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Optically induced orientational transitions in nematic liquid crystals with planar alignment
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A theoretical study of dynamical phenomena induced by linearly polarized light incident perpendicularly on
a planar aligned nematic layer with the light intensity as the control parameter is reported. We find the
threshold of the optically induced twist Fréedericksz transition as a function of the problem parameters. The
critical light intensity was found substantially lower than predicted earlier by Santamato et al. [Phys. Rev. A
36, 2389 (1987)]. We have demonstrated by a rigorous stability analysis that the bifurcation is stationary only
for a thickness of the nematic layer smaller than a certain critical value and becomes a Hopf bifurcation in the
opposite case. Above the Hopf bifurcation an oscillatory state appears. It becomes unstable at a secondary
threshold through a heteroclinic bifurcation, and the director settles to a new stationary distorted state.
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The optical phenomena exhibited by nematic liquid crys-
tals have been a subject of intensive study during the last few
decades. Nematics are optically anisotropic uniaxial materi-
als; their local optical properties are determined by the ori-
entation of the director n(r,7). The dielectric tensor govern-
ing the propagation of light is anisotropic and depends on n.
There are two competing mechanisms that determine the
alignment in the bulk of the nematic. On one hand, it is
enforced by the director orientation at the confining sub-
strates. On the other hand, the electric field of the incident
light exerts a torque on the director which may conflict with
the boundary-imposed alignment. The torque increases with
an increase in the light intensity. Eventually, at a certain light
intensity, the boundary-imposed alignment becomes unstable
and is replaced by the light-imposed one (optically induced
Fréedericksz transition), which in turn affects light propaga-
tion [1]. A large variety of nonlinear phenomena occurs as a
result of this feedback [2]. For instance, the precession of the
molecules after director reorientation has a clear interpreta-
tion, as being due to angular momentum transfer from the
light to the medium (the so-called self-induced stimulated
light scattering [3]). During this process some of the photons
are scattered, reversing their helicity, and the change in their
angular momentum is transferred to the nematic. The scat-
tered photons acquire a slight redshift, transmitting the en-
ergy to the rotating molecules. The possibility of dynamical
changes of the refractive index in a nematic employing the
orientational phenomena has attracted much attention re-
cently in the context of all-optical devices based on photonic
structures infiltrated with liquid crystals (see, e.g., [4]).

The goal of this paper is a detailed theoretical study of
light-induced phenomena in a nematic cell with planar align-
ment (the director is oriented parallel to the confining
planes). Compared to the case of homeotropic geometry (the
director is oriented perpendicular to the confining planes),
the planar geometry is much less explored. To our knowl-
edge, this problem was considered before in [5] where adia-
batic light propagation (the polarization of light follows the
direction of n) and a simple one-mode approximation for the
director deformation were assumed. A more complicated
situation with nonadiabatic light propagation and arbitrary
phase delay was explored in [6] with the assumption that the
planar state loses its stability via homogeneous stationary
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bifurcation. In a recent paper [7], a linear stability analysis
with respect to spatially stationary periodic perturbations in
the plane of the layer was performed in the limit of very thin
layers. From this paper one concludes that the primary bifur-
cation is spatially periodic for K,/K;>3.3 while for com-
mon nematics K,/K; <1. (Here K, and K| are, respectively,
the twist and splay elastic constants.) The thresholds for sta-
tionary homogeneous bifurcation found in [6] turned out to
be rather high with a very twisted director profile at the on-
set. The question arises: Could it be that in a certain range of
parameters a Hopf bifurcation occurs prior to the stationary
bifurcation? Here we perform a general stability analysis
with respect to arbitrary homogeneous perturbations. The
great difference between the actual ratio of the elastic con-
stants and the one corresponding to a primary spatially peri-
odic bifurcation for a thin layer [7] provides grounds to ex-
pect the spatial homogeneity of the primary bifurcation in the
entire region inspected in the present paper, i.e., at least un-
less the thickness of the layer becomes a large quantity. We
find that the primary threshold is stationary when the thick-
ness of the layer is smaller than a certain critical value,
which is in accordance with previous studies. However,
above this value the threshold for the homogeneous Hopf
bifurcation is substantially lower than the thresholds found
for the stationary homogeneous [6] and spatially periodic
instabilities [7]. In contrast to the previous studies, we
present a detailed numerical analysis in the nonlinear regime
well above the threshold for arbitrary values of the phase
delay and nonadiabatic propagation of light. We assume that
the transverse cross section of the beam is much larger than
the thickness of the cell (the so-called plane wave approxi-
mation), and the spatial dependence of all physical quantities
is restricted to the coordinate perpendicular to the layer.

We consider a plane wave linearly polarized along the y
direction, propagating along the z axis. The wave is incident
perpendicularly on a nematic layer (see Fig. 1). Initially the
director is orientated along the x axis (planar alignment) and
keeps its orientation at the boundaries (rigid boundary con-
ditions). To describe the director orientation the twist angle
®d(z,1) is introduced, so that n=(cos ®,sin ®,0). The start-
ing point is the set of nematodynamic equations coupled with
Maxwell’s equations for the propagation of light [8]. The
dynamical equation of motion for ®(z,7) is obtained from
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FIG. 1. Geometry of the setup: linearly polarized light along the
y direction incident perpendicularly on a nematic layer with the
director nylix (planar state). The components of the director n are
described in terms of the twist angle ®.

the balance of torques (elastic, electromagnetic, and viscous)
acting on the director. The components of the electric field
might be represented in terms of the ordinary (o) and ex-
traordinary (e) amplitudes of the waves A,, A, which vary
slowly with z on the scale (koL)™' (see, e.g., [9]), where k,
=w/c is the wave number of the incident wave and L stands
for the layer thickness. Finally, the coupled partial differen-
tial equation PDE for ® and ordinary differential equations
(ODEs) for A, and A, (no velocity field) can be written as [9]

9D = D + 2pk2 Re(A A%e?) (1)

IA,=— (9.D)M A, A, =(a.D)e kA,  (2)

where EO:ZLén/A is the dimensionless thickness (propor-
tional to the phase delay) with dn=n,—n, (n, and n, are the
refractive indices of the ordinary and extraordinary light, re-
spectively) and \ is the incident light wavelength. To make
the variables in Egs. (1) and (2) dimensionless they have
undergone the scale transformation r—t¢/7, z— mz/L; the
amplitudes A, , have been normalized over the electric field
amplitude of the incident light; and p=1/1,, where I stands
for the incident light intensity. Here 7=1v,L*/ 7K, is the
characteristic relaxation time of the director motion, 1.
=81 cK,n,on/\*(n,+n,), and y,=a3—a, is the rotational
viscosity.

The boundary condition for ® and initial conditions for
A, and A, at z=0 read

CDz:O,ﬂ'(t) = 07 |AOO|2 = 1’ |AEO|2 = 0’ AeOA;(O =0. (3)

Note that, owing to the reflection symmetry with respect to
the y direction, Egs. (1)—(3) are invariant under the transfor-
mation S:{®,A,,A,}—{-D, FA,, £A}. Itis convenient to
represent the solution of Egs. (1)—(3) as a series ®(z,?)
=3,¢,()sin(nz), where each term of the sum satisfies the
boundary conditions Eq. (3) identically. Then, Egs. (1)-(3)
are transformed into an infinite set of coupled equations for
¢,. To make the problem tractable, the expansion for @ is
truncated at a certain large enough number of equations, N,
which are solved numerically by the standard Runge-Kutta
method. The error caused by the truncation is controlled by
test runs with double and triple the number of modes. For
every set of parameters, N is selected so that the difference
between the routine and test runs is better than 1%. The
results below are obtained for N=20, which is within this
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accuracy. In addition, we perform numerically a linear sta-
bility analysis of the stationary distorted states (J,¢,=0).
The starting point of the study is the linear stability analy-
sis of the planar state ®(z,7)=0. The linearized integro-
differential equation for ®(z,1)=d(z)exp(ot) is as follows:

S+ 2P’%<‘1’ + Eofz ®(z")sinlko(z" - z)]dz') =od.
0

(4)

It results in the following set of equations for ¢, (eigenvalue
problem):

> Ay = by,

-1 )nzﬁmn +
(5)

The solvability condition for Eq. (5) requires det(A—al)=0.
It brings about an infinite number of eigenvalues o,,. How-

4(- 1)"’pl€8mn sin(ﬂ'lzo)

(m® = i) (n” - )

2k
Amn:< po
-k

ever, at n>k, or (and) m>k, the off-diagonal elements of
matrix A,,, decay as 1/n or (and) 1/m, while the diagonal
elements are approximately —n”. Then, in the leading ap-
proximation det(A — o) factorizes for a product of an infinite
number of the diagonal elements at n> N (which gives stable
real eigenvalues o, ~—n? related to elastic relaxation) and a

matrix N X N, where N> EO. The eigenvalues of the matrix
are related to light-induced perturbations and should be in-
spected more carefully. These arguments provides us with

the natural truncation scale ~I€0. The planar state loses sta-
bility when the real part of (at least) one of the eigenvalues,
Re(a,), becomes positive. It should be stressed that the ma-
trix A,,, is not Hermitian and may have complex eigenval-
ues; in other words, unstable modes may be oscillatory.
Typical results of the discussed stability analysis are pre-
sented in Fig. 2, where Re(o,) and Im(o,) versus p are

shown for ky=1.6. It is seen that Re(c,) forms a tongued
structure with a family of branches which, at first, appear as
pairs of purely real branches that go almost parallel to each
other as p increases, but then the pair merges at a certain p
Bpggl)). Next, the branches continue as a pair of complex
conjugate modes. Some of the purely real branches cross the
zero line at intensities p given by the formula

2p sin(mkoV1 + 2p)

~ [
ko1 +2p

which was derived in [6]. The first two tongues depicted by
shaded areas cross the abscissa at pj=16.6, p;=17.8, p}
=24.3, and pZ=26.5, respectively, and are the same as those
shown in Fig. 1 of [6]. (The dimensionless L=5 introduced
there corresponds to lgozlj/ 7~ 1.6 used in our calculations.)
In [6] this structure was interpreted as a series of alternating
stable and unstable intervals for the planar state as the light
intensity increases, with the lowest threshold for instability
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FIG. 2. Re(o) and Im(a) vs p for ko=1.6. Filled circle: primary
threshold (p;=0.95, Hopf bifurcation). Shaded tongues cross ab-
scissa at, respectively, pj=16.6, p;=17.8, p;=24.3, and p,=26.5,
depicted by empty circles.

given by pj=16.6. However, in reality, the planar state loses
stability via a Hopf bifurcation at a much lower value p;
=0.95 (filled circle in Fig. 2) and never regains stability at
higher intensities again. In fact, the reason for this difference
from the results of [6] is that only a stationary bifurcation
was considered. As a result, the growth rate was a priori real
instead of being complex and, thus the growth rates with
Im(o) # 0 predicted here were not caught. The stability dia-

gram in the (ky, p) plane is shown in Fig. 3 by solid lines and
the thresholds calculated using Eq. (6) are depicted by
dashed lines. It is interesting that, below a critical value
k{'=0.64 (corresponding to L=2 in [6]), the primary bifur-
cation is indeed stationary and the values of thresholds are
correctly described by Eq. (6). In that case, the very first
tongue crosses the p axis (in contrast to the situation for 120

=1.6> Eg”) depicted in Fig. 2, where the first tongue is under
the abscissa) and at the threshold the largest growth rate

corresponds to the purely real branch. When I;g” is ap-
proached from below, this first tongue goes down and, fi-

nally, at I;0=i€§)“) the whole tongue lies under the p axis. Note
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FIG. 3. (a),(b) Solid lines: stability diagram of the planar state
on the (l:o,p) plane. Dashed lines on (a): thresholds calculated using
Eq. (6). Solid line with I;0<l;§f) (IFOBI;(()”)) corresponds to stationary
(Hopf) bifurcation. P is the region of stability of the planar state. (c)

Period of oscillation of & at the onset for I;OBI%C) (Hopf
bifurcation).
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FIG. 4. Bifurcation diagrams for (a) E0=0.5 and (b) l;0=1.6:
parameter of reorientation W vs p. Solid (dashed) curves correspond
to stable (unstable) stationary solutions. p; is the primary instability
of the planar state. (a) p;=2.7 (stationary bifurcation) and (b) p,
=0.95 (Hopf bifurcation). Gray region (confined by two lines)
shows the oscillatory states of the director. p,=3.65 is the second-
ary instability (heteroclinic bifurcation).

that transition to another branch with Im(o) # 0 is accompa-
nied by a stepwise change of the threshold intensity. Such
behavior is related to the inclined structure of the tongues

(see Fig. 3). It should be stressed that, for I;0>Eff), the true
values of the thresholds differ from the ones predicted by Eq.

(6) by one order, and with increase of EO quite rapidly, by
two orders of magnitude. The true threshold of the Hopf

primary instability decreases with an increase in 120 from /
=331, at I;0=l€§f) to 0.51,. at l;0=8, and then practically does

not change for further increase in the I;() (see Fig. 3). Inter-
estingly, the period of oscillation of the twist angle at the
onset of Hopf bifurcation decreases by two orders of magni-

tude within an interval k, e [;(0“),6] [see Fig. 3(c)]. To obtain
a stability diagram in the dimensional (L, 1) plane one should

rescale the EO and p axes of Fig. 3, multiplying them by
N/(26n) and I, respectively. To avoid very large values for
thresholds in experiment, one should take nematics with
rather small values of &n. For instance, for dn=5X 1073,
K,=2.5X10""dyn, and A=532nm, the value of I, is

52 kW/cm? and the critical length L(C)=I€(()C))\/ (26n) is
34 pum.

It is worth noting that the linear integrodifferential equa-
tion (5) appears in the framework of linear analysis of an-
other problem, namely, that with a linearly polarized ordi-
nary light wave incident at a small oblique angle on a thin
layer of homeotropically oriented nematic [10,11]. The only
difference is that there one deals with the incidence angle «

instead of I;O used here. The stability diagram in the (p, k)
plane consists of a line of stationary instability for x< ©
and a line of Hopf bifurcations in the opposite case. The
stationary instability is indeed described by the formula (6)
after it is rewritten in corresponding quantities. Above ¢
the homeotropic state loses stability via a Hopf bifurcation
and the formula (6) is no longer applicable.

We choose a sum of squares of all modes W:E,,(bi as a
theoretical measure of reorientation inside a nematic. In Fig.
4 typical bifurcation diagrams are shown. The planar state
remains stable when p<p;. At p=p,; we deal with a continu-

ous transition via either a stationary bifurcation for I;0<l€g")
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or a Hopf bifurcation in the opposite case. Above the thresh-
old and for k0<k§f) , the director settles to a stationary dis-

torted state, whereas for l;0>l;§)”) it settles to an oscillatory
one. In the latter regime, the lower and upper lines depicted
in Fig. 4(b) bound the region in gray and correspond to the
minimum and maximum values taken by W during its oscil-
lation. The director motion develops along the limit cycle in
the space of ¢, (which is infinite). In some narrow region
around p,=3.65, the period of oscillations increases progres-
sively with increasing light intensity, and oscillations become
substantially anharmonic. The period diverges at p=p, which
corresponds to a secondary bifurcation into a new stationary
distorted state. The dynamics near the threshold is summa-
rized in the projection of the true phase trajectory on the
plane (¢, ¢,) (see Fig. 5). The bifurcation at p=p, belongs
to a rather rare type and corresponds to the following. Above
p, a system has two pairs of stationary nontrivial solutions
which are mutual images under the symmetry transformation
S. The first pair is represented by a stable node and its image,
and the second one by a saddle and its image. There is also a
trivial solution which is represented by an unstable focus
corresponding to the spatially uniform planar state. Starting
from different initial conditions the system eventually settles
to one of the stable nodes. A separatrix, which divides the
phase plane into the basins of attraction for the two stable
nodes, goes through the two saddles and the unstable focus.
As p, is approached from above, the saddle and node go
closer and closer to each other and finally merge at p=p,. At
this point a limit cycle appears, which exists for p; <p<p,.
It is worth noting that the symmetry § is spontaneously bro-
ken at the secondary bifurcation.

In conclusion, we have studied theoretically the transi-
tions induced by linearly polarized light incident perpendicu-
larly onto a layer of nematic that has initial planar alignment.
We have found the primary threshold as a function of thick-
ness of the layer by performing a linear stability analysis of
the basic state. It has been found that with increasing light
intensity the planar state becomes unstable in favor of either
a stationary distorted state when the thickness is below a
certain critical value, or an oscillatory state if the thickness is
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FIG. 5. (Color online) Dynamics near the secondary threshold
p,=3.6530. Thin black lines: director trajectories at p=3.7967
>p, in the plane of the first two modes (¢, ¢,). Starting from
different initial conditions, the system settles to one of the two
stable nodes (filled circles). Orange (thick gray) curve: separatrix.
Empty circles: unstable fixed points (saddles). Origin: unstable spa-
tially uniform planar state (focus). Green (gray) dashed line: limit
cycle at p=3.638<p,.

above critical. As the intensity increases further, the oscilla-
tory state disappears via a secondary bifurcation. At the bi-
furcation point two identical saddle-node fixed points are
created on opposite sites of the limit cycle. This results in
divergence of the period of oscillations and separation of the
limit cycle into two heteroclinic orbits. Further increase of
the intensity brings about splitting of each fixed point into a
stable node and a saddle. In typical cases the calculated
thresholds have values substantially lower than those be-
lieved before. Competition between homogeneous and spa-

tially periodic instabilities for thick layers (ko> 1) might be a
subject of future study.
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