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The smallest maximum-kissing-number Voronoi polyhedron of three-dimensional �3D� Euclidean spheres is
the icosahedron, and the tetrahedron is the smallest volume that can show up in Delaunay tessellation. No
periodic lattice is consistent with either, and hence these dense packings are geometrically frustrated. Because
icosahedra can be assembled from almost perfect tetrahedra, the terms “icosahedral” and “polytetrahedral”
packing are often used interchangeably, which leaves the true origin of geometric frustration unclear. Here we
report a computational study of freezing of 4D Euclidean hard spheres, where the densest Voronoi cluster is
compatible with the symmetry of the densest crystal, while polytetrahedral order is not. We observe that, under
otherwise comparable conditions, crystal nucleation in four dimensions is less facile than in three dimensions,
which is consistent with earlier observations �M. Skoge et al., Phys. Rev. E 74, 041127 �2006��. We conclude
that it is the geometrical frustration of polytetrahedral structures that inhibits crystallization.
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Most glasses form under conditions where the thermody-
namically stable state of the system is crystalline. Good glass
formers should therefore be poor crystallizers. Geometrical
frustration is one of the factors that may prevent the forma-
tion of the ordered phase and therefore help physical glass
formation �1�. There is also evidence that such frustration
increases the height of the crystallization nucleation barrier
of liquid metals �2�. Isotropic simple liquids are often con-
sidered frustrated because the fivefold symmetry of the liq-
uid icosahedra cannot pack as a regular lattice. This scenario
contrasts with what happens in a fluid of two-dimensional
�2D� disks, where hexagonal order is both locally and glo-
bally preferred and where crystallization is particularly easy.

Several physical mechanisms have been proposed to sup-
port the formation of icosahedra. On the one hand, Frank,
considering the optimal way for kissing spheres to cluster
around a central one, found the icosahedron to be more
stable than the cubic-lattice unit cells for the Lennard-Jones
model �3�. Although the original argument relies on the en-
ergetics of spurious surface effects �4�, mean-field studies
correcting for solvation leave the result unchanged �5,6�. The
icosahedron, the smallest maximum kissing-number Voronoi
polyhedron, is optimally packed. It offers the most free vol-
ume to surface spheres, so it is also preferred entropically.
On the other hand, the polytetrahedral scenario ascribes the
presence of icosahedra to their facile assembly from quasi-
perfect tetrahedra, themselves the smallest Delaunay decom-
position of space �7,8�. But is it the packing of Voronoi poly-
hedra or the packing of Delaunay hypertriangles that counts?
Experiments �9–11� and simulations �12,13� only manage to
identify icosahedral order in limited quantities, even in
deeply supercooled systems. Recent studies indicate that liq-
uid polytetrahedral order is a lot more varied �14,15� than the
icosahedral picture suggests. Yet because of the geometrical

ambiguity, the equation of the icosahedron with frustration is
difficult to assess.

Looking at crystallization in a system where polytetrahe-
dral frustration does not correspond to a symmetric closed-
shell structure like the icosahedron would help. Precisely
such an example is provided by the freezing of 4D spheres
that we study in this Rapid Communication. It is, of course,
somewhat unsatisfactory to perform a numerical study of a
system that cannot be probed experimentally. However, there
are other examples �e.g., renormalization-group theory�
where higher-dimensional model systems serve as a very
useful reference state for the theoretical description of our
3D world. The objective of the numerical study that we re-
port here is therefore not to present quantitative estimates of
crystal nucleation barriers in four dimensions �even though
we obtain these numbers too�, but to shed more light on the
nature and role of geometrical frustration and the ease of
crystallization.

The D4 crystal phase is formed by stacking, without
voids, 24-cell Platonic polytopes �16,17�. In general, Dd lat-
tices are obtained by inserting an additional sphere in each
void of a d-dimensional cubic lattice. In three dimensions the
spacing between the spheres on the original cubic lattice in-
creases to form a body-centered-cubic crystal; in four dimen-
sions the additional sphere fits perfectly in the hole and leads
to a unique, high-symmetry crystal with a volume fraction
�=�2 /16�0.617, which is postulated to be maximal �19�.
There exist other dense 4D lattices, such as A4 and A

4
*, but

D4 packs over 10% more densely and offers more nearest-
neighbor contacts. D4’s unit cell, the 24-cell, is made of 24
octahedral cells and is a Platonic polytope that has no analog
in other dimensions �17�. Placing 24 kissing spheres around
a central one in the 24-cell arrangement is the densest closed-
shell cluster of 4D spheres �18� and is postulated to be
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unique �19�. Even accounting for solvation effects, clusters
with the 24-cell geometry are locally preferred. Unlike in
three dimensions, for an equal number of particles 4D poly-
tetrahedral clusters do not form more interparticle contacts
than the 24-cell, and their slightly larger radius offers less,
not more stabilization �5�. The symmetry match between the
24-cell and the D4 lattice therefore guarantees that no frus-
tration arises from maximally kissing clusters. But neither
the 24-cell nor any other unit cell can be assembled from
�nearly� regular 4D tetrahedra. Four-dimensional spheres are
thus an ideal system to clarify the origin of geometrical frus-
tration. An earlier compaction study of 4D spheres found that
spontaneous crystallization is suppressed with increasing di-
mension and concluded that geometrical frustration is likely
to increase with dimension �20�. However, this work could
not disentangle the different contributing factors, because
such an analysis requires knowledge of the equilibrium
phase diagram, of the dynamical properties of the fluid
phase, and of the crystal nucleation barriers. Our computa-
tional study addresses these questions. To this end, we first
locate the 4D freezing transition, quantify the fluid order, and
then compute the free-energy barrier to nucleation at differ-
ent supersaturations.

Interestingly, although the equations of state of both the
fluid and the crystal phases of 4D hard spheres were com-
puted in the early 1980s �23�, we are not aware of any nu-
merical determinations of the solid-fluid coexistence point.
Using a quasi-Maxwell construction �24� at the crystal sta-
bility limit �20�, we can use these results to approximate the
coexistence range �coex=0.29–0.35, but this is insufficiently
accurate. To the best of our knowledge, density functional
theory has only been applied to the fluid-A4 coexistence �25�.
In order to precisely locate the freezing point, we thus per-
formed standard NVT Monte Carlo �MC� simulations to
compute the equation of state of hard spheres outside the
range studied in Ref. �23�. As a test, we also performed con-
stant NPT simulations and verified that the two techniques
yielded consistent results. In what follows, we use the par-
ticle diameter � as our unit of length and the thermal energy
kBT as our unit of energy. The equation of state of 4D
spheres is related to the value of the pair-distribution func-
tion g�r� at contact, Pv0 /�=1+8�g�1+�, where v0 is the vol-
ume of a 4D sphere and g�1+� is the value of the radial
distribution function at contact �21�. The results for the fluid
and two crystal phases are presented in Fig. 1 for systems
containing 2048 �D4� and 4096 �fluid and A4� particles. The
equation of state could not be calculated for A

4
*, because it is

mechanically unstable, which makes it unlikely to contribute
to the crystallization process. We will not consider it further.
To locate the fluid-solid coexistence regime, we need to de-
termine the absolute free energy of the solid at least at one
point �26�. The absolute Helmholtz free energy per particle f
of the D4 and A4 crystals at �=0.37 is obtained by the Ein-
stein crystal method �27�. The free energy at other densities
can then be obtained by thermodynamic integration. We find
D4 to be the thermodynamically stable crystal phase. The
fluid-D4 coexistence pressure Pcoex �Fig. 1, lower inset� al-
lows one to read off the melting and freezing densities by
common tangent construction �Fig. 1, upper inset�. The re-
sulting two-phase region �coex=0.288–0.337 is compatible

with the rough estimate above. The thermodynamic driving
force for crystallization in the supersaturated fluid at constant
pressure is the difference in chemical potential, ��=�D4
−�fluid, between the two phases displayed in the lower inset
of Fig. 1.

To characterize the structure of the fluid and identify the
formation of crystallites, we need a local criterion that dis-
tinguishes crystal from fluid. Studies in two and three dimen-
sions suggest that order parameters derived from invariant
combinations of spherical harmonics Yl of degree l might
suffice �28,29�. In high dimensions, it is more convenient to
rewrite the second-order invariant in terms of Gegenbauer
polynomials Gl

n, where n=d /2−1, using the sum rule �19�.
The �l+1�2 4D spherical harmonics give

Gl
1�r̂1 · r̂2� =

2�2

�l + 1�2 �
m=1

�l + 1�2

Yl
m�r̂1�Yl

m�r̂2� , �1�

where r̂i are unit vectors. The local order correlator is

ql
i,j = ql�i� · ql�j� =

1

N�i�N�j� ��=1

N�i�

�
�=1

N�j�

Gl
1�r̂�i · r̂�j� , �2�

where the indices � and � run over the number of neighbors
contained within a distance equal to the first minimum of
g�r�. The local order correlation distinguishes between dif-
ferent geometrical environments: q6 sets apart fluidlike par-
ticles from those within a D4 or an A4 lattice, while q4 dis-
criminates between the two crystals �Fig. 2�.

As freezing in four dimensions is a first-order phase tran-
sition, we expect crystallization to proceed via nucleation
and growth. A Landau free-energy analysis predicts that
crystals with reciprocal lattice vectors forming equilateral tri-
angles should initiate the nucleation �30�. Though this argu-
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FIG. 1. �Color online� Equations of state of 4D hard spheres at
constant V �solid symbols� and P �open symbols� extend earlier
molecular dynamics results �23�. The Padé approximant for the
fluid �21� and Speedy fits for the crystals �22� are given for refer-
ence �lines�. Bottom inset: at coexistence, chemical potentials are
equal; thus, Pcoex=9.15 and �coex=13.68. Top inset: the common
tangent to the free-energy curves pinpoints the phase transition
boundaries: �freeze=0.288 and �melt=0.337.
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ment has met only limited success in three dimensions �29�,
in four dimensions it supports the preferential nucleation of
D4, in line with the thermodynamic drive. To estimate the
ease of crystallization, we compute the free-energy barrier
for crystal nucleation �G*. Classical nucleation theory
�CNT� �31� derives from the thermodynamic drive �� and
the interfacial free energy 	 of a spherical crystallite a free-
energy functional that depends on the size n of the crystal-
lite:

�G�n� = Sd�n/
x��d−1�/d	 − n�� , �3�

where 
x is the crystal density at a given pressure and the
shape-dependent prefactor is S4= �128�2�1/4 for 4D spheres.
The resulting maximal barrier height is then

�G*�n*� =
27�2	4

2
D4

3 ��3 �4�

at the critical cluster size n*. The rate of nucleation per unit
volume I is given by I=� exp�−�G*�, where � is a kinetic
prefactor that is proportional to the diffusion coefficient in
the fluid phase �29�. Although schematic, this level of theory
is sufficient to clarify the contribution of geometrical frustra-
tion through an analysis of 	. Within the CNT framework the
geometrical mismatch in three dimensions between icosahe-
dral and crystal order should lead to a relatively large 	,
while in four dimensions one might expect 	 to be small if
the locally preferred cluster scenario is valid, but not for
polytetrahedral frustration.

Results for 3D crystallization are available �29�, so only a
few 4D barriers are needed to complete the picture. Crystal-
lization being a rare event in this regime, we perform
constant-pressure MC runs with umbrella sampling to bias
the growth of a crystal cluster from the fluid �26�. A standard
algorithm is employed to identify the crystallites �28,29�. We
link pairs of nearest neighbors with q6�0.4. If a particle has
more than five links, it is deemed crystalline. The number of
particles in the largest crystallite is then the order parameter.
The resulting free-energy profiles are presented in Fig. 3.
Although q6 does not discriminate between A4 and D4 crys-

tals, further checks with q4 show that only the latter nucle-
ates. In four dimensions a low-q6 cutoff value is required,
because of the minimal overlap between the crystalline and
fluid regions �Fig. 2�, and consequently, noncompact clusters
are initially observed. Although the clusters irreversibly
compactify, the process can be very slow. To reduce the com-
putational burden, the system is first equilibrated by growing
the total number of links in the largest crystallite. The low-q6
cutoff also artificially inflates the measured critical cluster
size. A fit to the CNT functional form �Eq. �3�� is thus of
little use in extracting 	. However, because the barrier height
is unaffected by this biasing choice and �� is known, we can
obtain 	 from Eq. �4� directly. To validate the implied size of
the CNT critical cluster n

CNT
* , we compare it to the cluster

size obtained by imposing a purely crystalline linking crite-
rion q6�0.65 to the configurations at the top of the barrier.
The difference between the two �Table I� is no more than
25%, which is remarkably good in this context.

The results of Fig. 3 allow us to conclude that the very
slow crystallization of 4D spheres observed in the study of
Ref. �20� is due to the presence of a considerably higher 4D
nucleation barrier than at the same supersaturation in three
dimensions. Slow nucleation could also be due to a low
value of the kinetic prefactor �, which would require that the
diffusion of particles in the dense fluid be anomalously slow.
But simulations with the code of Ref. �20� show no evidence
for slow diffusion, not even at the highest pressures studied.
The slow crystallization is thus consistent with a high degree
of geometrical frustration in 4D fluids. Based on the similar-
ity between the number of neighbors within the first peak of
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TABLE I. Simulation parameters for Fig. 3, along with the cor-
responding CNT parameters. The critical cluster size n* is obtained
using a stricter order parameter �see text�.

P �� �G* 	CNT n* n
CNT
*

19 −1.8 81 1.80 157 133

22 −2.3 42 1.94 75 60

27 −3.2 37 2.4 40 35
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g�r� and the maximal kissing number, Skoge et al. specu-
lated that high-dimensional fluids contain a number of de-
formed crystalline unit cells, rather than polytetrahedral
structures �20�. However, the clear difference between the
fluid and the 24-cell shown by the local order correlator �Fig.
2� suggests this not to be the case. The similarity between the
kissing number and the number of first neighbors can instead
be explained by a wide first peak of g�r� �not shown� that
accommodates nonkissing neighbors in polytetrahedral clus-
ters. Because the “locally preferred” 24-cell has little to do
with geometrical frustration, our results support the generic
polytetrahedral structures as the source of frustration. By di-
mensional analogy, we infer that the “locally preferred”
icosahedron is not singular, but instead one of the many pos-
sible geometrically frustrating structures, and explains its
limited presence in fluids. The dimensionless surface free-
energy density 	�d−1 / �kBT� is at least 2–3 times larger in
four dimensions than in three dimensions, which indicates
that geometrical frustration is surprisingly rather weak in
three dimensions. It is this weakness that helps make hard-
sphere crystallization so prevalent. The interesting puzzle is
therefore not to identify the origin of 3D frustration, but the
source of its mildness. One possibility is that the tetrahedra
that are part of the fcc structure �none are found in D4� relax
the geometrical frustration and therefore reduce the interfa-
cial tension. Another possibility is that the “planetary pertur-

bations” that allow an exchange of the positions of spheres at
the surface of an icosahedron by sliding go through a cuboc-
tahedron configuration, which is the fcc unit cell �17�. If
common, this phenomenon would imply that not all polytet-
rahedral structures are equally frustrating and that icosahedra
might in fact be early nucleation sites.

The large values for the height of the nucleation barrier of
4D crystals, as well as the evidence �Fig. 2� that the local
structures in the fluid and the D4 crystal are rather different,
indicate that it is the Delaunay packing that matters. This
finding underlines that one should be rather careful in cari-
caturing the nature of frustration as icosahedral in 3D liq-
uids. Icosahedra are but one of the many possible polytetra-
hedral arrangements, and little indicates that it plays a more
prominent role in geometrical frustration than others. Note
that the difficulty to crystallize 4D spheres makes them, as
well as their higher-dimensional equivalents, promising test-
ing grounds for theories of packing and glass-forming liq-
uids.
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