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A solution to a 3-satisfiability �3-SAT� formula can be expanded into a cluster, all other solutions of which
are reachable from this one through a sequence of single-spin flips. Some variables in the solution cluster are
frozen to the same spin values by one of two different mechanisms: frozen-core formation and long-range
frustrations. While frozen cores are identified by a local whitening algorithm, long-range frustrations are very
difficult to trace, and they make an entropic belief-propagation �BP� algorithm fail to converge. For the BP
algorithm to reach a fixed point, the spin values of a tiny fraction of variables �chosen according to the
whitening algorithm� are externally fixed during the iteration. From the calculated entropy values, we infer
that, for a large random 3-SAT formula with constraint density close to the satisfiability threshold, the solutions
obtained by the survey-propagation or WALKSAT algorithms belong neither to the most dominating clusters of
the formula nor to the most abundant clusters. This work indicates that a single-solution cluster of a random
3-SAT formula may have further community structures.
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I. INTRODUCTION

The K-satisfiability �K-SAT� problem is a prototypical
constraint satisfaction problem in the nondeterministic poly-
nomial complete �NP-complete� complexity class �1�. Statis-
tical physicists became interested in this computer science
problem since the discovery of phase-transition phenomena
in the ensemble of random 3-SAT formulas in the early
1990s. Randomly generated 3-SAT formulas were found to
be either almost always satisfiable or almost always unsatis-
fiable depending on whether or not the density of constraint
� �defined by Eq. �3� below� is lower than a critical value �s
�the SAT-UNSAT transition point� �2,3�. Furthermore, ran-
dom 3-SAT formulas whose satisfiability being most difficult
to resolve all have constraint densities close to the critical
value �s �2�. A lot of theoretical work �see, e.g., Refs.
�4–14�� has been done to understand the satisfiability transi-
tion in the random K-SAT problem and the rapid increase of
resolution time as the constraint density � approaches �s.

In the SAT phase with constraint density � close to �s, the
solution space of a typical large random K-SAT formula
�K�3� can be grouped into many clusters. The solution clus-
ters are not homogeneous in size; some clusters may contain
many more solutions than others. Therefore the solution
clusters are characterized by a �continuous or discontinuous�
spectrum of entropy densities �13–15�. On the other hand, it
is not clear whether different solution clusters are separated
by high-energy barriers or they can be reached one from the
other through paths of low-energy intermediate partial solu-
tions. This is one of the major open questions concerning the
organization of the solution space of a random K-SAT for-
mulas. In this connection, it was recently realized that clus-
tering of the solution space in the random K-SAT problem
does not pose real difficulty for heuristic local search algo-
rithms �16–20�. Algorithms such as GSAT, WALKSAT, and
CHAINSAT �16,18,19� appear to be capable of efficiently es-
caping from valleys in the energy landscape of a random
K-SAT formula. These experimental experiences led to the
conjecture that what really makes finding a satisfying solu-

tion hard is the presence of frozen variables �see, e.g., Ref.
�21� and more recent papers �18,22–24��. A frozen variable
in a solution cluster is a variable which is the same literally
in all solutions of the cluster. If a finite fraction of variables
are frozen in a given solution cluster, it was argued that it
would be difficult for a local algorithm to assign values to all
these variables and that such solutions would be hard to find
�25,26�. The freezing transition for the random K-SAT prob-
lem in principle can be estimated by the entropic cavity
method of statistical mechanics �27�, but extensive mean-
field population dynamics simulations �13–15� are needed.
For the random 3-SAT problem the known quantitative esti-
mation of the freezing transition point comes from a finite-
size scaling analysis on exact enumeration results �23�.

Earlier mean-field theoretical studies �12–14� on the
K-SAT problem have focused on ensemble-averaged proper-
ties. In this work, we take a complementary approach and
investigate the properties of solution clusters that are associ-
ated with single-reference solutions. This study has been
driven by two main motivations: First, we wish to know in
more detail the “local structures” of the solution space of the
random 3-SAT problem, which might be invisible in en-
semble studies; and second, we wish to know whether the
solutions obtained by the survey-propagation and WALKSAT

algorithms for a given random 3-SAT formula are contained
in the dominating solution clusters of this formula. Given an
initial satisfying solution for a 3-SAT formula, we use the
whitening algorithm of Parisi �28� �see also Refs. �18,29�� to
determine which variables are frozen �i.e., taking the same
spin value� in the associated solution cluster. A simple mean-
field formula �Eq. �5�� is also given, which predicts with high
precision the fraction of frozen variables in planted solutions
for the type-B random 3-SAT formulas studied in this paper.
We point out that, even if a reference solution can be com-
pletely whitened by the whitening algorithm, some variables
in the associated solution cluster may still be frozen. This is
because variable freezing can be caused by another indepen-
dent mechanism: namely, long-range frustration among un-
frozen variables as discussed in Refs. �30,31�. When the
neighboring unfrozen variables of a variable i are long-
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rangely frustrated, this variable very probably will be frozen.
Two heuristic algorithms are constructed to identify variables
that are frozen due to long-range frustrations. The entropy of
the solution cluster associated with a given reference solu-
tion is calculated by the entropic cavity method, taking the
reference solution as initial condition for the set of zero-
energy belief-propagation �BP� iterative equations �Eqs. �9�
and �11��. The entropy values reported in this paper are con-
sistent with the mean-field results of Ref. �14�.

For large random 3-SAT formulas with constraint densi-
ties close to �s, we find that if solutions obtained by the
survey-propagation �SP� �8,9,32�, the WALKSAT �17�, or the
belief-propagation-guided decimation �12,20� algorithms are
used as initial conditions, the entropic BP algorithm always
fails to reach a fixed point. Besides the ensemble of com-
pletely random 3-SAT formulas, a set of large random 3-SAT
formulas containing a prespecified satisfying solution are
also studied, and for each of them several additional solu-
tions are obtained by the SP and WALKSAT algorithms. For a
3-SAT formula in this second ensemble, if the entropic BP
iterative equations are run with the planted solution as the
initial condition, a fixed point is quickly reached, but if a
solution obtained by the SP or the WALKSAT algorithm is
used as the initial condition, the iterative equations again
fails to converge. This observation suggests that planted so-
lutions and solutions obtained by the SP algorithm are quite
different. In cases when the BP algorithm fail to reach a fixed
point, we fix the spin values of a tiny fraction of variables
and then re-run the BP iteration equations. The modified BP
iteration process will converge if this set of externally fixed
variables are chosen according to the outcome of the whit-
ening program.

In the remaining part of the paper we work exclusively on
the random 3-SAT problem, but the illustrated approach
should be directly applicable to more general cases. The fol-
lowing section list the ensembles of random 3-SAT formulas
used in this work. In Sec. III we investigate the whitening
algorithm and present a mean-field formula to describe the
freezing transition in a cluster of solutions. And the SPINFLIP

algorithm and another heuristic search algorithm are intro-
duced to search for frozen variables in a completely white
solution. The entropy of the solution cluster associated with a
planted solution is calculated by the entropic BP algorithm in
Sec. IV. For solution clusters associated with single SP or
WALKSAT solutions, their entropy values and fraction of fro-
zen variables are calculated in Sec. V by combining BP with
the whitening program. We conclude this work in Sec. VI.

II. GENERATION OF SATISFIABLE RANDOM 3-SAT
FORMULAS

A K-SAT formula contains N variables and M constraints
�clauses�. Each of the N variables �i , j ,k , . . . � has a binary
spin state �i� �−1, +1�. Each of the M constraints
�a ,b ,c , . . . � involves K different variables �ia

1 , ia
2 , . . . , ia

K� and
prohibits these variables from taking a specified pattern
�−Ja

1 ,−Ja
2 , . . . ,−Ja

K�, out of the total number of 2K possible
spin patterns of length K. An energy function can be defined
for a given K-SAT formula as

E��1,�2, . . . ,�N� = �
a=1

M

�
i��a

	1 − Ja
i �i

2

 , �1�

where �a means the set of variables involved in constraint a.
For a given spin configuration �� ���1 ,�2 , . . . ,�N�, the en-
ergy E��� � is equal to the number of unsatisfied clauses. The
zero-energy configurations �if they exist� of Eq. �1� corre-
spond to the solutions of the K-SAT formula. A K-SAT for-
mula has a convenient factor graph representation �see the
example shown in Fig. 1�: variables are denoted by circular
nodes and constraints by square nodes, and there is an edge
between a constraint node a and a variable node i if and only
if variable i participates in constraint a. The edge �a , i� is
solid if Ja

i =1 and is dashed if Ja
i =−1.

In the present paper, we focus on random K-SAT formu-
las with K=3. To generate a random 3-SAT formula, M dif-
ferent triplets �i , j ,k� are randomly chosen from the total
number of N�N−1��N−2� /6 possible triplets of variable
nodes. A constraint a is applied on each selected triplet
�i , j ,k�, and it prohibits the simultaneous spin assignment
��i=−Ja

i �∧ �� j =−Ja
j �∧ ��k=−Ja

k�, where ∧ means logical
AND. We use two different ways to generate the prohibited
patterns �−Ja

i ,−Ja
j ,−Ja

k� for the M constraints, which we call
the type-A and type-B formulas �see below�. For a given
satisfiable 3-SAT formula, let us denote a particular solution
as �� *���

1
* ,�

2
* , . . . ,�

N
*�. Since �� * is compatible with all the

constraints of the formula, for each constraint a the associ-
ated edge vector

J̃a � �Ja
i �

i
*,Ja

j �
j
*,Ja

k�
k
*� �i, j,k � �a� �2�

can have at most two negative elements. The clauses of the
3-SAT formula can therefore be grouped into three types
with respective to the reference solution �� *, and we denote
by q0, 3q1, and 3q2, respectively, the fraction of constraints a

whose edge vector J̃a have zero, one, and two negative ele-
ments. Obviously,

q0 + 3q1 + 3q2 � 1.

For the first ensemble of random formulas used in this
paper �type-A formulas�, the prohibited spin pattern
�−Ja

i ,−Ja
j ,−Ja

k� of each clause a is independently and uni-
formly randomly chosen from the total number of eight pos-
sibilities. Such random formulas are satisfiable with a high
probability as long as the constraint density � defined by

4 5321

FIG. 1. Factor-graph representation for a simple 3-SAT formula
with energy expression H= �1+�1��1+�3��1+�4� /8+ �1−�1��1
+�3��1−�5� /8+ �1−�1��1−�2��1−�3� /8+ �1+�3��1−�4�
�1+�5� /8.
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� � M/N �3�

is less than 4.267 �8,9�. For each constraint density �
� �4.20,4.21,4.22,4.23,4.24,4.25�, we generate a set of
random 3-SAT formulas of N=106 variables; for each of
these formulas, we use the survey-propagation algorithm
�9,32� �downloaded from Riccardo Zecchina’s webpage� to
obtain five different satisfying solutions. For �=4.20 we also
use the WALKSAT algorithm �17� �version 45, downloaded
from the WALKSAT homepage� with optimized noise param-
eter �p=0.57 �18�� to obtain another set of solutions. The
solutions serve as initial conditions for the whitening and the
belief-propagation simulations of the next two sections. For
the benefit of later discussions, we refer to a solution ob-
tained by the SP algorithm as an SP solution and a solution
obtained by WALKSAT as a WALKSAT solution.

The second ensemble of satisfiable random formulas
�type-B formulas� used in this paper are constructed in such
a way that a pre-given spin configuration �� * is a solution.
Such ensembles with planted solutions were investigated
in the literature earlier �33� and are known to have different
properties from standard random K-satisfiability; see, e.g.,
�34,35�. For each constraint a of the formula, the value

of its edge vector J̃a as defined by Eq. �2� is assigned accord-
ing to the following rule �33�: a uniformly distributed
random variable r� �0,1� is first generated; if r�q0, then

J̃a is set to be �+1, +1, +1�; if q0�r�q0+3q1, then

J̃a is chosen uniformly randomly from the set

��+1, +1,−1� , �+1,−1, +1� , �−1, +1, +1��; otherwise, J̃a is
chosen uniformly randomly from the set
��+1,−1,−1� , �−1, +1,−1� , �−1,−1, +1��. For simplicity and
without loss of generality, in this paper we set the pre-given
spin configuration to be �� *= �+1, +1, . . . , +1� when con-
structing type-B random 3-SAT formulas.

III. FREEZING OF VARIABLES IN A SOLUTION
CLUSTER: TWO DIFFERENT MECHANISMS

Starting from a given solution �� * of a satisfiable 3-SAT
formula F, one can �in principle� build a connected network
of solutions which contains as many solutions of formula F
as possible. In this solution cluster, two solutions �� 1 and �� 2

are regarded as being directly connected if and only if they
differ in the spin value of a single variable. From one solu-
tion of the cluster, one can reach any another solution of the
same cluster by a sequence of single-spin flips �within the
whole solution space of formula F�. We refer to such a con-
nected network of solutions as a solution cluster �or simply
cluster� for formula F. The spin states of some variables of
the formula may take the same value in all the solutions of
the cluster. Such variables are referred to as frozen variables;
they are strongly constrained in the solution cluster.

There are two different mechanisms which cause freezing
of variables in a solution cluster. The first mechanism, which
we refer to as “frozen-core formation,” can be described us-
ing the following whitening process �28�. Starting from a
given reference solution �� * of a K-SAT formula, at step 0 of
the whitening process, all the clauses a that are simulta-

neously satisfied by at least two variables of solution �� * are
marked as white and all the variables that do not satisfy any
clause or satisfy only white clauses are marked as white,
while the remaining clauses and variables are all marked as
nonwhite. Then at each following step t of the whitening
process �i� all the nonwhite clauses which are connected to at
least one white variables are marked as white, and then �ii�
all the nonwhite variables which satisfy only white clauses
are marked as white. The whitening process stops at step t
�1 if the number of newly whitened clauses �and variables�
is zero. After this whitening process has finished, if a vari-
able i is left as being nonwhite, one can prove that it is
impossible to travel from �� * to another satisfying configura-
tion with �i=−�

i
* using only satisfying single-spin flips �36�.

In other words, the spin of a nonwhite variable node i is
frozen to �

i
*. The set of nonwhite variables in the reference

solution �� * forms one or several frozen cores. For a variable
i in such a frozen core, there exists at least a clause a of the
formula that is satisfied only by variable i in the configura-
tion �� * and that is either not connected to other variables or
is connected only to other variables belonging to the same
frozen core of i. As the constraint density � increases, the
freezing of variables due to frozen-core formations is there-
fore a phenomenon of bootstrap percolation.

The final result of the whitening process actually is inde-
pendent of the order in which the variables are being whit-
ened �28�. It then follows that, in a solution cluster of a
K-SAT problem, if one of the solutions can be completely
whitened, then all the other solutions can also be completely
whitened. To prove this, let us suppose the contrary could be
true; i.e., there exist two solutions of the same cluster, �� 1 and
�� 2, where �� 1 can be completely whitened and �� 2 contains a
nonempty set A of nonwhite variables. One can change �� 2

into �� 1 by following a path of single-spin flips, and at each
hopping the flipped variable is whitened. During this transi-
tion process, no variables of set A is flipped or whitened, as
they are frozen variables. After �� 1 is reached, as it can be
completely whitened, the remaining variables �including
those in set A� can all be whitened starting from the partially
whitened pattern. Therefore �� 2 can also be completely whit-
ened and set A should be empty.

We denote the number of nonwhite variables in the solu-
tion �� * of a random 3-SAT formula as Nnw. If the three types
of clauses mentioned in Sec. II are randomly distributed in
the formula, a very simple equation can be obtained for the
fraction of nonwhite variables �nw�Nnw /N. Consider a ran-
domly chosen variable node i. This node in its spin state �

i
*

is satisfying some clauses, among which ni clauses are satis-
fied only by node i. The total number of clauses in the 3-SAT
formula which are being satisfied by only one variable of the
configuration �� * is equal to zN, with z being expressed as

z = 3q2� , �4�

where q2 was defined in Sec. II. Therefore, for a large for-
mula with N�1, the integer ni is distributed according to the
Poisson distribution P�ni�=e−zzni /ni!. The variable node i
will be nonwhite if, among these ni neighboring clauses,
there is at least one clause a whose other two connected
variable nodes are both nonwhite. Then the probability of a
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randomly chosen variable node i being nonwhite is deter-
mined by the following self-consistent equation:

�nw = 1 − �
ni=0

	
e−zzni

ni!
�1 − �nw

2 �ni = 1 − exp�− z�nw
2 � . �5�

For z less than a critical value znw=2.45541, Eq. �5� has only
the trivial solution �nw=0. While for z
znw, another stable
positive solution of Eq. �5� appears, with �nw�0.715 332.
The freezing transition at z=2.45 541 is a first-order boot-
strap transition.

Equation �5� is confirmed to be valid for planted solutions
of type-B random 3-SAT formulas �see Fig. 2�. The inset of
Fig. 2 shows that, when the parameter z defined in Eq. �4�
increases slightly around 2.46, the probability that the
planted solution of a random type-B formula can be com-
pletely whitened drops quickly from �1 to �0, and the slope
of this decrease becomes sharper for larger formulas. The
values of the fraction of nonwhite variables as obtained from
these simulations are in very good agreement with the mean-
field prediction, Eq. �5�. This good agreement indicates that
the freezing phenomenon in the planted solutions of random
type-B formulas can be completely explained by the forma-
tion of frozen cores.

For type-A formulas it is an empirical fact that solutions
that can be found efficiently on large instances using algo-
rithms known today are always white �18,37,38� �but see
more recent simulation results of Ref. �39��. We have gener-
ated type-A random 3-SAT formulas with N=106 and con-
straint density �� �4.20,4.25� and used the SP algorithm to
find solutions to these instances. For �=4.2 we used in ad-
dition WALKSAT with noise parameter 0.57 since this �and
other� stochastic local search heuristics are also known to be
effective at these constraint densities �18,19�. Interestingly,

the fractions of constraints satisfied by one, two, or three
variables appear to depend only weakly on the constraint
density and are for the solutions found by SP, q0�0.128,
q1�0.135, and q2�0.157 for all solutions of instances in
this range. The solutions found by WALKSAT at �=4.2 dis-
play also practically the same values—e.g., q2�0.155.
These solutions of N=106 all have a value of z�2.0 consid-
erably lower than the critical value znw, and all these solu-
tions are found to be completely white. For a type-A random
graph of smaller sizes N=103–104 and constraint density �
=4.2, besides finding many completely white solutions, the
WALKSAT algorithm is also able to reach partially frozen so-
lutions that contain a large fraction of frozen variables if a
nonoptimal value of the noise parameter �e.g., p=0.45� is
used and a long search time is permitted �43�. These non-
completely white solutions also have a value of z�2.0. The
mean-field formula, Eq. �5�, which does not consider any
correlations in the distributions of the three types of con-
straints of the studied 3-SAT formula, therefore fail to de-
scribe these partially frozen solutions.

Formation of frozen cores is not the only cause of variable
freezing in the solution clusters of a K-SAT formula. Figure
3 is a very simple example showing that, even if a solution to
a K-SAT formula can be completely whitened, it can contain
frozen variables. In the solution �i=� j =�k=�l=1, variable l
in satisfying three white clauses. The two neighbors �i and k�
of variable l are both unfrozen variables. If l is flipped to
�l=−1, variable i should keep �i=1, while variable k should
be flipped to �k=−1. Variable i then requires variable j to
keep the value � j =1, but variable k requires j to be flipped to
� j =−1. Such a frustration therefore prohibited variable l
from taking the value �l=−1, although it can be whitened in
the whitening process. To speak more generally, with respect
to a solution �� * to a K-SAT formula, let us denote by ��

i
*i

the set of nearest-neighboring clauses of i which are satisfied
by the spin value �i=�

i
*, and let us assume that each of these

clause a���
i
*i can be satisfied in some solutions of the clus-

ter associated with �� * even if �i=−�
i
*, provided that all

other clauses b���
i
* \a are removed from the formula. Then

each clause in the set ��
i
*i for sure can be whitened in the

solution cluster. But variable i will still be frozen to the value
�

i
* if not all of these clauses can be simultaneously satisfied

without the need of variable i. The second mechanism of
variable freezing is therefore the closure of frustration loops.
In a large random K-SAT formula, because of the existence
of extremely many loops and because most of these loops are
of length ln�N� or longer, this freezing mechanism is referred
to as “freezing by long-range frustrations.”
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FIG. 2. �Color online� The fraction of nonwhite variables in a
satisfying solution as a function of the parameter z as defined in Eq.
�4�. The solid line is the mean-field prediction, Eq. �5�, while the
square symbols are the results obtained by averaging over 50
type-B random 3-SAT formulas of size N=106. �Inset� The prob-
ability that a satisfiable solution can be completely whitened. The
data points are obtained by averaging over more than 1200 ran-
domly generated type-B 3-SAT formulas.

i j k l

FIG. 3. Frustration effect in a completely white solution ��i=1,
� j =1, �k=1, �l=1� for a 3-SAT of N=4 variables and M =5 con-
straints. The variable l is frozen to the spin value �l=1.
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Long-range frustrations were analyzed in previous studies
�30,31� on ensembles of random networks. For single solu-
tions of a given random K-SAT formula, finding all the vari-
ables which are frozen by long-range frustrations, however,
is not a trivial task. In contrast to freezing by frozen-core
formation, we are not yet able to construct a polynomial
algorithm to identify all the long-rangely frustrated and fro-
zen variables for a solution of a given K-SAT formula. We
leave this challenge to future studies and here present instead
two simple stochastic heuristic algorithms.

The first heuristic search algorithm �method 1�, SPINFLIP,
performs a �slightly biased� random walk in the solution
cluster of the formula. Starting from a solution �� * to a
K-SAT formula F, SPINFLIP records and updates the current
satisfying configuration of the formula and three variable
sets: set V1 contains all the variables that have already been
flipped at least once �unfrozen variables�, set V2 contains all
the variables that have not yet been flipped and that are cur-
rently being flippable, and set V3 contains all the variables
that belong to set V1 and that are currently being flippable. In
each elementary trial of the program, if V2 is not empty, a
variable in set V2 is randomly chosen; otherwise a variable in
set V3 is randomly chosen; the spin of this variable is flipped,
and the sets V1, V2, and V3 are then updated. The SPINFLIP

program is iterated for many steps �each of which consisting
of N consecutive elementary trials� until no new unfrozen
variables can be identified in the last n �say, n=106� consecu-
tive steps. As SPINFLIP is an incomplete algorithm, it may fail
to identify some unfrozen variables of a solution �that can be
completely whitened�, but we anticipate that most of the un-
frozen variables will be discovered if the program is running
for a very long time.

Besides reporting a set of unfrozen variables, the SPINFLIP

program can also be used to explore the fine structure of a
solution cluster �44�. The drawback of this random-walk al-
gorithm is its slow rate of discovering new unfrozen vari-
ables. The second heuristic search algorithm �method 2� we
used in this work is much faster. This later algorithm uses
information obtained by the whitening program �i.e., “to flip
variable i you probably should first flip variables j, k , . . .”�.
At each repeat, the algorithm randomly selects a not-yet-
flipped variable and propose a flip. This may cause some of
the neighboring clauses �say, a� of variable i to be violated.
If such a violation happens, then flip a neighboring variable j
of clause a, with j being selected according to the causality
relationships built by the whitening program �there are still
some freedom in choosing j�. This flipping process at each
branch stops after a variable, which in its original spin value
satisfies all its neighboring clauses, has been flipped. After
the whole iteration process stops, if no clause is violated,
then the proposed spin flip of variable i is accepted and all
the flipped variables during this process are added to the set
of unfrozen variables. As a comparison of this program
�method 2� to the SPINFLIP program �method 1�, we notice
that, for the example shown in Fig. 5, below, SPINFLIP iden-
tifies a total number of 265 650 unfrozen variables out of 106

variables after running for 106 steps on a PC �taking about
7 weeks�, while the whitening-inspired program is able to
identify 265 650 unfrozen variables in a little bit less than
3 weeks. A total number of 228 167 variables appears in both

sets of unfrozen variables. If these two programs are let to
run even longer, more unfrozen variables will be identified,
but the rate of finding new unfrozen variables becomes very
low.

IV. ENTROPIC BELIEF-PROPAGATION ALGORITHM

For a given solution �� * of a satisfiable 3-SAT formula, the
algorithms mentioned in the preceding section identify the
set of frozen variables in the solution cluster of �� *. However,
these algorithms do not give information about the spin value
preference of each unfrozen variable node; nor do they esti-
mate the size of the solution cluster. Now we study in more
detail the statistical property of the solution cluster associ-
ated with �� * by the cavity method of statistical physics �27�.

According to the current statical physics picture, the sat-
isfying solutions of a random 3-SAT formula with constraint
density �
3.86 are distributed into exponentially many
clusters, each of which in turn contains an exponential num-
ber of solutions. Different solution clusters may have differ-
ent statistical properties. To characterize such a complex so-
lution space structure, a cavity approach which corresponds
to the mean-field first-step replica-symmetry-breaking spin-
glass theory �27� was used in Refs. �12–14�. In the present
paper, as we are interested in single-solution clusters of a
random 3-SAT formula, a replica-symmetric cavity approach
is exploited. This cavity approach can be expressed in terms
of a set of BP iterative equations �see, e.g., Refs.
�13,14,29,32��.

Before we write down the BP equations, let us notice,
however, that the concept of cluster used in this section is not
strictly equivalent to that defined in the preceding section III.
In the mean-field spin-glass theory, a cluster �also called a
macroscopic state� refers to a subspace in the system’s con-
figuration space which satisfies the so-called clustering prop-
erty �27�—namely, that the spin values of two distantly sepa-
rated variable nodes are not correlated. In a macroscopic
state, the point-to-set correlation between a randomly chosen
variable i and variables separated from i by a shortest-path
distance d also decays exponentially with this distance for d
large enough �see Refs. �12,25� for more details�. When this
clustering property holds, in a given cluster C, the joint dis-
tribution P��i ,� j , . . . � of spins for a set of distantly separated
variables �i , j , . . . � can be written in a factorized form:

P��i,� j, . . . � = Pi��i�Pj�� j� . . . �i, j, . . . being far apart� ,

�6�

where Pi��i� is the marginal distribution of spin �i in cluster
C. Equation �6� may not necessarily be a good approxima-
tion for a solution cluster of a satisfiable 3-SAT formula.
Nevertheless, it turns out that for a large random 3-SAT for-
mula that has a very sparse factor graph representation, if the
BP iterative algorithms converge to a fixed point, it always
predicts the same set of frozen variables as the whitening
algorithm does. In this case, the BP approach presumably
gives an accurate and comprehensive description of the so-
lution cluster under study.
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A. Iterative equations for the entropic belief-propagation
algorithm

In a solution cluster for a 3-SAT formula F, we define �i
as the log-likelihood of variable i to be in the spin-up state—
i.e.,

�i � ln	Pi�+ 1�
Pi�− 1�
 . �7�

We also define the cavity log-likelihood �i→a as

�i→a = ln	Pi→a�+ 1�
Pi→a�− 1�
 , �8�

where Pi→a��i� is the probability for variable i to take the
spin �i if it is not constrained by clause a. We denote by
exp�ua→i� the fraction of configurations in the solution clus-
ter in which constraint a is being satisfied by its neighboring
variables j other than variable i. Under the assumption that,
in the absence of constraint a, the neighboring variable nodes
of a are mutually independent of each other, we can write
down the following equation for ua→i:

ua→i = ln
1 − �
j��a\i

Pj→a�− Ja
j �� , �9�

where, according to Eq. �8�, Pj→a�−Ja
j � is related to � j→a

through

Pj→a�− Ja
j � =

1 + Ja
j + �1 − Ja

j �e�j→a

2�1 + e�j→a�
. �10�

Similarly, if we use again the factorization assumption for
the neighboring clauses of a variable node i, we get the fol-
lowing equation for �i→a:

�i→a = �
b��i\a:Jb

i =−1

ub→i − �
b��i\a:Jb

i =+1

ub→i. �11�

In Eqs. �9� and �11�, �a \ i means the set of neighboring vari-
ables except i for clause a and so on for �i \a.

Equations �9� and �11� form a set of BP iterative equa-
tions, which were used in various previous studies �see, e.g.,
Refs. �13,14��. As we are interested in the solution cluster
associated with a pre-given solution �� *, we use the following
initial condition for this set of BP equations. On each di-
rected edge from a variable node i to a constraint node a, at
the beginning of the BP process,

�i→a =�+ 	 if �
i
* = + 1,

− 	 if �
i
* = − 1.

� �12�

Starting from this initial condition, the messages ��i→a ,ua→i�
along all the edges of the factor graph of the 3-SAT formula
are updated according to Eqs. �9� and �11�. We have tested a
synchronous and a random sequential BP iteration scheme.
In the synchronous updating scheme, in one evolution step,
first all the messages ua→i from clauses to variables are up-
dated using Eq. �9� and then all the messages �i→a from
variables to clauses are updated using Eq. �11�. In the ran-
dom sequential updating scheme, in each evolution step, first
a random order �say, i1 , i2 , . . . , iN� is made for the N variable

nodes; and for each variable node i in this order, the mes-
sages �i→a �with a��i� and then ub→j �with b��i, j
��b \ i� are updated. We have checked that in instances for
which the synchronous updating scheme does not drive the
messages ��i→a ,ua→i� to a fixed point, the sequential updat-
ing scheme also fails to do so and vice versa; while if both
the synchronous and the sequential updating schemes lead to
convergence of the iterative equations �9� and �11�, these two
schemes always reach the same fixed point. This latter ob-
servation confirms that the BP fixed pints reached by the BP
iterative equations are stable fixed points. In the numerical
simulations, the convergence condition for the BP iteration
process is set to be that the maximal distance � �among all
directed edges a→ i of the graph� between the values of eua→i

obtained in iteration steps t and t+1 be less than a pre-
specified value 5
10−6:

� = max
�a,i�

�eua→i�t+1� − eua→i�t�� � 5 
 10−6. �13�

After the above-mentioned iteration process has reached a
fixed point, the log-likelihood �i for each variable i as de-
fined by Eq. �7� can be calculated by

�i = �
a��i:Ja

i =−1

ua→i − �
a��i:Ja

i =+1

ua→i, �14�

and the total entropy S of the solution cluster can be esti-
mated by the following equation:

S = �
i

�Si + �
a

�Sa − �
�i,a�

�Sia. �15�

In Eq. �15�, �Si, �Sa, and �Sia are, respectively, the entropy
increase due to the addition of variable node i, clause node a,
and the edge �i ,a� between variable i and clause a, with

�Si = ln
exp	 �
a��i:Ja

i =−1

ua→i
 + exp	 �
a��i:Ja

i =+1

ua→i
� ,

�16�

�Sa = ln
1 − �
i��a

Pi→a�− Ja
i �� , �17�

�Sia = ln�1 − �1 − eua→i�Pi→a�− Ja
i �� . �18�

Following the work of Chertkov and Chernyak �40�, it can be
shown that the entropy expression �15� corresponds to the
zeroth-order term of a loop series for the entropy of the
3-SAT formula. For the sparse factor graph of a large random
3-SAT formula which contains no short loops, higher-order
terms in this loop expansion should not contributed exten-
sively to the total energy of a solution cluster, and therefore
the entropy density s�S /N as obtained by Eq. �15� will be
exact in the thermodynamic limit of N→	.

B. Planted solutions as initial conditions for the BP algorithm

A set of type-B random 3-SAT formulas of size N=106

and different constraint densities ��4.0 are constructed,
each containing a planted satisfying solution �� * �see Sec. II
for details�. For each of these problem instances, we run the
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BP algorithm as described above and find that it always
reaches a fixed point starting from the initial condition �12�.
Furthermore, the set of frozen variables �i.e., variables with
�i= +	 or �i=−	 at the fixed point� as predicted by the BP
algorithm are always identical to the set of nonwhite vari-
ables discovered by the whitening algorithm of Sec. III. The
convergence of the BP algorithm and the agreement with the
whitening algorithm suggest that the above-mentioned
replica-symmetric mean-field cavity theory is valid and that
the planted solution �� * can serve as an appropriate initial
condition for the BP algorithm.

Figure 4 shows the BP simulation results for a set of
type-B random satisfiable 3-SAT formulas which have N
=106, �=4.2, and on average equal numbers of initial satis-
fying and nonsatisfying edges. The later restriction is satis-
fied by requiring �33�

q1 = �1 − 4q0�/6, q2 = �1 + 2q0�/6, �19�

where q0, q1, and q2 are defined in Sec. II. In this suben-
semble, the parameter q0 �the fraction of constraints which
are satisfied by three variables in configuration �� *� is re-
stricted to 0�q0�0.25. From Fig. 4 we know that as q0
increases, the entropy density S /N of the solution cluster
continuously decreases. For q0�0.08, there are no frozen
variables in the system �which is consistent with the predic-
tion of Sec. III�, while for q0�0.09, a majority of the vari-
ables are frozen and the fraction of frozen variables is in
agreement with the mean-field prediction, Eq. �5�. It is inter-
esting to note that at the freezing transition point of q0
�0.085, the entropy density of the system as a function of q0
does not show any sign of singularity, while the fraction of
frozen variables has a large jump. According to the mean-
field cavity theory, the entropy densities of solution clusters
in a completely random 3-SAT formula of �=4.2 range from
�0.060 to �0.088 �14�, which are within the range of values
shown in Fig. 4.

We have applied the whitening-inspired search program
�method 2; see Sec. III� to the planted solutions of several
type-B 3-SAT formulas. In each of these tests, this search
program confirms that all the white variables of the solution
are nonfrozen variables. In the cluster of a planted solution,
it appears not to be any long-range frustrations. This is con-
sistent with the fact that BP always converges with planted
solutions.

V. ENTROPY OF THE CLUSTERS REACHED BY
SURVEY-PROPAGATION AND WALKSAT ALGORITHMS

We also generate a set of type-A random 3-SAT formulas
of size N=106 and �� �4.20,4.25� and, for each of them, use
the survey-propagation algorithm to find a set of satisfying
solutions. For �=4.20 we use in addition WALKSAT as de-
scribed in Sec. II. For �=3.90 and 3.925 with N=105, solu-
tions are also obtained by the belief-propagation-inspired
decimation algorithm �12,20�. The BP algorithm is then ap-
plied in these instances, using these solutions �� * as initial
conditions. We find that for each problem instance, both the
synchronous and sequential BP schemes predict that there
are no frozen variables in the system, consistent with the
result of the whitening algorithm. However, in contrast to the
preceding subsection, none of these BP simulations con-
verges to a fixed point of messages ��i→a ,ua→i�. The mes-
sages ��i→a ,ua→i� along many edges keep fluctuating con-
siderably around certain mean values. Different variables
have different amplitudes of � and u fluctuations. In the ran-
dom sequential �replica symmetric �RS�� updating scheme,
these fluctuations do not show periodic patterns.

If the non-fixed-point messages ��i→a ,ua→i� are used to
calculate the entropy, Eq. �15� reports an entropy density
value of s�0.090 at �=4.2, which is equal to the replica-
symmetric entropy density as calculated in earlier studies
�see Fig. 2 of Ref. �14� or �13��. We have further checked
that, if the BP iteration starts from the RS initial condition
��i→a=0�, the evolution trajectory of the messages
�� j→b ,ub→j� on any given edge �j ,b� cannot be distinguished
from the evolution trajectories starting from a SP or WALK-

SAT solution. The BP algorithm therefore in some sense for-
gets its starting point and does not bring us any cluster-
specific information.

The nonconvergence of BP is not due to the different
3-SAT ensemble used in this section, but is related with the
initial conditions used in the BP. To support this claim, we
notice that for the type-B random formulas with q0
0.01
studied in Fig. 4 of the preceding section, when SP or WALK-

SAT solutions instead of planted solutions are used as initial
conditions for the BP algorithm, the BP algorithm fails to
converge. At �=4.2 and q0
0.01, solutions found by the SP
or WALKSAT algorithm are not in the same cluster as the
planted solution. The planted solution correspond to a “crys-
tal” phase, while the SP and WALKSAT solutions all belong to
the “glassy” phase. The set of type-B random formulas with
q0�0.01 used in Fig. 4 are in the replica-symmetric phase
�only one solution cluster�, and then the BP algorithm con-
verges to the same fixed point independent of initial condi-
tions.
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FIG. 4. �Color online� Average entropy density �diamond sym-
bols, dashed line being a guide to the eye� and fraction of frozen
variables �square symbols� for 50 randomly generated type-B
3-SAT formulas of N=106 and �=4.2. The parameters �q0 ,q1 ,q2�
satisfy Eq. �19�. The solid line is the fraction of nonwhite variables
as predicted by Eq. �5�.
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As we mentioned in Sec. III, variable freezing can be
caused by long-range frustrations �30,31�. As an example,
the SPINFLIP algorithm was only able to confirm that 25% of
the variables are unfrozen in a completely white SP solution
for a type-A 3-SAT formula with N=106 variables and con-
straint density �=4.25, even after running for 7 weeks. �The
whitening-inspired search algorithm performs a little bit bet-
ter; it reported that 26.5% of the variables in the same solu-
tion are unfrozen, after running for about 3 weeks.� As the
BP algorithm uses only local structural information of a
graph, it is unable to detect the globally constrained vari-
ables. Some of the variables in the solution can be externally
fixed to make BP converge. For this exemplar solution, in
Fig. 5�a� we plot the number of newly whitened variables at
each step of the whitening process and show how many of
them are also identified as unfrozen variables by the two
heuristic programs. At earlier steps �t�25� of the whitening
process, most of the whitened variables are confirmed to be
unfrozen variables, but at later whitening steps most of the
newly whitened variables are very difficult to be flipped �if
not impossible�. This is expected: as long-range frustration
effects are strongly related to the closure of loops in the
graph, only variables which are whitened at steps of order
ln�N� �the typical length of a loop� or later can have a large
probability of being frozen or extremely constrained. Since
variables that are whitened in the later steps of the whitening
process are extremely difficult to be flipped, they must be
extremely constrained in the reference solution �� *. Figure
5�a� then suggests that a way to make BP converge is to
externally fix the spin values of variables which are newly
whitened in certain whitening step �say, t�. If these variables
are fixed, the whitening program can not proceed to the next
step t+1, and the BP Falgorithm, which is capably of detect-
ing frozen cores, will then predict all variables corresponding
to steps �t+1 in Fig. 5�a� to be frozen.

Figure 5�b� shows the results of the BP algorithm after
externally fixing a group of variables. When the spin values
of the variables corresponding to whitening step t are all
externally fixed, the BP iteration converges to a fixed point
as long as t�32. The calculated entropy density value in-
creases with t only very slowly, and the predicted number of
frozen variables decreases with t. The BP algorithm fails to
converge when the externally fixed variables are from whit-
ening step t�33 �the parameter � as defined in Eq. �13� is
about 0.5 even after 2
104 iteration steps�. Therefore we
take the value of s=0.0641 obtained at t=32 as the entropy
density of the solution cluster. The fraction of frozen vari-
ables is predicted to be 0.7472 at t=32, while from the result
of the two heuristic search programs �see Fig. 5�a�� we know
that the real fraction of frozen variables should be at most
0.713. It appears that more variables should be in the frozen
state for BP to converge: if we run the BP iteration by exter-
nally fixing all the frozen variables reported by either of the
two search programs, the BP algorithm again fails to con-
verge. It is tempting for us to interpret this observation as
follows: The solution cluster can be divided into many sub-
clusters; in each subcluster, besides those variables that are
frozen in all subclusters, some additional variables are fro-
zen. For a very large random K-SAT formula, as there are
exponentially many different combinatorial ways to choose

these additional subcluster-specific frozen variables, prob-
ably the number of subclusters is also exponential. These
subclusters are not separated with each other by any energy
barriers; they are formed by correlation properties. This con-
jectured further structural organization in a single-solution
cluster will be checked by a future investigation.

We have applied this combined BP and whitening ap-
proach to a set of other type-A random 3-SAT formulas and
SP and WALKSAT solutions. Some of the results are reported
in Fig. 6. At �=4.20, the entropy densities of the solution
clusters reached by SP and WALKSAT are comparable, being
s�0.0725 and s�0.0715, respectively. In comparison, the
dominant clusters of the random 3-SAT problem has entropy
density s�0.088 and the most abundant clusters have en-

0 10 20 30 40 50
Whitening Step

0

5×10
4

1×10
5

N
um

be
r

of
V

ar
ia

bl
es

Whitened variables
Unfrozen variables (method 1)
Unfrozen variables (method 2)

A

(a)

0 10 20 30
Whitening Step

0.045

0.050

0.055

0.060

0.065

E
nt

ro
py

D
en

si
ty

0 10 20 30

0.75

0.80

0.85

0.90

F
ro

ze
n

F
ra

ct
io

n

B

(b)

FIG. 5. �Color online� �a� The N=106 variables of a random
type-A 3-SAT formula with M =4.25
106 constraints is grouped
into 51 sets according to which step t they are whitened by the
whitening algorithm. The SPINFLIP algorithm �method 1� identified
249 923 variables to be unfrozen after making 106
N spin flips �in
about 7 weeks�, while the whitening-inspired algorithm �method 2�
identified 265 650 variables to be unfrozen after running for about
3 weeks. The distribution of these unfrozen variables in each group
is shown. The reference solution is obtained by the SP algorithm.
�b� The entropy density and fraction of frozen variables as predicted
by the BP algorithm when the spin values of all the variables whit-
ened at step t of the whitening process are being externally fixed.
The BP algorithm becomes nonconvergent at t�33 �marked by the
dashed lines�.
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tropy density s�0.060 �14�. At �=4.25, the clusters reached
by SP have entropy density s�0.064, while the dominating
and most abundant clusters have entropy density values s
�0.068 and s�0.060, respectively �14�. It appears that so-
lutions reached by SP and WALKSAT belong neither to one of
the dominating clusters nor to one of the most abundant clus-
ters �the same observation was obtained in Ref. �41� for the
random bicoloring problem�.

We close this section by mentioning that another way of
making the BP algorithm converge to a fixed point is by
damping �42�. This strategy was not used in the present work
because we were not yet very clear of the physical meaning
of the converged fixed point of the damped BP algorithm
�42�. As explained in this section, the action of externally
fixing some variables to make the BP algorithm converge is
physically reasonable, as most of the predicted frozen vari-
ables by the resulting BP fixed point are highly constrained
variables and very difficult to be flipped �see Fig. 5�a��. Ex-
plicitly fixing these variables helps to remove possible long-
range correlations within the solution cluster of the 3-SAT
formula. Figure 5�b� demonstrates that the calculated entropy
value is not sensitive to the set of variables that are being
externally fixed. Another different strategy was used in Ref.
�41� to calculate the entropy of a single-solution cluster.

VI. CONCLUSION

In this paper we have studied the statistical property of
solution clusters that are associated with single solutions of a
random 3-SAT formula. It was pointed out that there are two
different mechanisms for the freezing of variables in a solu-
tion cluster. Variables that are frozen due to frozen-core for-
mation can easily be identified by both the whitening and the
belief-propagation algorithm. But variables that are frozen
due to long-range frustrations can be very difficult to be
identified, as long-range frustrations involve global and to-
pological properties of the 3-SAT formula. A heuristic search
algorithm, SPINFLIP, was constructed to search for such vari-
ables.

When long-range frustrations exist in a solution �� * and
the associated cluster of random 3-SAT formula, the BP it-
eration process starting from the initial condition �� * is un-
able to reach a fixed point. To overcome this difficulty, a tiny
set of variables �chosen with the help of the whitening algo-
rithm� was externally fixed to their initial spin values during
the BP iteration. When this modified BP process reaches a
fixed point, the entropy densities of the solution cluster were
evaluated. It was found that at 4.2���4.25, the solutions
obtained by SP or WALKSAT for a given random 3-SAT prob-
lem are in medium-sized clusters; their entropy densities are
higher than the entropy density of the most abundant clusters
in the formula, but lower than the entropy density of the
most dominating clusters.

The present work indicates that at constraint density �
close to the satisfiability threshold, a single-solution cluster
of a random 3-SAT formula can be further divided into sub-
clusters. Such further structural organizations, if they exist,
may be described using the first-step replica-symmetry-
breaking �RSB� spin-glass cavity theory �8,27�. Further work
along this line will be reported in another paper.
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