg� is true. In this area all ther-
modynamic parameters a�� ,�� are the functions of the loga-
rithmic decrement �=���� ,���. Therefore, selecting an ap-
propriate scale of measurement � and joining together the
coordinates of the critical points of different fluids in one

point of the phase diagram, we shall find out, that the values
of thermodynamic parameters a=a��� for different sub-
stances will be the same. This remark is a substantiation of
van der Waals similarity law.

The area of the liquid states. As follows from Fig. 1, the
area of liquid state is separated from the area of supercritical
temperatures by the critical isotherm �=�c. It is difficult to
tell which solution dominates this area. It is likely, that the
solution becomes analytical again.

VI. BINODAL AND THERMAL CAPACITY

The critical exponents �, �, �, 
 and all relations obtained
above are the consequences of nonanalyticity of the direct
correlation function C�cr�. But along with C�cr� the direct cor-
relation function C includes also the analytical components
C�an��r� and C�rg��r�. We will show below that they determine
the thermal capacity and the binodal form in the critical point
vicinity.

Thermal capacity. Let us suppose, that we approach the
critical point from the area A in Fig. 1 where the solution is
analytical by definition. As we know, in statistical mechanics
the specific heat at constant volume cV is defined by the
formulas

e =
3

2
� +

1

2
��

0

�

��r�G�r�4�r2dr ,

cV =
�e

��
=

3

2
+

1

2
��

0

�

��r�
�h�r�
��

4�r2dr , �36�

where e is the internal energy and h=G−1. According to the
known thermodynamic identity the derivative �see �8�� is

�e

��
= −

�2

�2

�

��
�P

�

 .

After inserting P=��+	 j=2
� � jBj��� into the right-hand side of

this identity, integration over � and differentiation on � we
obtain

cV = cV
�0� − �	

j=2

�
� j−1

j − 1

�2Bj���
��2 . �37�

Obviously, this series should diverge at the critical point be-
cause of divergence of the initial series for the pressure.
However, the scaling theory makes a stronger statement: cV
changes as cV
��−� along the critical isochors. The experi-
ment confirms this prediction in some cases. However, the
coefficients of the virial series essentially depends on the
interaction potential, which is different for different fluids.
Correspondingly, the pressure derivative should be different
for different ��r� /� and the assertion, that the law
cV
��−� is true in all cases, has no theoretical basis.

Let us suppose now, that we are moving from area B in
Fig. 1 to the critical point along a ray ��=k��. As it was
shown, in this case the nonanalytic component of pressure P
has the form A��	+1 / �	+1� �see Eq. �34��. Differentiating
this expression 2 times on ��, we shall obtain, that the

FIG. 3. The dependence of a solubility H2S , SO2, �HSO−
4 , S in

water from temperature in a vicinity of a critical isotherm
T=3.74 °C at pressure P=1000 atm.�5Pc, where critical pressure
P=1000 atm.=5Pc and Pc=218 atm.. The reaction of dissolution is
converted in Ref. �17�
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nonanalytic component of the thermal capacity is propor-
tional to A	��	−1. As far as 	−1�0.3�0, this term must
tend to zero with approaching to the critical point. Therefore,
the thermal capacity in the “B” area becoming equal to in-
finity at the critical point also should be the consequence of
the behavior of the regular component of pressure. The form
of the latter depends on the potential interaction. �I would
like to remind the reader that this potential enters in C�rg�

only as the ratio ��r� /��. Therefore, we have no basis to
assert that in this case the law cV
��−� must be universal
also.

Curve of two phases coexistence. The curve of two phases
equilibrium �binodal� is located in the area of subcritical
temperatures ���c. In this case the solution of the OZ equa-
tion is analytical in both areas A and C �see Fig. 1� and,
therefore, we can always write �see formula �9��

��P

���
= �C���,��� = 3a3��2 + 4a4��3 + ¯ + k1�� + ¯ ,

where the coefficients ai, ki can have different values at ��
�0 and ���0. By definition, the binodal represents a line
of singular points, on which the solution of the OZ equation
with ��P /����0 �one-phase area� transforms by a jump
into the solution with ��P /���=0 �two-phase area; see Fig.
2�. Therefore, on binodal ��P /���=0 or

3a3��2 + 4a4��3 + ¯ = − k1�� + ¯ . �38�

If ���0, this equation does not have a solution, because the
left-hand part is �0 and the right-hand part is �0. Therefore,
at supercritical temperatures, phase transition fluid-vapor is
impossible. But at ���0 �subcritical temperature� Eq. �38�
has a solution.

In general, all ai, ki in �38� may differ from zero. In this
case, the curve of the phase equilibrium ��= f���� may have
a rather complicated form. However, if the term 3a3��2 is
much greater than the others, Eq. �38� turns into the expres-
sion ��
���, where �=1 /2 is the classical critical expo-
nent. If the term 4a4��3 dominates, from Eq. �38� follows
that �=1 /3=0.3333, that is very close to the scaling index
�=0.3245. But in the last case if a3 is small, but not equal to
zero, in the immediate vicinity of the critical point should
appear a term with ��
��1/2. Generally it is possible that
��
��1/4. As follows from �1�, all these variants actually
are observed in the experiments.

Thus, the thermal capacity behavior and the binodal form
in the critical point vicinity, the coordinates �c, �c of critical
point and the critical amplitudes are defined by the analytical
components of correlation functions, which substantially de-
pends on the interaction potential and can be different for
different fluids. The values of these functions cannot be de-
fined in the scaling theory.

VII. CONCLUSION

Let us summarize. All of the relations obtained above are
based only on the Ornstein-Zernike equation, which has a

meaning of the chemical potential constancy; not one of the
scaling theory hypotheses was used. Nevertheless, we have
obtained practically all the results of the scaling theory, but
in the slightly changed form. Thus, the unambiguous state-
ment of the scaling theory that “all critical exponents should
be universal,” is replaced by a somewhat weaker assertion
that “these exponents can have slightly different value for
different fluids;” strictly universal ones are only the coupling
relations establishing the link between different indexes for
the same fluid. In addition, we have shown, that the critical
exponents cannot describe the heat capacity and the vapor-
liquid coexistence curve and the critical point influence
spreads on a very large area of the phase diagram. The lines
of singular points of a statistical sum are the boundaries of
these areas. The derivatives of the pressure on the density
and on the temperature are divergent on these boundaries. It
is very important that we have obtained the equations that
permit us to calculate the coordinates of the critical point, the
critical amplitudes, etc.

APPENDIX

Let us set

sin�kr�
kr

= 1 −
1

3!
�kr�2 + � sin�kr�

kr
− 1 +

1

3!
�kr�2


= 1 −
1

3!
�kr�2 + ��kr� .

Substituting this expression into Ĉ�k�, we obtain

C�k� = C�0� + k2C��0� + 4��
0

�

C�r���kr�r2dr , �A1�

where C�0� and C*�0� is determined by Eq. �4�. Let us sup-
pose x=kr and, therefore,

�
0

�

C�r���kr�r2dr =
1

k3�
0

�

C� x

k

��x�x2dx . �A2�

At k→0, the argument of the direct correlation function
x /k→�. In this limit �see �8��

C�x/k� → − ��x/k�/� → k6a/x6

and

�
0

�

C�r���kr�r2dr →
1

k3�
0

� k6a

x6 ��x�x2dx = k3�
0

� a

x4��x�dx .

�A3�

The last integral converges because

��x� → �x4/5! at x → 0,

x2/3! at x → � .
�

Substituting �A3� into �A1�, we shall obtain Eq. �4�.
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