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Modeling and simulating gas flows in and around microdevices are a challenging task in both science and
engineering. In practical applications, a gas is usually a mixture made of different components. In this paper we
propose a lattice Boltzmann equation �LBE� model for microscale flows of a binary mixture based on a
recently developed LBE model for continuum mixtures �P. Asinari and L.-S. Luo, J. Comput. Phys. 227, 3878
�2008��. A consistent boundary condition for gas-solid interactions is proposed and analyzed. The LBE is
validated and compared with theoretical results or other reported data. The results show that the model can
serve as a potential method for flows of binary mixture in the microscale.
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I. INTRODUCTION

As an efficient mesoscopic method, the lattice Boltzmann
equation �LBE� method has gained much success in simulat-
ing complex fluid systems such as the hydrodynamics of
multiphase and multicomponent fluids, magnetohydrody-
namics, colloidal suspensions, chemical reactions, flows in
porous media, etc. �1–3�, where the application of other
methods may be difficult or impractical. Recently there have
been some attempts to apply the LBE method to gaseous
microscale flows with noncontinuum effects �4–18�. For
such flows, the mean-free path of the gas ��� may be com-
parable to the typical device dimension �h�, and conse-
quently the flow is far from the thermodynamical equilib-
rium and the hydrodynamic models such as the classical
Navier-Stokes equations for continuum flows are no longer
valid. On the other hand, the Boltzmann equation is valid for
gas flows with any Knudsen numbers, Kn=� /h �19�, and
therefore the LBE, which is a discrete scheme of the Boltz-
mann equation �20,21�, is believed to have the potential for
simulating microscale gas flows.

Although a number of works have shown that the LBE is
capable of simulating gas flows with a finite Knudsen num-
ber, most of the available models are designed for single-
component gases, and much less attention has been paid to
gas mixtures. As far as the authors know, there are very
limited works reporting the applications of LBE to microf-
lows of binary mixtures �22–24�. In Ref. �22�, the authors
developed a LBE model based on a kinetic model similar to
that of Hamel �26�, and applied the model to the micro-
Couette flow to investigate the relationship between the slip
coefficients and the species concentration of a binary mix-
ture. It was found that although the tendency of slip coeffi-
cient is in good agreement with the kinetic theory and direct
simulation Monte Carlo �DSMC� results, the implementation
details, such as the boundary condition and the specification
of relaxation time, were not provided in that paper. Szalmás
made a theoretical analysis of a similar LBE model, and

proposed a boundary condition for the LBE based on the
solution of the half space Kramers problem �24�. In Ref.
�23�, Joshi et al. studied the Knudsen diffusion of a ternary
mixture in a microchannel using a LBE based on the Sirov-
ich model �27�. The Knudsen diffusivity is incorporated into
LBE heuristically by matching the LBE results to those of
the dusty gas model �DGM�. Although the LBE was shown
to be able to give good predictions for noncontinuum diffu-
sion with this correlation, the method needs further valida-
tions.

Although the above mentioned works have shown that the
LBE can capture some interesting phenomena in gas mix-
tures, the LBE models utilized there were all based on the
Bhatnagar-Gross-Krook �BGK� approximation to the Boltz-
mann equation. As revealed in some recent studies �14–16�,
the lattice BGK �LBGK� model is exposed to some disad-
vantages in treating microflows even for a single gas, while
the LBE with multiple relaxation times �MRT LBE� can
overcome these limitations. Therefore it is expected that a
MRT-LBE model would have better properties in modeling
microgas mixtures than LBGK models.

The first MRT-LBE model for binary mixtures was pro-
posed in Ref. �25�. In comparison with other models, this
LBE model has two distinct features: �i� the model uses a
multirelaxation-time collision operator where the self-
collision and cross collision among species are both incorpo-
rated; �ii� the model has a consistent baroclinic coupling be-
tween the species dynamics and the mixture, and satisfies the
indifferentiability principle, both of which have not been ad-
equately addressed in previous models. The original version
of this LBE model is primarily designed for continuum mix-
tures. In this work, we will generalize this model to microf-
lows of binary mixtures. The extension includes two parts.
First, a relationship between the relaxation times and the
mean-free paths of the species and mixture is proposed, and
second, a boundary condition for modeling gas-wall interac-
tion is developed to capture the velocity slip occurring at a
wall.

The remainder of this paper is organized as follows. In
Sec. II we present a brief introduction of the MRT-LBE
model proposed in Ref. �25�. In Sec. III we extend the LBE
model for microflows, where a relationship between the re-
laxation parameters and the individual and mixture mean-
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free paths is derived, and a boundary condition for gas-wall
interaction is proposed. Finally, we present some numerical
simulations to validate the proposed model in Sec. IV.

II. MRT LBE FOR BINARY MIXTURES

The LBE model with multiple relaxation times for a bi-
nary mixture proposed in �25� can be written as

f�i�x + ci�t,t + �t� − f�i�x,t� = ��i�f� , �1�

for i=0,1 , . . . ,q−1 �q is the number of discrete velocities�
and �=a and b, where f�i�x , t� is the distribution function for
species � associated with the gas molecules moving with the
discrete velocity ci at position x and time t, ��i�f� is the
discrete collision operator defined by

��i = − �
j

�M−1SM�ij�f�j − f�j
�eq�� , �2�

where M is a q�q transform matrix projecting f�i onto the
moment space m�=Mf�, where f�= �f�0 , f�1 , . . . , f�,q−1�T; S
=diag��0 ,�1 , . . . ,�q−1�−1 is a non-negative diagonal matrix
with �i being the relaxation time for the ith moment. As �i
=�, the MRT model reduces to the BGK model. It is noted
that the transform matrix M and the relaxation matrix S are
identical for both species in the original model proposed in
�25�, which can also be generalized to have different compo-
nents for different species.

The equilibrium distribution function in Eq. �1� depends
on the gas density, velocity, and temperature:

f�i
�eq� = wi���	�i

+
ci · u

cs
2 +

�ci · u�2

2cs
4 −

u2

2cs
2� , �3�

where 	�i is a parameter dependent on the molecular mass
m� and the velocity ci, �� is the species mass density of
species, u is the mixture velocity, and cs

2=RT is a model-
dependent parameter, where R=kB /mr with kB being the
Boltzmann constant, mr=min�ma ,mb� the reference mass,
and T the temperature. For an isothermal system, cs is related
to the lattice speed c=�x /�t, where �x and �t are the lattice
spacing and time step, respectively. It should be noted that T
appears only as a model-dependent constant in the present
LBE model. In this regard, it is more accurate to call the
LBE an “athermal” model rather than an “isothermal” model.
Actually, it is still a challenging topic to construct simple and
robust thermal LBE models. Particularly, few studies have
been reported concerning LBE models for thermal binary
mixtures. The mass density � and velocity u of the mixture
and those of the species ��� and u�� are defined respectively
as

� = �
�

�
i

f�i, �u = �
�

�
i

ci f�i,

�� = �
i

f�i, ��u� =
2�d − 1

2�d
�

i

ci f�i +
��u

2�d
. �4�

Obviously, �=�a+�b and �u=�aua+�bub. The number den-
sity of the species and mixture are n�=�� /m� and n=na

+nb, respectively. It is noted that in the original LBE model
�25�, the �-species velocity is defined as ��ū�=�ici f�i. This
definition neglects discrete effects of the diffusion force �28�.
Actually, this can be seen more clearly from the difference
between u� and ū�:

���ū� − u�� =
���u� − u�

2�d − 1
= −

�t

2
pd�,

where p is the total pressure and d� is the diffusion force
which will be defined later. This neglect may yield some
additional errors in the macroscopical momentum equation
as shown in Ref. �28�, while the definition in Eq. �4� can
avoid such discrete anomalies. A similar approach was also
proposed and discussed in �29�, and Ref. �30� proposed a
systematic way for defining a consistent velocity by means
of variable transformation.

It is noted that the collision term in the LBE �1� includes
the effects of both self- and mutual collision among gas mol-
ecules of identical and different species because the equilib-
ria f�i

�eq� uses the barycentric velocity u of the mixture instead
of the individual velocity u�. It is easy to verify that the LBE
model of Eq. �1� also satisfies another important thermody-
namic requirement, i.e., the indifferentiability principle �31�,
which means that the LBE Eq. �1� for the mixture collapses
to the equation for a pure species if two species are identical.

In this work we consider the two-dimensional nine-
velocity �D2Q9� LBE model where the discrete velocities
ci are defined by c0=0, c1=−c3=c�0,1�, c2=−c4=c�1,0�,
c5=−c7=c�1,1�, and c6=−c8=c�−1,1�; the weights in the
equilibrium distribution functions are w0=4 /9, w1=w2=w3
=w4=1 /9, and w5=w6=w7=w8=1 /36; 	�i=s�=mr /m� for
i�0 and 	�0= �9−5s�� /4, and cs=�RT=c /�3. Without loss
of generality, we shall take c as the velocity unit in the
present work. Then, the transform matrix M is given by

M =	
1 1 1 1 1 1 1 1 1

− 4 − 1 − 1 − 1 − 1 2 2 2 2

4 − 2 − 2 − 2 − 2 1 1 1 1

0 1 0 − 1 0 1 − 1 − 1 1

0 − 2 0 2 0 1 − 1 − 1 1

0 0 1 0 − 1 1 1 − 1 − 1

0 0 − 2 0 2 1 1 − 1 − 1

0 1 − 1 1 − 1 0 0 0 0

0 0 0 0 0 1 − 1 1 − 1


 .

�5�

The corresponding discrete velocity moments of the distribu-
tion functions are

m� = ���,e�,
�, j�x,q�x, j�y,q�y,p�xx,p�xy�T. �6�

These moments have clear physical significance: m�0=�� is
the density, m�1=e� is related to the total energy, m�2=
� is
a function of energy square, �m�3 ,m�5�= �j�x , j�y���ici f�i
are relevant to the momentum components, �m�4 ,m�6�
= �q�x ,q�y� depend on the heat flux, and m�7= p�xx and m�8
= p�xy correspond to the diagonal and off-diagonal compo-
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nents of the stress tensor, respectively. The relaxation matrix
corresponding to the nine moments is

S = diag���,�e,�
,�d,�q,�d,�q,�s,�s�−1, �7�

where �� can take any value since �� is a conserved variable,
while the other relaxation times should be chosen according
to the transport coefficients.

The hydrodynamic equations for the LBE �1� can be de-
rived using the asymptotic analysis. The mass and momen-
tum equations for each species are as follows:

�t�� + � · ���u�� = 0, �8a�

�t���u�� + � · ���uu� = − �p� + � · S� − �d��w�, �8b�

where p�=cs
2s���=n�kBT is the partial pressure, w� is the

friction force between species due to velocity difference,

w� = u� − u =
��

�
�u� − u��, � � � , �9�

and �d=1 / ��d−0.5��t; S� is a stress-tensor-like term defined
by

S	

� = ���	���u
� + �
���u	�� + ��� − �� � · ���u��	


�10�

where � and �� are the shear and bulk viscosities, respec-
tively:

� = cs
2��s −

1

2

�t, �� = cs

2�2 − s����e −
1

2

�t. �11�

Based on the species equations �8�, we can obtain the
mass and momentum equations for the mixture:

�t� + � · ��u� = 0, �12a�

�t��u� + u · � · ��u� = − �p + � · S , �12b�

where p= pa+ pb=nkBT is the total pressure, and S is the total
stress given by

S	
 = ���	��u
� + �
��u	�� + �
�

��� − �� � · ���u��	
.

�13�

For near incompressible flows,

S	
 � ���	u
 + �
u	� ,

where �=�� is the dynamic viscosity of the mixture.
In the diffusive scale where �t��2, ���, and u��, the

leading order of Eq. �8b� gives that

u� − u = −
�p�

�d��

= − D� � ln ��, �14�

where

D� =
cs

2s�

�d
= cs

2s���d −
1

2

�t �15�

is the self-diffusivity. From Eq. �14�, we can obtain the ve-
locity difference between the individual species �� and ��,

�d�u� − u�� = −
�p�

��

+
�p�

��

= −
p�

����

d�, �16�

where d� is the diffusion force,

d� = �x� − �y� − x�� � ln p = − d�, �17�

in which y�=�� /� and x�=n� /n. By definition of mutual
diffusivity,

x�x��u� − u�� = − D��d�,

we have

D�� =
�kBT

�dm�m�n
=

mr�

m�m�n
cs

2��d −
1

2

�t. �18�

It can be verified that

Dab =
�2

mambn2�
�

y�D�.

Based on Eqs. �11� and �18� the Schmidt number of the mix-
ture can then be expressed as

Sc �
�

D��

=
mambn

mr�

�s − 0.5

�d − 0.5
. �19�

It is seen that the relaxation times �s, �e, and �d are com-
pletely determined by the transport coefficients, and the oth-
ers can be chosen with much freedom in order to enhance
numerical stability �32�.

III. EXTENSION OF THE MRT LBE TO MICROFLOWS

In order to simulate microflows of gas mixture using the
MRT LBE �1�, we must first address two fundamental prob-
lems: �i� how to incorporate the Knudsen effect into the
LBE, and �ii� how to model the gas-wall interactions through
a suitable boundary condition. These two topics will be dis-
cussed in order.

A. Relationship between relaxation times and mean-free paths

From the Chapman-Enskog analysis of the Boltzmann
equation, it is known that the dynamic viscosity and mutual
diffusivity of a binary mixture can be expressed as �33�

� =
xa

2Ra + xb
2Rb + xaxbRab�

xa
2Ra/�a + xb

2Rb/�b + xaxbRab

, Dab =
3E

2nm0
, �20�

where m0=ma+mb, and

R� =
2

3
+

m�

m�

A, Rab� = Ta + Tb, Rab =
E

2�a�b
+

4A

3EMaMb
,

�21�

with

T� =
E

2��

+
2

3
− A, M� =

m�

m0
.

The parameter A and E depend on the intermolecular poten-
tial. For instance, for a binary mixture of hard-sphere mol-
ecules �33�,
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A =
2

5
, E =�2kBTm0

�MaMb

1

8dab
2 ,

where dab= �da+db� /2 with d� being the diameter of mol-
ecules of species �. It is evident from Eq. �20� that the vis-
cosity and diffusivity of the mixture are both complicated
functions of the individual viscosities and concentrations.

On the other hand, it is known from the kinetic theory that
the mean-free path �� of the single gas � can be determined
from the dynamic viscosity �� as �19�

�� =
��

p�

��kBT

2m�

. �22�

The above expression can be generalized to a binary mixture
�e.g., �34,35��,

� =
�

p
��kBT

2mx
. �23�

where mx=� /n=xama+xbmb.
For the D2Q9 LBE model described in the above section,

the viscosity of the mixture is related to the relaxation times
�s, and therefore we can obtain the following �s−� relation-
ship:

� =� �mx

2kBT
cs

2��s −
1

2

�t =��mx

6mr
��s −

1

2

�t, �24�

where we have used the fact that cs
2=kBT /mr=1 /3 for the

D2Q9 model. The relaxation time �d can also be related to
the mean-free path. For instance, for a binary mixture of hard
sphere gases, the mean-free path of each species is

�� =
1

�2ni��i
2
, � = a,b . �25�

The mutual diffusivity of the mixture can then be expressed
as

Dab =
3E

2nm0
=

3

2
�m0kBT

mamb
� 1

�xa�a

+
1

�xb�b
�−2

. �26�

Therefore according to Eq. �18� the relaxation time �d can be
determined from Dab as

��d −
1

2

�t =

3

2
�3m0mamb

mrmx
2 � 1

�xa�a

+
1

�xb�b
�−2

. �27�

It should be noted that �s and �d can also be recast in terms of
the Knudsen numbers of the mixture and/or species since
Kni=�i /h.

B. Kinetic boundary condition for the MRT LBE

Suitable boundary conditions must be supplied for the
MRT LBE �1� in practical applications. Some schemes, such
as the discrete Maxwell’s diffuse-reflection �DMDR� scheme
and the combined bounceback–specular-reflection �BSR�
scheme, have been proposed for MRT LBE in the case of
single gas �15�. It was shown that for single component flows
these two schemes are actually identical in a parametric

range where both are applicable, and both contain some dis-
crete effects �15� that should be corrected. In this work we
will concentrate on the BSR scheme since its applicable
range is wider than the DMDR one.

For simplicity we consider a flat surface as sketched in
Fig. 1. The lattice is arranged so that the solid wall locates at
j=1 /2, where j is the index of the grid line at yj = �j
−0.5��x. After the streaming step,

f�i�x + ci�t,t + �t� = f̃�i�x,t� ,

where f̃�i�x , t�= f�i�x , t�+��i�x , t� is the postcollision distri-
bution function, we can obtain the new distribution functions
at all nodes of j�1. But for nodes at j=1, only f�0

1 , f�1
1 , f�3

1 ,
f�7

1 , and f�8
1 can be determined in the streaming step, while

the remaining distribution functions, f�2
1 , f�5

1 , and f�6
1 , must

be specified according to the kinetic boundary conditions at
the wall. For the BSR scheme, these unknown distribution
functions are given by

f�2
1 = f̃�4

1 + 2r���c2 · uw/cs
2,

f�5
1 = r� f̃�7

1 + �1 − r�� f̃�8
1 + 2r���c5 · uw/cs

2,

f�6
1 = r� f̃�8

1 + �1 − r�� f̃�7
1 + 2r���c6 · uw/cs

2, �28�

where 0�r��1 is the portion of the bounceback part and uw
is the wall velocity. Note that r� may be different for differ-
ent species.

Now we analyze the hydrodynamic behavior of the LBE
�1� under the boundary condition of Eq. �28�. The method
employed here is similar to that used in previous studies
�12,14�. To simplify the analysis, we consider the half space
shear flow over a stationary wall �Kramers’ problem �19��
where the wall located at y=0 and the gas in the y�0 region
is sheared by imposing a fixed velocity gradient at y=�. The
flow is assumed to be unidirectional and satisfy the following
condition:

526

3 0 1

y

x

7 4 8
j = 0

δx/2

j = 1

δx

j = 2

FIG. 1. �Color online� Schematic of the flow geometry and lat-
tice arrangement.
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��

�t
= 0, �� = const, v� = u�y = 0, v = uy = 0,

��

�x
= 0,

�29�

where � is an arbitrary flow variable. Under such conditions,
by expanding the left-hand side of the LBE �1� into a Taylor
series in �t up to second order, we can obtain that

ciy�yf�i +
�t

2
ciy

2 �y
2f�i = ��i� �f� , �30�

where ��� =M−1S�M�f�− f�
�eq�� with S�=S /�t. Multiplying

both sides of Eq. �30� by the transform matrix M, we can get
the following equations for the moments:

�yp�xy +
�t

2
�y

2�2��ū�

3
+

q�x

3
� = −

���ū� − u�
�d�t

, �31a�

�yp�xy +
�t

2
�y

2�2��ū�

3
+

q�x

3
� = −

q�x + ��u

�q�t
, �31b�

�y�2��ū�

3
+

q�x

3
� +

�t

2
�y

2p�xy = −
p�xy

�s�t
, �31c�

where

��ū� � j�x = ��u� +
���u� − u�

2�d − 1
, �u = �

�

��u� = �
�

��ū�.

Equations �31a� and �31b� give that

q�x = − ��u +
�q

�d
���ū� − u� , �32�

while Eqs. �31a� and �31c� give that �neglecting terms of
O��t

2��

�1 −
1

2�s

�yp�xy = −

1

�d�t
���ū� − u� , �33a�

�y�2��ū�

3
+

q�x

3
−

1

2�d
���ū� − u�� = −

1

�s�t
p�xy ,

�33b�

from which we can obtain

��y
2���ū� +

�d + �q − 3/2
�d

���ū� − u�� =
���ū� − u�

�d�t
,

�34�

where �= 1
3 ��s−0.5��t. Taking summation of Eq. �34� over �

leads to

�y
2u = 0, �35�

which means that the LBE �1� is actually a second-order
scheme for this equation. The solution of Eq. �35� is

u = us + �y , �36�

where us is the slip velocity of the mixture velocity depen-
dent on the boundary condition, and � is the specified veloc-
ity gradient at y=�. Equations �34� and �35� indicate that

��2�d + �q −
3

2

�t�y

2�ū� − u� = ū� − u , �37�

or

��2�d + �q −
3

2

�t�y

2�u� − u� = u� − u , �38�

whose solution is

u� = u + l�eBy + k�e−By, B = ���2�d + �q −
3

2

�t�−1/2

,

�39�

where l� and k� are two constants that depend on the bound-
ary condition of the species velocity. Since �yu� is finite as
y→�, l� must be zero, and thus the velocity of species � is

u� = us + �y + k�e−By . �40�

Because �u=��u�+��u�, the parameter k� must satisfy
��k�+��k�=0. Substituting u� and u into Eq. �33b� we can
obtain that

p�xy = −
�s�t

3
���� − �2 +

2�q − 1

2�d − 1

k�Be−By� . �41�

In order to determine the slip velocity us and the constant
k�, we now turn to the boundary condition given by Eq. �28�.
First, based on the relationship between the distribution func-
tions f� and the moments m�, we have

F56
� � f�5 − f�6 =

1

3
j�x +

1

6
q�x +

1

2
p�xy , �42�

and

F̃87
� � f̃�8 − f̃�7 =

1

3
j̃�x +

1

6
q̃�x −

1

2
p̃�xy , �43�

where the postcollision moments are given by

j̃�x = j�x −
1

�d
�j�x − ��u� , �44a�

q̃�x = q�x −
1

�q
�q�x + ��u� , �44b�

p̃�xy = �1 −
1

�s

p�xy . �44c�

With the aids of Eqs. �36�, �40�, and �41�, we can obtain
that
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F56
� �y1� =

��

6
�us − ��s − 0.5��t� + �1k�e−By1��t� , �45�

F̃87
� �y1� =

��

6
�us + ��s − 0.5��t� + �2k�e−By1��t� , �46�

where y1=�x /2 is the first grid point, and

�1 =
4�d + 2�q + �4�d + 2�q − 3��s�tB

2�d − 1
,

�2 =
4�d + 2�q − 6 − �4�d + 2�q − 3���s − 1��tB

2�d − 1
. �47�

It is noted that the BSR scheme given by Eq. �28� gives that

F56
� �y1� = �1 − 2r��F̃87

� �y1� , �48�

which can be written explicitly as

raus −
1

2
��1 − 2ra��2 − �1�e−B�t/2k =

1

cs
2 �1 − ra��� ,

�49a�

rbus +
1

2
��1 − 2rb��2 − �1�e−B�x/2k =

1

cs
2 �1 − rb��� ,

�49b�

where k is an unknown parameter such that ka=ybk and kb
=−yak. The solution of this system is

us = � �1 − 2�rayb + rbya���2 − �1

�raya + rbyb − 2rarb��2 − �raya + rbyb��1
− 1���

cs
2 ,

�50a�

k =
2�ra − rb�eB�x/2

�raya + rbyb − 2rarb��2 − �raya + rbyb��1

��

cs
2 .

�50b�

It is interesting to notice that in the special case of ra=rb
=r, we have

us =
�1 − r�

r

��

cs
2 , k = 0, �51�

which means that the species and mixture velocities are iden-
tical and the profile is linear. Particularly, us=0 as r=1, i.e.,
the pure bounceback gives the no-slip boundary condition. In
general cases, however, k is nonzero and the velocity of each
species will deviate from the linear profile in a region near
the wall.

C. Realization of slip boundary condition

In the slip regime, the effects of gas-wall interaction on
the bulk flow can be modeled by a slip boundary condition.
The slip velocity at a flat wall can be expressed as
�19,36,37�,

us = cm�� , �52�

where cm is called the velocity slip coefficient �VSC�. Based
on the solution of the linearized Boltzmann equation for bi-
nary mixtures, Ivchenko et al. obtained an expression for the
VSC �36�,

cm =
pM1/2

�

5�

8 �
�
��2 − 	��x�b��K1 +

4b�

�M�
1/2K2
� ,

�53�

where 0�	��1 is the accommodation coefficient of the
gas-wall interaction for � species, and M =mx /m0; b� is re-
lated to the intermolecular potential of the gases �33,38�,

b� =
x�R� + x�T�

p�xa
2Ra/�a + xb

2Rb/�b + xaxbRab�
, �54�

where the notations can be found in Eq. �21�, and K1 and K2
are given by

K1 =
���2 − 	��x�b�

��	�x�M�
1/2 K2, K2 =

1

4�xaba + xbbb�
=

p

4�
.

�55�

It is clear that the VSC cm is a function of the species con-
centration, viscosities, intermolecular potentials, and gas-
wall interactions.

Comparing Eq. �53� with Eq. �50a�, we can see that in
order to realize the velocity boundary condition �52� in the
MRT-LBE �1�, the control parameter r� in the BSR scheme
must be chosen such that

� �1 − 2�rayb + rbya���2 − �1

�raya + rbyb − 2rarb��2 − �raya + rbyb��1
− 1� �

cs
2 = cm� .

�56�

There are many choices for r� satisfying this condition, and
the simplest one is to take ra=rb=r; in this case, we can
obtain from the above condition that r should be chosen as

r = �1 +
cm

3
� �mx

2kBT
�−1

= �1 + cm��mx

6mr
�−1

, �57�

where we have made use of kBT /mr=1 /3 for the D2Q9
model. In the limiting case of a single gas �ma=mb�, the
above result is consistent with the result obtained in a previ-
ous study �15�. It is noted that other choices of ra and rb
satisfying Eq. �56� are also possible. For example, it is
shown that in the case of a single gas r� is related to the
physical accommodation coefficient 	� �14,15�, i.e.,

1 − r�

r�

= �
2 − 	�

	�

,

where � is a constant dependent on the LBE model. There-
fore we can provide the following supplement constraint for
Eq. �56�:
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ra

rb
=

	a

	b

	b + ��2 − 	b�
	a + ��2 − 	a�

.

This constraint ensures that ra�rb if 	a�	b, which is more
reasonable. However, ra and rb would be much more com-
plicated in this case. Since different choices of ra and rb
influence the species slip only but have no effects on the
mixture slip, in this work we shall use the simplest formula-
tion, i.e., Eq. �57�.

IV. NUMERICAL RESULTS

We first validate the analytical results presented in the
above section. The MRT-LBE �1� is applied to the Kramers
problem of a binary mixture with different molecular mass
ratios and concentrations. The mean-free path of the mixture
is set to be the length unit ��=1.0�, and the outer boundary is
put at y=10� where nonslip boundary condition is applied.
The relaxation time �s is determined from � according to Eq.
�24�, �d is then chosen as �d=0.5+ �mamb /mrmxSc���s−0.5�,
and �q is set to be identical to �d; the other relaxation times
are chosen as follows: ��=1.0, �e=1.1, and �
=1.2. It is
found in our simulations that the choice of the last three

relaxation times has little effects on the numerical results.
The simulations are carried out on a mesh of size Nx�Ny
=4�100, which means there are about ten grid points in the
Knudsen layer whose size is of order �. Periodic boundary
conditions are applied to the two boundaries at x=0 and x
=4, while the BSR scheme is applied to the solid wall with
different values of ra and rb. It is assumed that ma�mb so
that mr=ma in all of our simulations.

The velocity distributions of the species and mixture pre-
dicted by the MRT-LBE with different parameters are mea-
sured and compared with the theoretical results given by
Eqs. �40� and �36�, where us and k� are determined by Eq.
�50�. The molecular masses are set to be ma=1 and mb=2,
respectively, and the number density is assumed to be na
=0.7 and nb=0.3. Figure 2 shows the result with Sc=0.6 and
1.2 at different values of ra and rb. It is clearly seen from
these figures that the numerical results are in excellent agree-
ment with the theoretical ones. Results with other parameters
are also obtained �not shown here�, and excellent agreement
is again observed. The dependence of slip velocity of the
mixture, us, on the control parameters ra and rb in the BSR
boundary scheme are also measured. In Fig. 3 the slip length
predicted by the LBE are presented together with the theo-
retical result given by Eq. �50a�. Again, excellent agreement

1 5 10

0.1

1

10

y
/
λ

u/γλ

Sc = 0.6, ra = 0.1, rb = 0.9
a

ua

u

ub

1 5 10

0.1

1

10

y
/
λ

u/γλ

b
Sc = 0.6, ra = 0.9, rb = 0.1

ub

u

ua

1 5 10

0.1

1

10

y
/
λ

u/γλ

Sc = 1.2, ra = 0.9, rb = 0.1
d

ub

u

ua

1 105

1

10

0.1

y
/
λ

u/γλ

c
Sc = 1.2, ra = 0.1, rb = 0.9

ua

u

ub

FIG. 2. �Color online� Velocity distributions of each species and mixture. Dashed lines: analytical results given by Eqs. �36� and �40�;
symbols: MRT-LBE results.
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between the numerical and theoretical results are demon-
strated.

The LBE model together with the BSR boundary condi-
tion is also applied to the Kramers problem of several binary
mixtures composed of practical gases �Ar, CO2, H2, He, and
N2�. The gases are all modeled as hard-sphere molecules. At
standard temperature and pressure, the diameters of Ar, CO2,
H2, He, and N2 are 3.659, 4.643, 2.745, 2.193, and 3.784 in
unit of Angstrom, respectively, and the molecular masses of
these gases are 39.944, 44.011, 2.016, 4.003, and 28.013,
respectively �33�. In the simulations, we take the properties
of species a as reference units, i.e., ma=1, na=1, and da=1,
and the corresponding properties of species b are obtained
according to the ratios of physical values. With these param-
eters, the viscosities and mean-free paths of species and mix-
tures, and the mutual diffusivity, can be obtained as de-
scribed in Sec. III. The relaxation times �s and �d can then be
determined from Eqs. �24� and �27�, respectively. The con-
trol parameters ra and rb in the BSR scheme are set to be
identical, i.e., ra=rb=r where r is specified according to Eq.
�57�, with cm given by Eq. �53�.

In Fig. 4, the simulated velocity slip coefficients of sev-
eral binary mixtures are shown as a function of the mole
fraction of species a when the accommodation coefficients of
both species are taken to be 	a=	b=1. The results are also
compared with those of the linearized Boltzmann equation
presented in Ref. �36� where the Lennard-Jones potential is
used to model the gases. It is clearly observed that in each
case the simulated VSC is in good agreement with the results
of the Boltzmann equation, and the nonlinear dependence on
the mole concentration is clearly shown. The discrepancies
between the LBE predictions and the data in Ref. �36� are
due to the different treatments of the intermolecular interac-
tions in the two methods: in the present work, hard-sphere
potential is used to model the interaction, while the Lennard-
Jones potential is used in Ref. �36�. Despite these discrepan-
cies, the overall agreement between the results of these two
methods is rather good.

V. SUMMARY

In the present work we have developed a LBE model for
microscale flows of binary gas mixtures. The model utilizes a
collision operator with multiple relaxation times so that it has
good numerical stability and can be applied to mixtures with
tunable Schmidt number. A kinetic boundary condition �BSR
scheme� that combines the bounceback and specular-
reflection schemes is proposed to model the gas-wall inter-
actions. The scheme was analyzed based on the Kramers
problem. It is shown that the velocity of the mixture is a
linear function of the distance to the wall, while the species
velocities are nonlinear in a region near the wall, each of
which decreases or increases exponentially with regard to the
mixture velocity. It is also shown that the slip behavior of a
binary mixture is influenced by the relaxation times, the
Schmidt number, the control parameters in the BSR scheme,
and the compositions of the species. A strategy for realizing
a slip boundary condition using the BSR scheme was also
proposed.

Some numerical simulations were carried out to validate
the theoretical results of the proposed LBE and boundary
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FIG. 3. �Color online� Slip length as a function of rb with na

=0.7, nb=0.3, ma=1, mb=2, Sc=0.8. Solid lines: analytical results
given by Eq. �50a�; symbols: MRT-LBE results.
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FIG. 4. �Color online� Velocity slip coefficient as a function of concentration of species a when 	a=	b=1.0. Solid lines are LBE results
and symbols ��� are results of the linearized Boltzmann equation �36�.
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condition. It is shown that the numerical results are in excel-
lent agreement with the analytical results. The LBE is also
applied to slip flows of several practical binary mixtures. The
simulated VSCs as a function of species concentration is
compared with those of the linearized Boltzmann equation,
and good agreement is observed. In the present work we
have concentrated on velocity slip of binary mixtures. Slip
behaviors due to concentration and/or temperature gradients
will be investigated in future works.
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