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We study the energy balance in a linear stochastic dynamics with delay under the impact of an external
periodic force. The linearity of the model, in combination with a response function method, enables us to
perform detailed analytic calculations of each term in the energy balance equation. From this, we discuss
thermodynamics and entropy production rate o. With use of the delay time 7 and strength of the external force
Ay, o is simply expressed as 0'=0'D’1(7')+A%7](T), with both op;(7) and 7(7) positive definite. We thus
conclude that even when there is no external force (A3=0), the entropy production rate o=07, 1(7) is positive,
meaning that the delay force produces work, which is dissipated into a reservoir. Numerical experiments are

performed to confirm theoretical results.
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I. INTRODUCTION

Recently there has been considerable interest in some sto-
chastic systems, whose dynamics are determined by both the
present state x(z) and the state x(r—7) in the past, with
7 (>0) denoting the delay time. Usually this delay is as-
cribed to a finite speed of information transmission and it is
the reason why the effect of delay has been intensively stud-
ied in biological systems, i.e., as models to describe postural
sway [1], visual feedback [2], and brain activity [3], to men-
tion a few. Delay is also studied in physical systems [4] and
to analyze time series [5].

A delay system can show (Hopf) instability for large 7
even for a linear system [6]. A strong non-Markovian prop-
erty may be roughly considered as representing infinitely
many degrees of freedom and our tools to study non-
Markovian processes are limited, compared with Markovian
processes for which many tools, such as the Fokker-Planck
equation and master equation, are fully developed and uti-
lized [7,8].

Stochastic systems with delay are thus offering many
problems, letting aside applications to biological and physi-
cal systems [1-5], interesting from a viewpoint of math-
ematical physics. Here we consider a stochastic system with
delay from the point of view of the energy balance, which
seems to have gathered little attention at the moment.

In this paper we show that the delay force or the delayed
feedback, which most often is the origin of the delay force,
yields dissipation. This is a rather vague statement and in the
remainder of this paper we show some detailed calculations
to prove this for a simple stochastic system and give its im-
plication. We only note here that the delay force cannot be
derived from a potential function and this prevents the sys-
tem from reaching the equilibrium state even if the system
satisfies the fluctuation-dissipation theorem [7,8].

First we introduce the model, whose dynamics is de-
scribed by a linear Langevin equation with delay [5],

dx(t)/dt = — ax(t) — bx(t — 7) + Ay cos(wpt) + f(£), (1)
with the Gaussian random force f(r) satisfying the relation
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)y =0, (fO)ft")=qdt—-1"). (2)

Here ¢/2 may be considered as the temperature 7' of the
system. 7 (>0) stands for the delay time and the two con-
stants a,b are hereafter assumed to be positive as in the other
studies of Eq. (1) with A;=0 [9,10].

At this point let us give several general comments on the
model. The system described by Eq. (1) may be considered
as the simplest system with feedback control and periodical
driving force [5]. In Eq. (1), the effects of inertia are ne-
glected in an overdamping limit under an adiabatic approxi-
mation [7,8]. Recently some works have included effects of
inertia together with delay [11]. We note in advance that the
energy balance developed in Sec. II is applicable also in this
case, with a minor modification for internal energy E [see
Eq. (6) below], to include a kinetic contribution [12].

If we replace the linear term —ax(¢) by a nonlinear one
ax(t)—x(t)?, we have a bistable system with delay feedback,
which has focused considerable attention in relation to delay
effects on barrier crossing [13] or dynamics in a vertical
cavity surface emitting laser with optoelectronic feedback
[14].

Since the above model is linear, some analytic results are
known [9,10], e.g., the stationary distribution function p,(x)
and the time correlation function ¢(r)={x(¢')x(t' +1)),, with
(-++),, denoting an average in the stationary state attained
when Ay=0 [15]. These are of considerable importance for
deepening our understanding of the effects of delay in gen-
eral and also for studying nonlinear delay systems since ana-
lytic results for a linear system are useful for perturbational
approaches [16,17].

In view of the many studies on the thermodynamics of
Markovian stochastic systems in connection with, e.g., motor
protein [18,19] and fluctuation theorem [20,21], it seems im-
portant to also investigate the thermodynamics of systems
with delay. The purpose of this paper is to study energy
balance and entropy production rate o for the system de-
scribed by Egs. (1) and (2).

Since the model (1) is linear, we obtain ¢ analytically and
our result clearly shows that even when there is no external
force (Ay=0), the entropy production rate o=o07p, ;(7) is posi-
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tive, meaning that the delay force produces work, which is
dissipated into the reservoir, and that p(x) (see above) is a
nonequilibrium distribution function. This is in sharp con-
trast with the case 7=0 or »=0 in Eq. (1) where o=0 and the
stationary state is an (Ornstein-Uhlenbeck) equilibrium state.
In passing we note that Eq. (1) has been mainly studied in
relation to a delay Fokker-Planck equation [17]. Here we use
a response function method which is exact for a linear sys-
tem and convenient for studying a system under an external
force.

This paper is organized as follows: In Sec. II energy bal-
ance is discussed based on Egs. (1) and (2). In Sec. IIT we
calculate each contribution to the energy balance equation
using the method of response function. We show that we can
calculate the entropy production rate o exactly for the system
and that it is positive definite. In Sec. IV the theoretical pro-
duction rate o is compared with numerical experiments. The
final section is devoted to the summary and conclusion.

II. ENERGY BALANCE

We now consider the energy balance of our system based
on Eq. (1), which is expressed in a form more convenient to
discuss energy balance and the entropy production rate, as

dx(t) = [ ax(t) — bx(t — 7) + Ay cos(wor) Jdt + \gdw(7),
(3)

(dw(1))=0, (dw(ndw(t')y=dts(t-1"). 4)

In order to consider the energy balance of the system [12],
we multiply dx(z) on both sides of Eq. (1), leading to

ax(t) o dx(t) = [— dx/dt + f(1)] o dx(t) — bx(t — 7) o dx(z)
+ A cos(wyt) © dx(1), (5)

where ° means that the multiplication is in the Stratonovich
sense [8].

First we define dE, the increment of the internal energy E,
by

dE(1) = ax(t) ° dx(¢) = d[ax(t)*/2]. (6)

The work dW done on the system by the external force
A cos(wyt) is given by

dW(r) = A, cos(wt) - dx(t)
=A cos(wyt) - {[— ax(t) — bx(t - 7)
+ Ay cos(wqf) 1dr + Ngdw(r)}. (7)

Since we consider that Eq. (1) is derived under the over-
damped approximation [8], the heat from a reservoir dQ is
given by [19,21]

dQ =[f(tr) — dx(t)/dt] o dx(t) = [ax(t) + bx(t — 7)
— Ay cos(wyt)] o dx(t). (8)

That is, Eq. (8) represents the work done by the random
force and the frictional force.

Finally, the work dWp(t) done by the delay force
—bx(t—17) is introduced as
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dWp(t) == bx(t— 7)o dx(t) == bx(t — 7) - dx(r), (9)

where the difference between ° and the Ito integral - vanishes
so long as 7 is nonzero [8]. From the above, Eq. (5) is re-
written as

dE =dQ +dW + dW),, (10)

which may be regarded as the first law of thermodynamics
with the extra work dWp, due to the delay force.

Later we will study the entropy production rate and, for
convenience of discussion there, let us consider the entropy
increment in small time dt. Since —dQ represents the dissi-
pation or heat given to the reservoir, the entropy increment
dSy in the reservoir may be given by

dSg=-dQ/T=(dW +dWp - dE)/T. (11)

The entropy increment dSg in the system in a stationary state
[21,22] is given by

dSg=—1Inp[x(1) + dx(t)] + In pg[x(1) ], (12)

where p,[x(1)] denotes the distribution function of x(¢) in a
stationary state. From the above we define the total entropy
increment dS by

dS = dSg + dSp. (13)

III. RESPONSE FUNCTION AND ENTROPY
PRODUCTION RATE

Stochastic dynamics in delay systems has been mainly
studied until now theoretically via the delay Fokker-Planck
equation (FPE) [17]. As shown shortly, the method of re-
sponse function is powerful and we apply it to the energy
balance equation (10) in a stationary state, where the average
(x(1)),, becomes time periodic due to an external force,
(x(1))=(x(t+ 7)), With 75=277/ wyy.

A. Rresponse function x(¢)
We define the Laplace transform g(s) of g(z) by
g(s) = f dtg(t)exp(= st). (14)
0

Since we are interested in a stationary state, which may be
realized after a long elapse of time starting from an arbitrary
initial state, we assume

x()=0 (+<0). (15)

Then it is easy to have from Eq. (1) with F,,(¢)
=A, cos(wt)

%(s) = XSs) + Fonls)], (16)

with the Laplace transform of the response function x(r)
given by

X(s)=1/[s+a+bexp(-s7]. (17)

In a time space we have
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x(1) = f dit' x(t = t")[f(t") + F o (t")] = &x(2) + (x(1)).
0

(18)
If we define ¥’ (w) and Y'(w) by
X(s=iw) =¥ (0) —i¥'(v), (19)
it is seen that
X' (0) =[a+b cos(wn) J/H(w), (20)
X'(0) =[o-bsin(w7)/H(w), 2D

with H(w)={[a+b cos(w7)*+[w-b sin(w7)]*}.
From Eq. (18) we have explicitly in the large time limit

(x(2))ye = lim{x (1)) = AoLX' (wp)cos(wot) + X" (wp)sin(wyt) ].

=1
(22)

Since we are interested in properties in the stationary state
[15], we must be careful in interpreting Eq. (18), which is
valid for r>0. In the stationary state, Eq. (18) should be
rewritten as

x(2) = (1)), + x(2),

with x(¢) denoting the fluctuation in the large time limit.

From the linearity of the system (1) and the Gaussian
property of the noise (2), the stationary distribution function
for x(r) is also Gaussian with the average (x(¢)),, Eq. (22),
and the variance K= ([ dx(¢)]*), which is independent of the
external force and is already given in Ref. [9]. Thus it reads
as

(18")

Pu( ) = expl- 8/ 2K) N2 7K). (23)

The time correlation function is defined by
@(1) = lim,s_(Sx(1") Sx(t' +1)). (24)
From the definition of &x(z) in Eq. (18") and Eq. (2), we have

¢(1) = qf dt’ x(t")x(t" +1). (25)

0

It is straightforward to calculate ¢(r) from Eq. (25) (see the
Appendix).

We know there has been no explicit calculation of the
time correlation function ¢(z) so far and hence we pursue
(1) a little further. We show ¢(z) obtained by inverting the
Fourier transform Eq. (A7) in Fig. 1 for the case a=0.1 and
b=0.2 and in Fig. 2 for the case a=0.2 and »=0.1. It is noted
that when 7 becomes large, ¢(r) behaves more oscillatory
and ¢(0)=K becomes larger. This is more eminent for the
case a=0.1, b=0.2 than the case a=0.2, b=0.1, reflecting the
Hopf instability of the linear delayed system, Eq. (1) [6,10].
For the case b>a we know that the system becomes un-
stable when

7> 7,.= cos”!(—a/b)/I\b* - a*. (26)

For a=0.1 and b=0.2, 7,=12.1. It is noted that ¢(r) obtained
from a delay FPE [10] coincides numerically with the ¢(z)
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FIG. 1. (Color online) Time correlation function (TCF) ¢(¢) for
the system Eq. (1) with a=0.1, b=0.2, and ¢=1.0. 7=4 (full curve)
and 7=8 (dashed curve) calculated by Fourier inverting Eq. (A7).

above within the width of the curves in Figs. 1 and 2.

B. Calculation of ${dZ)/ 7y (Z=E,W,Wp)

We now calculate (dZ)/dt=${dZ),/ 7y (Z=E,W,Wp)
with ¢ standing for the integral over one period 7, in a sta-
tionary state. From Eq. (6) we have

(dE)dt = (al2)[{(x(70))5 + (3x(70)%)5 — (x(0))3, = (8x(0)?),]
=0, (27)

where we use x(7)=(x(1)),,+ ox(¢) [see Eq. (18') and the fact
that (x(7p)),,=(x(0)), and (&x(7p)*)s,=(&x(0)),;.

In Eq. (7), replacing x(7) by its average plus the fluctua-
tion, Eq. (18’), and noting the relation (2) we have

<dW>/dt = [AS/ZH((()())]O)()[(UO -b Sin(on)] = T(TW
(28)

Similarly using the relations (&x(¢)dx(r—7)),=d(7) and
(6x(1) 6x(1)) = p(0) we obtain

<dWD>/dt = <dWD>1/dt + <dWD>2/dt, (29)
where

(dWp/dt = abd(7) + b*$(0) = Top (1), (30)

(dWp)o/dt = (bAY2){[b + a cos(wy7)]
X[(¥' (00))* + ¥ (w0))*]
— [X' (wp)cos(wy7) — X" (wyp)sin (w7)]}

ET(TD,Z' (31)
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FIG. 2. (Color online) Time correlation function (TCF) ¢(z) for
the system Eq. (1) with a=0.2, »=0.1, and ¢g=1.0. 7=4 (full curve)
and 7=8 (dashed curve) calculated by Fourier inverting Eq. (A7).
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It is noted that T'op, ; is independent of the external force and
turns out to be positive (see Sec. III C). Also it is readily
noticed that T(ay+ oy 5) =[Aj/2H(w,)]wj, which is positive.
These quantities are related to the entropy production rate in
a delay system in the next subsection.

C. Entropy production rate o
From Eq. (11) and the above, we have
(dSpydt=op (1) + [A(z)/ZTH(wO)]wé = op,(7) +A§77(T).
(32)

The entropy increment of the system, Eq. (12), is easily
calculated from Eq. (23) and we have

(dSg)/dt = (1/2K)[(dx(79)*); — (8x(0)),]
= (112K 7)(K - K) = 0. (33)

Introducing the entropy production rate o by o
=(dSg)/dt+{dSs)/dt, we finally arrive at our main result:

o=0p(1)+Adn(7). (34)

Equation (34) shows that o is decomposed into two parts:
op.1(7), the entropy production rate of a system without the
external force, and A%n(r) (>0), representing the contribu-
tion to o from the external force. As we prove below,
0p.1(7)>0 and Eq. (34) may be considered as the second
law of thermodynamics.
From Eq. (30) and the relation a¢(0)+b¢(7)=¢g/2 [10],
we have
op(7) =[abd(7) + b*p(0))/T=[(b*> - a®)K + aT)/T.
(35)
If b>a>0, then O’D,I(T)>O. On the other hand, if a>b
>0, we know that [10]

K =T{1+ (b/w,)sinh(w;7)|/[a + b cosh(w;7)], (36)
where
w; = Va® = b2, (37)
With the use of these relations we see that
0p.1(7)=b[b + a cosh(w;7)
— w, sinh(w;7)])/[a+b cosh(w;7)].  (38)

The denominator of Eq. (38) is positive and it is readily seen
that
[b + a cosh(w;D)]* = @] sinh*(w,7)
+ b? cosh?(w, 7) + 2ab cosh(w,7)
+a?> ol sinh?(w;7). (39)
Thus we can conclude that the entropy production rate
op.1(7) is positive for a>0 and b>0.

A final comment on Eq. (34) is on its relation with the
linear response theory. When 5=0, we have
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FIG. 3. (Color online) Entropy production rate o, ;(7) for the
system Eq. (1) with a=0.1, b=0.2 (full curve) and a=0.2, b=0.1
(dashed curve) as a function of 7.

o= (A(2)/2T) a)é/(a2 + a)(z)) , (40)

which is expressed in a form o=(wy/2)A3x"(w,) for a sys-
tem without delay usually obtained under a linear response
approximation [23,24].

IV. NUMERICAL RESULTS AND SIMULATIONS

In Fig. 3, we plot o, 1(7), Eq. (30), as a function of 7 for
a=0.1, b=0.2 (full curve) and for a=0.2, b=0.1 (dotted
curve). Reflecting the instability, Eq. (26), we observe large
op,(7) for large 7in the case a=0.1, b=0.2. When 7=0 we
should have o=0 because the system is in the thermody-
namic (canonical) equilibrium state. The apparent discrep-
ancy present in Fig. 3 stems from the fact that we should take
the stochastic integral in Eq. (9) to be the Storatonovich type
[8] when 7 is exactly zero. In the case 7=0 we have

4

Tpa(r=0)=lim — (/7Y | dlx(0?72)z
0

7—®

= lim(- b/22)[x(z)? - x(0)*]=0,  (41)
Z*)OC
as it should be. In our numerical calculation in Fig. 3 we
employed the Ito interpretation which is valid so long as
7>>0. In this case simple calculations show in the limit of
7—0 that

7—®

o(r=0)=1lim-b f Z (d[x()*] - {dx()}»)/(22T)
0

= lim (= b/2zT)[x(z)> — x(0)*> = 2Tz] — b, (42)
which is in accord with the results in Fig. 3.

In our numerical experiments we solved the Langevin
equation (1) (g=2T=1) for long time and calculated o by
time averaging, e.g., oy =(1/T)[§ dW/L(L> 7). Whenever
the external force is introduced, we take Ag=1, and w
=0.05. Experimental results are shown by squares in Fig. 3
and these agree well with the theoretical results, Eq. (30).

In Figs. 4 and 5 we plot oy, Aj7(7)=0ay+0p,, and o for
a=0.1, b=0.2, and a=0.2, b=0.1, respectively, as a function
of 7. Our theory is observed to well reproduce the experi-
mental results. As shown here, entropy production o, due to
the external force can take negative values. However, as
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FIG. 4. (Color online) Entropy production rate o (full curve),
A(z) 7(7)=0oWw+0p, (dotted curve), and oy (dashed curve) as a func-
tion of 7for a=0.1, b=0.2. Results from numerical experiments are
shown only by squares.

shown in Eq. (32) the sum Ajn(7)=0y+0p, becomes posi-
tive.

For the system with a=0.1 and b=0.2 we plot in Fig. 4 o
only in the small delay region 7<<8 because of the instability,
Eq. (26), at 7=7,=12.1. For the system with ¢=0.2 and b
=0.1 we plot o up to 7=200 and we observe approximately
periodic behavior of o in Fig. 5, which results from the pe-
riodic (in 7) structure of A37(7) with the period 7,=125.6
[see Eq. (32) and H(w,) given just below Eq. (21)].

V. SUMMARY AND CONCLUSION

In this paper we studied the stochastic linear delay system
(1), focusing on its energy balance and thermodynamic prop-
erties. The first law was expressed as Eq. (10) with an extra
term dWj, Eq. (9), which denotes the work done by the
delay force. In contrast to Markovian systems, the entropy
production due to the external force oy, Eq. (28), itself is not
necessarily positive. However, by including part of the con-
tributions of the delay force, op 5, which depends on an ex-
ternal force, the sum AJ7(7)=ay+0p,, see Eq. (32), be-
comes positive.

The other part o5 ((7), Eq. (30) or Eq. (35), which gives
the entropy production rate for a system without the external
force Ay=0, turned out to be positive. From this we interpret
that the stationary state, attained for the system with Ay=0, is
not an equilibrium state. This is in sharp contrast with the
Markovian case, b=0 in Eq. (1). For this Ornstein-

0.25
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0.05
O [
-0.05 |
-0.1

entropy production rate

0 50 100 150 200
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FIG. 5. (Color online) Entropy production rate o (full curve),
ow+0p, (dotted curve), and oy, (dashed curve) as a function of 7
for a=0.2, b=0.1. Results from numerical experiments are shown
by squares.
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Uhlenbeck system, the entropy production rate is zero and
the stationary distribution, Eq. (23) with K=T/a, actually
represents an equilibrium (or canonical) distribution func-
tion. Thus we may consider that the delay force —bx(r—17),
although it may be regarded as an internal force, does work
to be dissipated to a reservoir. It is noted that this dissipation
is expressed in terms of the time correlation function ¢(z) for
the nonequilibrium stationary state.

For the system described by Eq. (1), ¢(z) plays two im-
portant roles. One is a relationship usually observed for equi-
librium statistical mechanics that the variance K of the sta-
tionary distribution function (23) is determined by the =0
value of ¢(r). The other one is rather special to a delay
system, where the entropy production rate op (7) depends
on ¢(7) also. This dependence is reasonable in view of the
energy balance equation (5), in which we have a term of the
form bx(t—7)odx(z). The average of this term might naturally
depend on ¢(7). For nonlinear systems also there are cases
where ¢(7) plays an important role to characterize system
properties. For example, in noise induced dynamics in some
bistable systems with delay [13], the sign of ¢(7) reflects the
sign of strength of delay feedback with the delay time .

APPENDIX

With use of inverse Laplace transformation, we have

x() = (1/277)[06 doX(s =iw)exp(iot). (A1)
From Eq. (24) we have
B(1) = iq/(2m)? f doX(s=iw)) j doyX(s =iw,)
Xexp(imy)/[w) + w, + i€] (A2)

with €>0. From the well-known formula lim,_,o, 1/(x+i€)
=P(1/x)—imé(x), with P denoting the Cauchy prinipal
value, we have

(1) = &1(1) + (1), (A3)

with ¢, () given by
¢l(f)=i6]/(277)2PJdwl)?(s=iw1)

X f dwzi(s = lwz)exp(lwzt)/[wl + (l)z], (A4)

and ¢,(t) given by

0 = a2 [ dof[ 7 (@F + () Plesplion
(A5)
As for ¢,(r) we apply the causality principle [23] ¥(s=iw)

=(i/mP[fdo'X(s=iw')/(0'—w) to find that ¢,(r)=e(7).
Thus we finally have
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#(1) = (q/2m) J dof{[¥' ()] +[¥"(0) Plexp(ior).

(A6)

If we define the Fourier transform (spectral function) of

#(t) by dlw)=2/m) [ exp(iot)p(1), we readily obtain
from Egs. (20) and (21) that

PHYSICAL REVIEW E 79, 031104 (2009)
Hw) = (g/m{[a+b cos(wn) >+ [w - b sin(w7)]*},

(A7)

which is identical to the one given by a delay Fokker-Planck
equation for A;=0 [10].
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