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The exact expression for the density matrix of the kink ground state of the ferromagnetic XXZ chain is
obtained. Utilizing this, we exactly calculate various correlation functions such as the longitudinal and trans-
verse spin-spin correlation functions, and the ferromagnetic and antiferromagnetic string formation probabili-
ties. The asymptotic behaviors of these correlation functions are also analyzed. As a consequence, we find that
the spin-spin correlation functions decay exponentially for large distances, while the string formation prob-
abilities exhibit Gaussian decay for large strings. We also evaluate the entanglement entropy, which shows
interesting behaviors due to the lack of the translational invariance of the state.
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I. INTRODUCTION

The effects of quantum fluctuations of interacting quan-
tum systems can be investigated by studying the correlation
functions or quantifying the entanglement of the system,
which are currently paid much attention. The exact evalua-
tion of the correlation functions, however, is still a challeng-
ing problem even when models are completely integrable.
The spin-1 /2 XXZ model in one dimension is one of the
most fundamental models, which can be exactly solved by
the Bethe ansatz. As concerns for the correlation functions in
the antiferromagnetic ground state, a few exact results are
known so far: several short distance spin-spin correlation
functions �see Ref. �1�, and references therein� and the fer-
romagnetic string formation probability �which is the prob-
ability to find a ferromagnetic string with certain length� for
�=1 /2 ��: anisotropy parameter� �2,3�.

In this paper, we intensively consider the correlation func-
tions for the ferromagnetic regime of the XXZ chain. In this
regime, it has been well-known that there are two transla-
tionally invariant ground states up and down, the state with
all spins up and the state with all spins down. In addition to
these trivial ground states, two classes of nontranslationally
invariant ground states kink and antikink were found in Ref.
�4� �see also Ref. �5� for finite XXZ chain with boundary
magnetic field�. Though it is not obvious that the kink is the
ground state in the infinite lattice limit, the authors in Ref.
�4� proved it under the assumption that the ground states
should be “frustration free,” i.e., minimize not only the en-
ergy of the total Hamiltonian, but also the energy of the local
Hamiltonian. Furthermore, it was shown that the “frustration
free” ground states up, down, kink, and antikink are the com-
plete set of the ground states �6,7�. In Ref. �8�, the exact
value of the spectral gap was obtained and shown to be in-
dependent of the reference ground state.

More recently, from the interest in the correspondence
between the ground state of the ferromagnetic XXZ chain and
the “quantum” Hamiltonian of the crystal melting model,
some special correlation functions such as the magnetization

and the longitudinal spin-spin correlation function of the
kink ground state were exactly calculated �9�. Utilizing the
generating function developed in Ref. �4�, in this paper, we
derive the exact expression of the density matrix for the kink
ground state of the ferromagnetic XXZ chain. By using this,
various correlation functions can be systematically calcu-
lated for arbitrary interaction strengths and for arbitrary dis-
tances. The following correlation functions are particularly
calculated here: the transverse and longitudinal spin-spin
correlation functions and the ferromagnetic �antiferromag-
netic� string formation probabilities �10� which are the prob-
abilities of finding a ferromagnetic �antiferromagnetic� string
in the kink ground state. The entanglement entropy of the
system is also evaluated �see Ref. �11� for a finite XXZ chain
with boundary magnetic field�. Analyzing the asymptotic be-
haviors of these correlation functions, we find that the spin-
spin correlation functions exponentially decay for the large
distances. On the other hand, both the ferromagnetic and the
antiferromagnetic string formation probabilities exhibit
Gaussian decay for large strings. Moreover, their exact am-
plitudes are systematically determined.

This paper is organized as follows. In the next section, the
kink ground state of the infinite XXZ chain in the ferromag-
netic regime is considered. By using the generating function,
the exact expression for the density matrix is derived. From
this, we concretely analyze various correlation functions in
Sec. III. The asymptotic behavior of the correlation functions
are discussed in Sec. IV. Section V is devoted to a conclu-
sion.

II. DENSITY MATRIX OF THE KINK GROUND STATE

In this section, we derive the exact expression for the
density matrix of the infinite ferromagnetic XXZ chain in the
kink ground state. The Hamiltonian is defined by

H = − �
m�Z

��m
x �m+1

x + �m
y �m+1

y + ���m
z �m+1

z − 1�� , �1�

where �m
� , �=x ,y ,z are the Pauli matrices acting on the mth

site and � is the anisotropy parameter. We shall consider the
ferromagnetic regime ��1. Parametrizing � as
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� =
q1/2 + q−1/2

2
, �2�

��1 corresponds to 0�q�1.
It is known that there are infinitely many zero energy kink

ground states interpolating between spin up at −� and spin
down at � �4,5�. A kink ground state is the superposition of
kinks which have the same center. The center of the kink is
defined as the half integer-valued position where the number
of up spins on the right of it is equal to the number of down
spins on the left of it. Denote the kink ground state whose
center is at j− 1

2 �j�Z� by �� j�. Any �� j� can be extracted
from the following generating function �4�:

���z�� = �
x�Z�0

��↑�x + z−1q−1/2�1/2+x��↓�x� � �
y�Z	0

��↓�y

+ zq1/2�1/2+y��↑�y� . �3�

�� j� is the coefficient of zj of the expansion of ���z��, i.e.,

���z�� = �
j�Z

zj�� j� . �4�

Let us calculate the form factors

k

�	
j=1

n

Exj


j�
j

l

ª

��k�	
j=1

n

Exj


j�
j��l�

��k��k�1/2��l��l�1/2 , �5�

where �
 j
, �
 j�
� �+,−
 and Ej
��= �1�� j

z� /2, Ej
��=� j

�

= �� j
x� i� j

y� /2. xj is the position of the site where the opera-

tor Exj


j�
j acts on, and is assumed to be xj�xk for j�k. First
we calculate the norm ��n ��n� appearing in the denomina-
tor of Eq. �5�. It can be obtained by calculating ���z� ���z��:

���z����z�� = �− wq1/2;q���− w−1q1/2;q��

=
1

�q;q��
�

j=−�

�

wjqj2/2, �6�

where w=z2 and �a ;q��ª	 j=0
� �1−aqj�. In the second equal-

ity, we have used the Jacobi triple product identity

�q;q���− wq1/2;q���− w−1q1/2;q�� = �
j=−�

�

wjqj2/2. �7�

Noting ���z� ���z��=� j=−�
� wj�� j �� j�, we have

�� j�� j� =
qj2/2

�q;q��

. �8�

Next we compute ��k �	 j=1
n Exj


j�
j ��l� appearing in the nu-

merator of Eq. �5�. Note that ��k �	 j=1
n Exj


j�
j ��l�=0 unless l
−k=
, where


 ª ��j ;�
 j,
 j�� = �+ ,− �
 − ��j ;�
 j,
 j�� = �− , + �
 . �9�

Then one can see

���z��	
j=1

n

Exj


j�
j���z�� = �
i

wi/2���i−
�/2�	
j=1

n

Exj


j�
j���i+
�/2� ,

�� j�Z� ª 0. �10�

By induction, one can show that the following holds:

���z��	
j=1

n

Exj


j�
j���z��

=
1

�q;q��
�

j=−�

�

wjqj2/2	
j=1

n

�w� j��
j�
j��
k=0

�

�− w�k

��
j=1

n
� j

k+n−1

	
l�j

n

�� j − �l�

, �11�

where � j =q1/2+xj and �++ �=1, �−−�=0, �+−�= �−+ �= 1
2 �see

the Appendix for the proof of Eq. �11��. Comparing Eqs. �10�
and �11�, we obtain

���i−
�/2�	
j=1

n

Exj


j�
j���i+
�/2�

=
1

�q;q��
	
j=1

n

�� j��
j�
j��
k=0

�

�− 1�k

��
j=1

n
� j

k+n−1

	
l�j

n

�� j − �l�

q�i/2 − k − �m=1
n �
m� 
m��2/2. �12�

Combining Eqs. �5�, �8�, and �12�, we finally arrive at

�i−
�/2
�	

j=1

n

Exj


j�
j

�i+
�/2

= 	
j=1

n

�� j��
j�
j��
k=0

�

�− 1�k

��
j=1

n
� j

k+n−1

	
l�j

�� j − �l�
q�i/2 − k − �m=1

n �
m� 
m��2/2−�i2+
2�/8.

�13�

In particular, when the operator 	 j=1
n Exj


j�
j preserves the total
spin, i.e., 
=0, and the center of the kink is at −1 /2, i.e., i
=0, the density matrix elements of the kink ground state
whose center is located at −1 /2 is given by

�	
j=1

n

Exj


j�
j
 ª

0

�	
j=1

n

Exj


j�
j

0

= 	
j=1

n

�� j��
j�
j� � �
k=0

�

�− 1�k

��
j=1

n
� j

k+n−1

	
l�j

n

�� j − �l�

q�k + �m=1
n �
m� 
m��2/2. �14�
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III. CORRELATION FUNCTIONS

Here we analyze several crucial correlation functions: the
magnetization, the longitudinal and transverse spin-spin cor-
relation functions, and the ferromagnetic �antiferromagnetic�
string formation probability which is the probability finding
a ferromagnetic �antiferromagnetic� string in the kink ground
state. At the end of this section, the entanglement entropy of
the system is also considered. These correlation functions are
directly calculated by the density matrix �14� derived in the
preceding section. Note that the correlation functions dis-
cussed here are for the kink ground state whose center is
located at −1 /2. Other cases can also be treated by using Eq.
�13�. Let us list the explicit expressions of these correlation
functions.

�i� Magnetization �9�:

��x
z� = 1 − 2�

k=0

�

�− 1�kqk2/2qk�x+1/2�. �15�

�ii� Longitudinal spin-spin correlation function �9�:

��x1

z �x2

z � = 1 + 2�
k=0

�

�− 1�k+1q�k + 1�2/2

�
�qx1+1/2 + qx2+1/2��q�k+1��x1+1/2� − q�k+1��x2+1/2��

qx1+1/2 − qx2+1/2 .

�16�

�iii� Transverse spin-spin correlation function

��x1

+ �x2

− � = q�1/2��x1+1/2�q�1/2��x2+1/2��
k=0

�

�− 1�kq�k + 1�2/2

�
q�k+1��x1+1/2� − q�k+1��x2+1/2�

qx1+1/2 − qx2+1/2 . �17�

�iv� Ferromagnetic string formation probability:

Pf�x,n� ª �Ex
++

¯ Ex+n−1
++ �

= qnx+n2/2�
k=0

�

�− 1�kq�k + n�2/2�
j=1

n
q�x+j−1/2�k

	
l�j

�1 − ql−j�
.

�18�

�v� Antiferromagnetic string formation probability:

Pa�x,n� ª �Ex
++Ex+1

−−
¯ Ex+n−1

�� � + �Ex
−−Ex+1

++
¯ Ex+n−1

�� � = �
k=0

�

�− 1�k�
j=1

n
q�x+j−1/2�k

	
l�j

�1 − ql−j�
q�n/2��x+n/2�

� ��q�x+n/2�/2+�k + �n + 1�/2�2/2 + q�−x−n/2�/2+�k + �n − 1�/2�2/2� n: odd,

�q−n/2+�k + n/2�2/2 + qn/2+�k + n/2�2/2� n: even
� �19�

Figure 1 shows the magnetization ��x
z�. One sees that the

sign of the magnetization changes between x=−1 and x=0,
which corresponds to the fact that the center of the kink is
located at x=−1 /2. One can also see that most of the spins
are aligned up for x�−1 and aligned down for x�1. As
decreasing of q �or equivalently as increasing of the aniso-

tropy parameter ��, the slope of the magnetization curve
around x=0 increases, and eventually will be infinite at the
Ising limit q=0 ��=��.

The longitudinal and the transverse spin-spin correlation
functions

Czz�x1,x� ª ��x1

z �x
z� − ��x1

z ���x
z� �20�

and ��x1

+ �x
−� are depicted in Fig. 2 for the case x1=−10 and

various anisotropies. Both the correlation functions have a
peak around x=0. This characteristic behavior reflects the
fact that the sign of the magnetization changes around x=0
and almost all spins are aligned at �x��1. These correlation
functions decay exponentially for �x��1 �see Sec. III�.

The ferromagnetic �antiferromagnetic� string formation
probability Pf�x ,n� �Pa�x ,n�� is the probability that the spins
located in the region �x ,x+n−1� form a ferromagnetic �an-
tiferromagnetic� string. These correlation functions are de-
picted in Figs. 3 and 4, respectively. From Figs. 3�b� and
4�b�, one can see Pf�x ,m�� Pf�x ,n� and Pa�x ,m�� Pa�x ,n�
for m�n, as expected. As shown in Sec. IV, both the string

-1

-0.5

0

0.5

1

-40 -20 0 20 40

M
ag

ne
tiz

at
io

n

x

q=0.1
q=0.7
q=0.9

FIG. 1. �Color online� Magnetization ��x
z�.
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formation probabilities Pf�x ,n� and Pa�x ,n� exhibit Gaussian
decay for large strings n�1. As the anisotropy parameter
becomes larger, the effect of Ising interaction becomes stron-
ger than that of quantum fluctuation. In the limit q→0 ��
→��, the spins for x�0 and x�0 are all aligned up and
down, respectively �see Fig. 1�. This is reflected in the slope
in Fig. 3�a� becoming steeper, and the peak in Fig. 4�a� be-
coming sharper, as the anisotropy parameter becomes larger.

One can also calculate the entanglement entropy S�x ,n�,
the von Neumann entropy of a subsystem �x ,x+1, . . . ,x+n
−1�. It is defined as

S�x,n� = − tr��x,n�log2 ��x,n� , �21�

where ��x ,n� is the reduced density matrix defined by trac-
ing out the degrees of freedom of the environment outside
the subsystem �x ,x+1, . . . ,x+n−1�:

��x,n� = trE��0���0� = �P
1,. . .,
n


1�,. . .,
n��x,n��
j,
j�=�, �22�

where

P
1,. . .,
n


1�,. . .,
n��x,n� =�	
j=1

n

Ex+j−1

j�
j 
 . �23�

Shown in Fig. 5 is the entanglement entropy. As x→ ��, the
entanglement entropy of the kink ground state is asymptoti-
cally 0, which is nothing but that of the ferromagnetic
ground state up and down. In Fig. 5�a�, we observe an in-

triguing phenomena that the peak of the entanglement en-
tropy splits into two, as decreasing the parameter q �or
equivalently as increasing the anisotropy parameter ��. On
the other hand, for fixed q, the same behavior can also be
observed in Fig. 5�b� as increasing the length of the sub-
chain.

IV. ASYMPTOTICS

In this section, the asymptotic behaviors of the correlation
functions derived in the preceding section are analyzed. Let
us first consider the spin-spin correlation functions. From
Eqs. �15� and �16�, we find

��x2

z � ——→
x2→+�

− 1 + 2qx2+1,

��x1

z �x2

z � ——→
x2→+�

− ��x1

z �

+ �2 + 4�
k=0

�

�− 1�k+1qk2/2+k�x1+3/2��qx2+1. �24�

Thus we obtain

��x1

z �x2

z � − ��x1

z ���x2

z � � Azz�x1�qx2+1 for x2 � 1,
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FIG. 2. �Color online� Top: The longitudinal spin-spin correla-
tion functions Czz�x1 ,x�ª��x1

z �x
z�− ��x1

z ���x
z� for x1=−10 and −10

�x�50. Bottom: The transverse correlation functions ��x1

+ �x
−� for

x1=−10 and −10�x�40.
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FIG. 3. �Color online� The ferromagnetic string formation prob-
ability �FSFP� Pf�x ,n� for n=4 and various anisotropies q �a�, and
for q=0.9 and various lengths n �b�.
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Azz�x1� = 4�
k=0

�

�− 1�k�1 − qk�qk2/2+k�x1+1/2�. �25�

This shows that the longitudinal spin-spin correlation func-
tion decays exponentially. The asymptotics of the transverse
spin-spin correlation function �17� is also evaluated in the
same manner:

��x1

+ �x2

− � � A+−�x1�q1/2�x2+1/2� for x2 � 1,

A+−�x1� = �
k=0

�

�− 1�kq�k + 1�2/2+�k+1/2��x1+1/2�, �26�

which shows that the transverse spin-spin correlation func-
tion also exhibits exponential decay.

Now, let us analyze the asymptotics of the string forma-
tion probabilities �18�. Using the identity

�
j=1

n
1

	
l�j

n

�1 − ql−j�

= 1, �27�

Pf�x ,n� can be rewritten as

Pf�x,n� = qnx+n2
�1 + B�n�� ,

B�n� = �
k=1

�

�− 1�kqk2/2+�n+x−1/2�k�
j=1

n
qjk

	
l�j

n

�1 − ql−j�

. �28�

Since

�B�n�� � �
k=1

�

qk2/2+�n+x−1/2�k�
j=1

n
qjk

	
l�j

�1 − ql−j�

� �
k=1

�

q�n+x−1/2�k�
j=1

n
1

	
l�j

�1 − ql−j�
= �

k=1

�

q�n+x−1/2�k,

�29�

then

Pf�x,n� � qnx+n2
for n � 1. �30�

This means that the ferromagnetic string formation probabil-
ity shows Gaussian decay for large strings, which was indi-
cated in Ref. �12�. Note here that similar Gaussian behaviors
are also seen in the antiferromagnetic ground state �3,13,14�.

Finally we explicitly write down the asymptotics of the
antiferromagnetic string formation probability �19�:
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FIG. 4. �Color online� The antiferromagnetic string formation
probability �ASFP� Pa�x ,n� for n=4 and various anisotropies q �a�
and for q=0.9 and various lengths n �b�.
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FIG. 5. �Color online� The entanglement entropy S�x ,n� for n
=8 and various anisotropies q �a� and for q=0.7 and various lengths
n �b�.
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Pa�x,n� � qnx/2+3n2/8

� ��qx/2+�4n+1�/8 + q−x/2+�−4n+1�/8� , n:odd,

�q−n/8 + qn/8� , n:even
�
�31�

for n�1.

V. CONCLUSION

In this paper, the density matrix in the kink ground state
of the ferromagnetic spin-1 /2 XXZ chain has been exactly
calculated. From this expression, the longitudinal and trans-
verse spin-spin correlation functions, and the ferromagnetic
and the antiferromagnetic string formation probability for ar-
bitrary distances and arbitrary interaction strengths have
been systematically calculated. Analyzing them, we find that
the spin-spin correlation functions decay exponentially for
large distances, while the string formation probabilities show
Gaussian decay for large strings. We have also calculated the
entanglement entropy and observed the change of shape with
the increase of the anisotropy parameter or the length of the
subchain.

There are several directions to which the systematic study
of the correlation functions of the kink ground state may be
generalized. The extension of the analysis to higher spins
should be a straightforward exercise. The kink ground states
can also be generalized to higher dimensions as interface
states. Another type of generalization is to a droplet state
which has a different topological structure, formed by com-
bining a kink and antikink state. It is interesting to extend the
analysis to these states �see Refs. �15–17� for studies on
these states�.
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APPENDIX: PROOF OF EQ. (11)

Let us show Eq. �11�. Using Eq. �3�, one obtains

���z��	
j=1

n

Exj


j�
j���z��

= 	
j=1

n
1

1 + w� j
	
j=1

n

�w� j��
j�
j��− wq1/2;q���− w−1q1/2;q��

= gw
n ��1, . . . ,�n�	

j=1

n

�w� j��
j�
j�
1

�q;q��
�

j=−�

�

wjqj2/2,

gw
n ��1, . . . ,�n� ª 	

j=1

n
1

1 + w� j
. �A1�

Expressing the Laurent expansion of gw
n ��1 , . . . ,�n� as

gw
n ��1, . . . ,�n� = �

j=0

�

wj� j
�n���1, . . . ,�n� , �A2�

we find � j
�n���1 , . . . ,�n� satisfies the following recursion rela-

tion:

�k
�n+1���1, . . . ,�n+1� = �

j=0

k

�− 1�k−j�n+1
k−j � j

�n���1, . . . ,�n� .

�A3�

To prove Eq. �11� is to show that � j
�n���1 , . . . ,�n� is

� j
�n���1, . . . ,�n� = �− 1� j�

l=1

n
�l

j+n−1

	
i�l

��l − �i�
. �A4�

Let us show this by induction. It is obvious that Eq. �A4�
holds for n=1. Suppose it holds for n. Then from Eq. �A3�,
�k

�n+1���1 , . . . ,�n+1� can be calculated as follows:

�k
�n+1���1, . . . ,�n+1� = �− 1�k�n+1

k �
j=0

k

�
l=1

n

�l
n−1� �l

�n+1
� j 1

	
i=1
i�l

n

��l − �i�

= �− 1�k�
l=1

n
�l

n+k − �l
n−1�n+1

k+1

	
i=1
i�l

n+1

��l − �i�

= �− 1�k�
l=1

n+1
�l

n+k

	
i=1
i�l

n+1

��l − �i�

. �A5�

In the last equality, we used

�
j=1

n
� j

n−2

	
k�j

�� j − �k�
= 0 for n 	 2. �A6�

From Eq. �A5�, we can see Eq. �A4� holds for n+1, which
means Eq. �A4� holds for any n. Thus, from Eqs. �A1�, �A2�,
and �A4�, we obtain Eq. �11�.
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