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We consider the persistence phenomenon in advected passive scalar equation in one dimension. The velocity
field is random with the �v�k ,��v�−k ,−�����k�−�2+��. In the presence of the nonlinearity the complete Green’s
function becomes G−1=−i�+Dk2+�. We determine � self-consistently from the correlation function which
gives ��k�, with �= �1−�� /2. The effect of the nonlinear term in the equation in the O��2� is to replace the
diffusion term due to molecular viscosity by an effective term of the form �0k�. The stationary correlator for
this system is �sech�T /2��1/�. Using the self-consistent theory we have determined the relation between � and
�. Finally, the independent interval approximation �IIA� method is used to determine the persistent exponent.
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The problem of persistence or survival �1� has attracted a
lot of interest in the last decade. The persistence probability
has been obtained both analytically and numerically for a
large class of stochastic process, Markovian as well as non-
Markovian. The random walk problem, diffusion problem,
surface growth, and Ising model with Glauber dynamics are
only a few �1–24�. The persistence probability or the zero
crossing probability is simply the probability that the local
field ��x , t� has not changed sign up to time t. For single
particle systems such as the random walker, which are also
Markovian in nature, the persistence probability is easy to
calculate since the stationary correlator of such a process
decays exponentially for all times. For many body systems
where the field � has a space dependence the calculation of
the zero crossing probability becomes complicated. The
problem is now twofold—first we have to write down an
effective equation for a single site process by solving the
underlying dynamics of the many particle system and then
from this effective single site equation we have to find out
the persistence probability. Even though the first part is
achieved, the second part of obtaining the persistence prob-
ability is notoriously tough since the resulting single site
process becomes non-Markovian.

The simplest of such a process which one can think of is
the diffusion equation �t�=D�x

2�. The fact that this is an
effective single site equation can be seen from the solution
��x , t�=	dx�G�x−x� , t���x� ,0�, where G�x , t� is the Green’s
function for diffusion equation. The problem of persistence
in a diffusion equation has already been addressed by Ma-
jumdar et al. �2�. They considered the diffusion equation
with random initial condition ��x ,0� taken from a Gaussian
distribution. The two time correlation function C�t1 , t2� of the
normalized variable X=��x , t� /
��2�x , t�� takes the form

C�t1,t2� � �X�t1�X�t2�� = �4t1t2/�t1 + t2�2�D/4, �1�

where D is the dimension of space. Now if we make the
transformation T=ln t, the correlator C�T1 ,T2� becomes
f��T1−T2 � �, with f�T�= �sech�T /2��D/2, which is clearly sta-
tionary. The stationary correlator for the effective single site

process is not exponentially decaying and therefore the cal-
culation of the persistence exponent becomes difficult. The
fact that the correlator is not exponentially decaying indi-
cates that the effective single site process is non-Markovian
because of the interaction with nearest neighbor sites. Given
this stationary non-Markovian correlator it then remains to
determine the persistence probability. Two methods have
been developed to address this problem, the independent in-
terval approximation �IIA� �2� and the “series expansion” �9�
approach. In this present article we will use IIA to evaluate
the exponents.

Knowing the information about the persistence exponents
for a diffusive process, it is natural to ask what would be
zero crossing probability when the diffusive process is aug-
mented by an advection term. For a simple diffusive process,
if L is the relevant length scale �say the size of the container�,
then the time to diffuse to a distance L is simply �1
=L2 /2D. If, however, the particles are advected then the time
for them to diffuse through a distance L is �2=L /v, where v
is the advection velocity. The ratio of the two time scales is

�1/�2 = 2S/Re, �2�

where S is the Schmidt number and Re is the Reynolds num-
ber. The Schmidt number is of the order of unity and there-
fore, it follows that the mixing time due to advection is
smaller than the pure diffusive process. We therefore expect
that the exponents will be greater than those for the pure
diffusive process.

The advected passive scalar equation reads

��

�t
+ v��x�,t� · �� � = D�2� �3�

together with

�� · v� = 0. �4�

In one dimension however, the constraint imposed by Eq.
�4� is relaxed, since imposing Eq. �4� in one dimension
would mean that the velocity is constant. Instead, in one
dimension, we will consider a random velocity field drawn
from a Gaussian distribution. In particular, the velocity-
velocity correlation is given by

�v�x,t�v�x�,t��� = 2D1g��x − x���	�t − t�� . �5�*tpdc2@mahendra.iacs.res.in
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The Fourier transform of Eq. �3� in one dimension is

��̃

�t
+ i� dp

2

pṽ�k − p,t��̃�p,t� = Dk2�̃�k,t� �6�

and the velocity-velocity correlation transforms to

�ṽ�k,t�ṽ�k�,t�� = 2Dg̃��k��	�k + k��	�t − t�� , �7�

where �̃�k , t�, ṽ�k , t�, and g̃�k� are the Fourier transform of
��x , t�, v�x , t�, and g�x�, respectively. We choose g̃��k � � as a
power law decaying function, that is,

g̃��k�� =
1

�k��2+�� , �8�

with 0���1. Since for k=0, g��k � � diverges, we shall set
ṽ�0�=0.

In absence of the nonlinear term the Green’s function for
Eq. �6� is

G0
−1 = − i� + Dk2. �9�

The effect of the nonlinearity is to replace the zeroth order
Green’s function by its most general form,

G−1 = − i� + Dk2 + � = G0
−1 + � . �10�

Hence,

G =
G0

1 + G0�
= G0�1 − �G0 + �2G0

2 + ¯ � . �11�

The correlation function ��̃�k ,���̃�−k ,−��� can be written
as

��̃�k,���̃�− k,− ��� � GG

= G0G0 − G0�G0 + G0�2G0
2 + ¯ . �12�

We will determine the self-energy � self-consistently from
the correlation function.

Taking a Fourier transformation of Eq. �6� in time domain
we obtain

− i��̃�k,�� + i� dp

2


d��

2

pṽ�k − p,� − ����̃�p,���

= − Dk2�̃�k,�� , �13�

while the velocity correlation function becomes

�ṽ�k,��ṽ�k�,���� = 2Dg̃��k��	�k + k��	�� + ��� . �14�

We now make a perturbative expansion in � and write

�̃ = �̃0 + ��̃1 + �2�̃2 + ¯ . �15�

Substituting this in Eq. �13�, the zeroth order solution is

�̃0�k,���− i� + Dk2� = �̃0�k,0� ,

�̃0�k,�� =
�̃0�k,0�

�− i� + Dk2�
= G0�k,���̃0�k,0� . �16�

As in the case of normal diffusion we choose random initial
condition �0�k ,0� drawn from a Gaussian distribution with
the correlation

��̃0�k,0�� = 0,

��̃0�k,0��̃0�k�,0�� = 2D2	�k + k�� . �17�

In the first order the solution for �1�k ,�� is

�̃1�k,�� = G0�k,��
− i� dp

2


d��

2

pṽ

��k − p,� − ����̃0�p,���� �18�

while the solution for �̃2 becomes

�̃2�k,�� = G0�k,��
− i� dp

2


d��

2

pṽ

��k − p,� − ����̃1�p,����
= G0�k,���− i� dp

2


d��

2

pṽ�k − p,� − ���G0�p,���

� �− i� dq

2


d��

2

qṽ�p − q,�� − ����̃0�q,����� .

�19�

To evaluate � self-consistently we need to calculate the cor-
relation function ��̃1�k ,���̃1�−k ,−�����̃2�k ,���̃0�−k ,−���.
We assume that the nonlinear contribution to the total
Green’s function G will dominate over the Dk2 term �25�.
Hence, we rewrite Eq. �10� as

G−1 = − i� + � , �20�

which shows that � and � have the same dimension.
The correlation ��̃2�k ,���̃0�−k ,−��� is then

��̃2�k,���̃0�− k,− ���

= − G0�k,����� dp

2


d��

2

pṽ�k − p,� − ���G0�p,���

� �� dq

2


d��

2

qṽ�p − q,�� − ����̃0�q,����

��̃0�− k,− ���� . �21�

A little algebra simplifies the above expression to
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��̃2�k,���̃0�− k,− ���

= − D2G0�k,���� dp

2


d��

2


d��

2


�kp�ṽ�k − p,� − ���ṽ�p − k,�� − ����

�G0�k,���G0�− k,− ��� . �22�

The velocity-velocity correlation gives a 	��−��� which,
after the �� integral becomes

��̃2�k,���̃0�− k,− ���

= − D1D2G0�k,���� dp

2


d��

2


kp

�k − p��2+��G0�p,����
�G0�k,��G0�− k,− �� . �23�

2We now turn our attention to ��̃1�k ,���̃1�−k ,−���
which is given by

��̃1�k,���̃1�− k,− ���

= − G0�k,���� dp

2


d��

2


dq

2


d��

2

pq�ṽ�k − p,� − ���

�ṽ�− k − q,− � − ������̃0�p,����̃0�q,�����
�G0�− k,− �� . �24�

The velocity-velocity correlation introduces a 	�p+q�	���
+��� while the average ��̃0�p ,����̃0�q ,���� gives us
	�p+q�. Integrating over the q and �� variables we obtain

��̃1�k,���̃1�− k,− ���

= D1D2G0�k,���� dp

2


d��

2


p2

�k − p��2+��G0�p,���

�G0�− p,− ����G0�− k,− �� . �25�

The second term in Eq. �12� has the same structure of
��̃1�k ,���̃1�−k ,−��� while the third term has the same
structure as ��̃2�k ,���̃0�−k ,−���. Thus Eq. �23� gives us

�2 �� dp

2


d��

2


kp

�k − p��2+��G0�p,��� �26�

or

� � k�1−��/2, �27�

while from Eq. �25� we obtain

� �� dp

2


d��

2


p2

�k − p��2+��
1

��2 + D2p4 . �28�

Since ���, and neglecting the Dp2 term compared to �,
power counting yields

� �
k�1−��

�
, �29�

which gives us the same result as in Eq. �27�. We remark, in
passing, that the result obtained in Eq. �27� can also be ob-
tained by introducing a noise term in Eq. �6�. It should be
noted that for a Kolmogorov-like velocity field, �=−1 /3.

Before we proceed to calculate the exponent with the ef-
fective equation, we need to clarify the Gaussian nature of �,
since it is crucial for IIA to work. For this we calculate the
correlations �1�k ,���1�−k ,−���1�k ,���1�−k ,−�� and
�2�k ,���0�−k ,−���2�k ,���0�−k ,−��,

��1�k,���1�− k,− ���1�k,���1�− k,− ���

= G0�k,��G0�− k,− ��G0�k,��G0�− k,− ��

��� dp1

2


d�1

2


dp2

2


d�2

2


dp3

2


d�3

2


dp4

2


d�4

2

p1p2p3

��ṽ�k − p1,� − �1�ṽ�− k − p2,− � − �2�

�ṽ�k − p3,� − �3�ṽ�− k − p4,− � − �4��

���̃�p1,�1��̃�p2,�2��̃�p3,�4��̃�p4,�4��� .

Since both ṽ and �̃ are Gaussian we can decompose their
four point correlations as product of two point correlations.
There are two possibilities. In the first case k− p1 couples
with −k− p4 and k− p3 couples with −k− p2, while the second
one is when k− p1 couples with k− p3 and −k− p2 couples
with −k− p4. It can be shown, using the fact that ṽ�0�=0, the
contribution to the four point correlation function from the
second case is zero. In the first case when k− p1 couples with
−k− p4 and k− p3 couples with −k− p2 we note that �̃�p1 ,�1�
couples with �̃�p4 ,�4� while �̃�p3 ,�3� couples with
�̃�p2 ,�2�. In which case the four point correlation function
becomes

��1�k,���1�− k,− ���1�k,���1�− k,− ��� � G0�k,��

�G0�− k,− ��G0�k,��G0�− k,− ���� dp1

2


d�1

2


dp3

2


d�3

2


�
p1

2

�k − p1�2+�

p3
2

�k − p3�2+�G0�p1,�1�G0�− p1,− �1�

� G0�p3,�3�G0�− p3,− �3�� ,

which is clearly the square of the two point correlation func-
tion.

The correlation ��2�k ,���0�−k ,−���2�k ,���0�−k ,−���
is
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��2�k,���0�− k,− ���2�k,���0�− k,− ���

= G0�k,��G0�k,�� � dp1

2


d�1

2


dp2

2


d�2

2


dp3

2


d�3

2


dp4

2


d�4

2


� p1ṽ�k − p1,� − �1�G0�p1,�1�p2ṽ

��p1 − p2,�1 − �2��0�p2,�2�

�p3ṽ�k − p3,� − �3�G0�p3,�3�p4ṽ

��p3 − p4,�3 − �4��0�p3,�4��0�− k,− ���0�− k,− �� .

Now �0�p2 ,�2� couples with �0�−k ,−�� while �0�p3 ,�3�
couples with the other �0�−k ,−�� giving
G0�k ,��G0�−k ,−�� in both cases and p2=k, p3=k, �2=�,
and �3=�. Hence, the four point correlation becomes

��2�k,���0�− k,− ���2�k,���0�− k,− ���

� G0�k,���� dp1

2


d�1

2


kp1

�k − p1�2+�G0�p1,�1��
�G0�k,��G0�− k,− ��

� �� dp3

2


d�3

2


kp3

�k − p3�2+��G0�p3,�3�

�G0�k,��G0�− k,− �� ,

which is once again the square of the two point correlation
function. Since the fact that the four point correlation func-
tion for �̃ is simply the square of the two point correlation
function, we conclude that the field �̃ remains Gaussian.
This can be traced back to the fact that the probability dis-
tribution for �̃ and ṽ are Gaussian. We have also numerically
found out the probability distribution P��� of ��0, t� by
simulating Eq. �3�. The result is shown in Figs. 1 and 2,
which indicates that P��� is Gaussian as anticipated.

Now, the persistence probability is simply the probability
that the local field ��x , t� has not changed sign for any x.
Alternatively, since it is for any x, the question can also be
framed in terms of the zero crossing probability of ��0, t�
defined as ��0, t�=	 dk

�2
� �̃�k , t�. It therefore suffices for IIA
to work if the distribution of ��0, t� is Gaussian. In Figs. 1
and 2, Eq. �3� has been simulated in the Fourier space and
then ��0, t� is obtained numerically integrating over the k
space.

Thus, the effect of the nonlinearity in O��2� is to replace
the term Dk2 by an effective diffusion term that is �0k�. We
can, therefore, rewrite Eq. �6� as

��̃

�t
= − �0k��̃ �30�

with �= �1−�� /2.
The two time correlation function ��̃�k ,���̃�−k ,−��� be-

comes

��̃�k,t1��̃�− k,t2�� = e−�0k��t1+t2�. �31�

The correlation C�t1 , t2�����x , t1���x , t2�� for a fixed x �say
x=0� is given by

C�t1,t2� =� dk��̃�k,t1��̃�− k,t2�� =
1

�
��0�t1 + t2��−1/�.

�32�

It is important to ask how far in wave number space does
the form of Eq. �30� extend given the fact that Eq. �27� is a
low momentum result. We note that from Eq. �23� and Eq.
�25� the amplitude of � is 
D1D2 /D, which determines the
range of wave number space in which the contribution of Eq.
�27� will dominate the background rate given by Dk2. For

D1D2 /D of O�1� there will be significant range of k values

FIG. 1. Plot of probability dis-
tribution of ��0, t�, P���. The
square points are for 10 time steps
while the circle points are for 100
time steps. A configuration of 105

has been done to obtain the data
for 10 time steps while a configu-
ration of 104 has been done to ob-
tain the data for 100 time steps.
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for which k� will dominate. Looking at Eq. �31�, the domi-
nant contribution to the integral comes from low values of k
and hence the result found in Eq. �32� will dominate and give
the asymptotically correct behavior.

An alternative explanation to the problem can be given by
considering the complete correlator containing the Dk2 term
which is

��̃�k,t1��̃�− k,t2�� = e−�0k�t2�1+t1/t2�−Dk2t2�1+t1/t2�.

Keeping the ratio t1 / t2 fixed and considering t1 and t2 large it
is clear that small k values will contribute, or else the corre-
lation would decay to zero. Hence, asymptotically Eq. �32�
would give the correct result.

Define the normalized variable X�t�=��x , t� /
��2�x , t��.
Then, the correlation �X�t1�X�t2�� in terms of C�t1 , t2� be-
comes

C̄�t1,t2� � �X�t1�X�t2�� = C�t1,t2�/
C�t1,t1�C�t2,t2�

= � 2
t1t2

�t1 + t2�
�1/�

. �33�

Making the usual transformation ln t=T, Eq. �33� becomes

C̄�T1,T2� = � 2

e1/2�T1−T2� + e−1/2�T1−T2��1/�

= �sech
T1 − T2

2
��1/�

� f��T1 − T2�� . �34�

The correlator in Eq. �34� is now stationary since it depends
only on the difference �T1−T2� and non-Markovian.

To determine the persistence exponent we adapt the
method of IIA as explained in Ref. �2�. The basic assumption
is that the intervals between the successive zeros of X�T� are

statistically independent. We will briefly outline the method
here. The first step is to construct the variable 
=sgn�X�.
The correlator A�T�= �
�T�
�0�� is given by

A�T� =
2



arcsin�f�T�� . �35�

If pn�T� is the probability that an interval of size T contains n
zeros of X�T�, P�T� is the distribution of intervals, and Q�T�
is the probability that the left and right of the interval con-
tains no zeros, then

pn�T� = �T�−1�
0

T

dT1dT2 . . . dTnQ�T1�

�P�T2 − T1� . . . P�Tn − Tn−1�Q�T − Tn� �36�

together with

A�T� = �
n=0

�

�− 1�npn�T� , �37�

where �T�=−2 /A��0�. Taking a Laplace transform of Eq.

�36� and using the fact that P̃�s�=1−sQ̃�s�, P̃�s� and Q̃�s�
being the Laplace transform of P�T� and Q�T�, respectively,
we arrive at

pn�s� =
1

�T�s2 �1 − P̃�s��2P̃n−1�s� for n � 1

=
1

�T�s2 ��T� − 1 + P̃�s�� for n = 0. �38�

Finally, substituting Eq. �38� into Eq. �37� and carrying

out the summation over n yields P̃�s� in terms of Ã�s�, that
is,

FIG. 2. Plot of the probability
distribution ln�P���� vs �2. The
square points are 10 time steps
while the circle points are 100
time steps. A configuration of 105

has been done to obtain the data
for 10 time steps while a configu-
ration of 104 has been done to ob-
tain the data for 100 time steps.
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P̃�s� = �2 − F�s��/F�s� , �39�

where F�s� is given by

F�s� = 1 +
�T�s

2
�1 − sÃ�s�� , �40�

Ã�s� being the Laplace transform of A�T�. For large T,
p0�T��e−�T means that the exponent � is given by the pole

of P̃�s� or the zero of F�s�.
In our present case, the correlator A�T� is given by

A�T� =
2



arcsin�sech�T/2��1/�, �41�

which gives �T�=

4�. The function F�s� has the form

F�s� = 1 + 

�s
1 −
2



s�

0

�

dTe−sT arcsin��sech�T/2��1/��� .

�42�

The zeros of the function F�s� are determined numeri-
cally. As a check for numerical verification we took the val-
ues �=−3, −1, and −1 /3, which corresponds to 1 /�=1 /2, 1,
and 3 /2, respectively. These values of 1 /� correspond to the
normal diffusion in D=1,2, and 3, respectively. The expo-
nents determined numerically using these three values of
1 /� agrees well with the exponents reported in Ref. �2�.
Finally, we have taken various values of � between 0 and 1
and have obtained the roots of F�s� numerically. The ob-
tained values of the exponents are listed in Table I.

In conclusion, we have considered the persistence phe-

nomenon in advected passive scalar equation. In one dimen-
sion the velocity is drawn from a random distribution with
�ṽ�k ,��ṽ�−k ,−�����k�−�2+��. The effect of the nonlinearity
is to replace the zeroth order Green’s function by its general
form G−1=−i�+Dk2+�, with ��k�. We have determined
the scaling form of � using self-consistent theory, which
gives �= �1−�� /2. Thus, in O��2�, the effect of the nonlin-
earity is to change the original dynamics with an effective
equation where the diffusion term due to molecular viscosity
is replaced by a term of the form �0k�. We have calculated
the two time correlation for the effective process which has
the form �sech�T /2��1/�. Finally, we have used IIA to calcu-
late the persistence exponents.
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TABLE I. The values of the exponents.

� 1 /�=2 / �1−�� �

0.1 2.22 −0.29341041

0.2 2.50 −0.312802995

0.3 2.86 −0.336107784

0.4 3.33 −0.364881293

0.5 4.00 −0.401726555

0.6 5.00 −0.451442543

0.7 6.67 −0.524308324

0.8 10.00 −0.64860239
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