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Irreversibility and self-organization in hydrodynamic echo experiments
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We discuss the reversible-irreversible transition in low-Reynolds hydrodynamic systems driven by external
cycling actuation. We introduce a set of models with no auto-organization, and show that a sharp crossover is
obtained between a Lyapunov regime in which any noise source, such as thermal noise, is amplified exponen-
tially, and a diffusive regime where this no longer holds. In the latter regime, groups of particles are seen to

move cooperatively, yet no spatial organization occurs.
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The behavior of a system that retraces its steps after a
reversal in its dynamics—the echo protocol—has been of
long-standing interest. From a fundamental perspective, the
question of how macroscopic irreversibility arises from the
reversible dynamics of the microscopic components led to
one of the central debates on the foundations of statistical
mechanics between Loschmidt and Boltzmann [1].
Loschmidt argued that reversing the velocities of all the par-
ticles in a box should allow for the system to return to its
initial position, thus invalidating the notion of an arrow of
time. In later years, echo experiments became practical tools
as nuclear magnetic resonance and neutron spin-echo tech-
niques to probe irreversible microscopic events in soft mate-
rials, and has also, as the name would suggest, numerous
applications in acoustics [2]. From a numerical perspective,
Levesque and Verlet showed how rounding off errors suffice
to destroy reversibility in classical Hamiltonian systems [3].
A conceptually closely related situation, in the field of hy-
drodynamics, is the classic Taylor experiment to demonstrate
the perfect reversibility of viscous fluid flows [4]. It consists
of adding a drop of dye to a viscous fluid in the gap between
two concentric cylinders. The drop is then strongly stretched
by turning the inner cylinder. By subsequently imposing the
reverse rotation, mixing is not enhanced: on the contrary, the
initial spherical shape of the drop is recovered. A rather spec-
tacular elaboration of this experiment was recently per-
formed by Pine er al. [5], who substituted the ink droplet
with a high volume fraction of non-Brownian beads. Al-
though shear flow induces an effective diffusion of the par-
ticles in the suspension due to hydrodynamic interactions
[6,7], the complicated particle trajectories thus generated
during half a cycle should in principle be retraced in the
second half. By measuring the net particle displacement after
each back and forth cycle, Pine et al. uncovered a remarkable
transition from a reversible situation in which particles do
retrace their steps to a regime obtained above a critical strain
amplitude, in which reversibility is lost.

Two different but related questions immediately arise:
(i) what is the origin of irreversibility, and (ii) is the transi-
tion a sharp one, and if so, what is its nature? In a recent
paper, Corte et al. proposed that the key point could be
the close particle encounters, where nonhydrodynamic—and
hence nonreversible—contact interactions (Van der Waals,
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mechanical friction) act [8]. In one stroke this provides both
an explanation for irreversibility and a mechanism for a
sharp transition: because particles move away from situa-
tions that generate diffusion, they self-organize in subsequent
cycles into a configuration in which they avoid encounters,
and once this is done irreversible diffusion stops. Above a
certain percolation-like transition, the system is no longer
able to find such a configuration without collisions, and irre-
versibility persists in time. This scenario was further studied
analytically by Menon and Ramsawami [9], along the lines
of [10].

In this Rapid Communication, we test the opposite sce-
nario: we study models that, by construction, cannot lead to
self-organization. We assume that small irreversible pertur-
bations, such as Brownian motion, exist all along and are
amplified by chaoticity. This will take us to a situation that is
very close to that of echoes in classical Hamiltonian systems.
We shall show that a sharp increase of particle diffusion can
be observed in such a “hydrodynamic echo experiment” even
if no real dynamic phase transition and no self-organization
process occur. Although it is likely that the contact-induced
self-organization scenario is relevant for the experiments in
Ref. [5], we believe that other experimental situations (and
perhaps even the numerical hydrodynamic simulation in [5])
may well correspond to simple chaotic amplification.

Consider N force-free particles immersed in a viscous in-
compressible fluid bounded between two concentric cylin-
ders, the inner one being able to rotate at frequency w(z). For
spherical particles and creeping flows, the particle velocities
are linearly related to w [11],

X, =M, (X, ...,Xy) 0, (1)
where the x, and x, are the particle center positions and
velocities. We shall henceforth set |w| to 1. The mobility
coefficients M, are complex vectorial functions, obtained in
principle by solving the stationary Stokes problem with the
instantaneous boundary conditions, and eliminating the an-
gular velocities using the fact that the particles are torque-
free. The evolution is reversible if we make half a period 7/2
with w and subsequently 7/2 with —w; each particle retraces
its steps over a cycle as in Taylor’s experiment. Next, con-
sider the effect of a noise 7,(r) of small amplitude, €, acting
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on the particle a that we shall assume white but in general
with spatial correlation (7,(z) nb(t’))=2625(t—t’)1\2ab(xa,xb).
In the specific case of the thermal noise, 1\7Iab(xa,xb) is equal
to the mobility matrix, such as to respect the fluctuation-
dissipation theorem [12]. The equation of motion for the N
particles is

) + M (X, ... ,x0) + (0 iIF0<t<T/2, 2)

X =

=M Xy, LX) () IFTI2<t<T.

For €# 0, given that the noise is different in the two semi-
cycles, the trajectory does not retrace its steps exactly. How
much does a trajectory deviate from the initial position after
a cycle? Importantly, the invariance upon time reversal of
Eq. (2) tells us that this question is equivalent to asking how
much two trajectories, starting from the same position at
midcycle, diverge under the effect of different noise realiza-
tions. Let us first make this discussion for small noise and for
large cycle times. In this limit, we can express the separation,
A, of the particles between the two trajectories in the
3N-dimensional phase space in terms of the Lyapunov expo-
nents [13],

A e}‘llan/z, (3)

where \"™ is the largest Lyapunov exponent. An important
remark that should be made is that, because A™ is a function
of the trajectory, depending on the specifics of the driving, it
may or may not coincide with the one of a randomly chosen
trajectory after a few cycles. For instance, the system may
drift away from the regions with high Lyapunov exponents
and converge to a subset of the phase space corresponding to
smaller diffusivity. We will refer to such a phenomenon as
self-organization.

We now restrain ourselves to a limiting case in which
self-organization does not happen. Let us consider the limit
of pointwise particles, or equivalently of very dilute suspen-
sions. In this limit, the particles behave like fluid tracers. It
thus follows from the (fluid) incompressibility conditions
that the mobility coefficients obey

2 VM, =0, (4)

with V,-=4-/ Oy - This implies that the probability distribu-
tion P(x,...,Xy) converges to the flat measure. Indeed, dur-
ing each half-cycle, P evolves according to the Fokker-
Planck equation [12],

P= 2 Vb{eszaVa * ubMa}P’ (5)
ab
which admits a constant function as a solution by virtue of
Eq. (4). In this case, there can be no self-organization. In
fact, if the initial positions are chosen with flat probability,
the probability distribution does not evolve and no static
one-time correlation function depends on the cycle number.
Note that there are two independent issues concerning exter-
nal forces and interparticle potential interactions: (i) whether
they break time reversal, and (ii) whether they preserve the
flat measure. Needless to say, in a system with divergence-
less forces there can be no structural phase transitions other
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than those of equilibrium hard spheres. Furthermore, the
separation of nearby trajectories corresponds to that of an
equilibrium unbiased system, and in particular Lyapunov ex-
ponents are the “typical” ones sampled in equilibrium. Be-
cause of the obvious analogy with the well-studied classical
and quantum-mechanical problem, we shall call this the hy-
drodynamic Loschmidt-echo situation.

To stress the analogy, in this Rapid Communication we
shall substitute hydrodynamic evolution, Eq. (2), by simple
Hamiltonian dynamics, in the presence of random noise,
such that it conserves the microcanonical distribution. Our
first example is very similar to the original Loschmidt ex-
periment: we consider particles in two dimensions with
power law r~3 interaction, perturbed by small energy-
conserving noise (the choice of a long-range interaction, by
analogy with hydrodynamic coupling, is intended to limit the
role of particle encounters). The second example, which al-
lows us to go to large sizes and times, is a system of coupled
simplectic maps [14,15].

Consider first the two-dimensional (2D) system. We per-
form direct followed by time-reversed evolution, after a ve-
locity reversal in midcycle. If the system is started in a ther-
malized microcanonical configuration, then configurations
are statistically distributed in the same way at all times. Fig-
ure 1 shows the average quadratic displacement in one cycle
in terms of the cycle time, for two values of noise amplitude.
The shape of the curve is very similar to the one reported for
sheared suspensions and for superconducting vortices [5,16].
The mean squared displacement first increases exponentially
with 7 and then saturates to a constant value.

This behavior can be explained as follows. At short peri-
ods, back and forth trajectories differ only slightly, and the
Lyapunov linearization applies. Moreover, the separation per
particle is stable in the thermodynamic limit, everything else
(period, particle, and energy density) being kept equal. In-
deed, it can be shown that the condition for this is that the
distribution of the Lyapunov exponents converges to a stable
“Lyapunov density function,” which is expected for a many-
particle system [13,17].

At times T* such that ee*”” is a sizable fraction of the
interparticle distance, the linearization breaks down [18].
Moreover, for 7> T* the system completely loses memory in
a cycle, and the separation becomes “diffusive” rather than
exponential. Note, first, that the apparent transition time 7*
~X\""In(1/€) depends very weakly on the irreversible noise
amplitude, and, second, that it has a well-defined (large-N)
thermodynamic limit. In turn, the main features of the fluc-
tuations of the stroboscopic positions with 7" are insensitive
to the specific process that breaks the time-reversal symme-
try. Note also that the saturation of the actual particle self-
diffusion occurs with the typical displacement of order of the
box size. If we now make plots with the y axis in linear scale
and normalized by the saturation, the curve will have a sharp
inflection; see Fig. 1. In this sense, and probably only in this
sense, there is a sharp transition without self-organization.

In Fig. 2, we show the same results for a toy model: a
time-discrete Hamiltonian system of N coupled maps con-
structed by the composition of the following two one-step
iterations and their time reversal [15]:
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FIG. 1. (Color online) Diffusivity D vs period T for the 2D
system composed of N=250 particles. Over each half-cycle, the
particle positions evolve according to ¥,=-3,a|x,—X,|™*+¢€,
where the €, are uncorrelated Gaussian white noises of variance €
and a=2 X 1075, The box size is set to 1 and the energy is chosen
equal to E~87. The diffusivity is averaged over 100 cycles. The
open symbols correspond to the zero additional noise limit, €=0,
yet the trajectories are not reversible. This is due to the (irrevers-
ible) numerical rounding off [3]. The filled symbols correspond to
e=(l/\5) X 1077, Inset: same plot in log scale.

pi=pi+ €,
, mod 1, (6)
q; =q;i+p:+ €&,
L
[=pi+ =2 sin2n(q/ - q})]
P P VN — lj:l 1 9 mod 1, (7)

n !
q; =4,

where g/ (1) =q;(t+1), p/ (t)=p(t+1). &, and &, are Gauss-
ian white noise of variance 1. Again the fluctuations of the
stroboscopic position in the (g,p) plane display the same
features. Note that for this simple model we achieved N
=7000 and have checked that the curves for different (large)
N coincide within numerical error, and we did not observe
any sharpening of the crossover. Figure 3 shows the motion
of particles just above the mobility time. Surprisingly
enough, even in the absence of self-organization, the particle
system seems not entirely devoid of spatial features. At a
given time, there are three types of particles: almost immo-
bile, those that move back and forth along essentially one-
dimensional trajectories, and those that have a more typical
diffusive character. This latter group—which becomes domi-
nant well above the crossover—Ilooks spatially correlated,
suggesting that these are the particles that interact the most
along trajectories. In Fig. 4, we show the probability distri-
bution function of the individual particle diffusivity in one
cycle. The distribution seems exponential, and there are rela-
tively many highly diffusive particles at any time. The ob-
servation of some degree of dynamic heterogeneity does not
contradict the fact that static correlations are those of the
equilibrium system, since this involves a purely dynamic
correlation, the spatial correlations between particle dis-
placements in a cycle.
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FIG. 2. (Color online) Diffusivity D vs period T for N=7000
coupled maps. The diffusivity has been averaged over 500 cycles.
Open (filled) symbols correspond to a noise amplitude e=(1/2)
X 10712 [e=(112) X 1071°]. Inset: same plot in log scale.

The scenario discussed here is by construction the oppo-
site of the one considered in Refs. [8,9], which involves a
dramatic change in the stationary end-of-cycle distribution
near the transition, completely absent here. In Ref. [8], the
time for reaching the stationary value of diffusivity was plot-
ted, showing a peak near the transition strain, an evidence of
organization. The situation could, however, be mixed: con-
sider a system with perfect time-reversal broken by a con-
stant Brownian noise, so that the flat distribution is pre-
served. Suppose we switch on forces that violate the uniform
distribution: this is indeed what happens in the hydrody-
namic case as the volume fraction is increased. The system
will now self-organize into a distribution that, unlike the case
we studied here, will depend on strain, noise level, and par-
ticle volume fraction. If the effect is weak, we do not expect
that a sharp transition will immediately arise, so that from
this point of view the scenario is still the one we discussed
here, in spite of having a certain degree of auto-organization.
In order to further emphasize the experimental relevance of
the hydrodynamic echo scenario, we compute the crossover
shear amplitude y*, which would correspond to the experi-
mental conditions reported in [5,8]. The noise source is sup-
posed to be the weak Brownian motion of the suspended
particles. € is thus approximated by the distance over which
a single particle diffuses over half a cycle: e=VDT, D
=kpT/(67ma) with 7=3 Pas the fluid viscosity and a
=115 wm the particle mean radius [8] (note that we have
neglected hydrodynamic correlations of the noise). The inter-
particle distance is of order of A~a/¢"?. To compute *,
we also need the Lyapunov exponent of the concentrated
particle suspension. This value has been computed numeri-
cally in [19] for ¢=0.4: A ~ 0.6y, where y=2ary/T for sinu-
soidal cyclic shear. We thus infer a critical shear amplitude of
y*~3, which is fairly close to the experimental value y:xp
~1 given the crudeness of our numerical estimates. These
predictions suggest that there are very probably many situa-
tions intermediate between the percolation-like transition and
the pure Loschmidt echo crossover discussed in this Rapid
Communication, the latter being itself not far from the situ-
ation of a single particle advected in a chaotic time-reversed
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FIG. 3. (Color online) Stroboscopic plot of the particle position
after each cycle for the 2D system of interacting particles. Plot after
100 cycles for a period T=2, same parameters as in Fig. 1 (open
symbols). Only 150 trajectories are shown. Colors code for the
particle diffusivity.

mixing flow [20]. In such cases, the relative importance of
the two effects cannot be disentangled by the measurement
of the effective diffusivity of the particles and may be harder
to assess experimentally.

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 79, 030101(R) (2009)

-0.05 0

FIG. 4. (Color online) Probability density function of the par-
ticles diffusivity for T=2 (dark red circles), T=2.2 (light red
circles), and 7=2.4 (open circles). Same parameters as in Fig. 1
(open symbols). Inset: Same histograms for the coupled maps
with €=(1/v2) X 10712 and T=28 (dark blue squares), =30 (light
blue squares), and 7=32 (open squares).
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