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We study the electromagnetic behavior of spherical semishell structures that have cloaking material prop-
erties proposed by Pendry, Schurig, and Smith �Science 312, 1780 �2006��. We use three-dimensional full-
wave time-harmonic field analysis to evaluate the field and dipolar force distribution produced by these
structures in free-space under plane wave illumination. We show that the optical force in proximity to these
structures is suitable for active and size-selective manipulation and trapping of neutral nanoscale particles.
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I. INTRODUCTION

Recently, Pendry et al. have proposed a method for de-
signing media that can be used to electromagnetically
“cloak” a region �1�. The cloaking material properties are
derived from a coordinate transformation that mathemati-
cally “squeezes” the cloaked region into a surrounding shell
structure. This transformation is mapped to tensor-valued
permittivity and permeability properties that are both aniso-
tropic and spatially varying. These properties apply to the
shell only, which acts as an electromagnetic shield for both
its interior and exterior domains; i.e., the inner domain is
shielded from external irradiation, while the outer domain is
simultaneously shielded from fields generated within. The
ability to cloak a region using custom tailored media has
attracted substantial interest, especially as it holds unique
potential for applications such as stealth technology. Further-
more, the development of such media has benefited from
advances in the field of metamaterials �2–12�. Specifically, a
crude cloaking system has been demonstrated at microwave
frequencies using artificially structured materials �13�.

To date, almost all research on cloaking media has fo-
cused on the analysis of fully cloaked cylindrical and spheri-
cal regions �14–19�. However, we recently studied incom-
plete cloaking metamaterial shells with apertures, and found
that they formed resonant cavities that can be excited using
plane wave illumination �20�. We continue this work and
present a study of the electromagnetic behavior of cloaking
metamaterial spherical semishell structures in free space. We
show that these structures can be used for optical manipula-
tion and trapping of neutral �dielectric� nanoparticles.

The interest in optical manipulation and trapping contin-
ues to grow, especially for biological applications where the
manipulated objects include viruses, cells, and intracellular
organelles �21–25�. While micron and submicron particles
can be manipulated using conventional laser tweezers, the
resolution of this approach is diffraction limited ��250 nm�,
and the high optical power and focusing of the laser beam
can limit the exposure time of a trapped specimen. An alter-
nate trapping method that overcomes these limitations in-
volves the use of plasmonics �26–32�. Specifically, sub-
wavelength particles can be manipulated and trapped using

the enhanced near-field gradients that exist around illumi-
nated metallic nanostructures. In this paper we show that
spherical semishells of cloaking metamaterial provide still
another alternative for implementing nanoscale optical ma-
nipulation and trapping �Fig. 1�. We use three–dimensional
�3D� full-wave time-harmonic finite element analysis �FEA�
to study the field, power flow, and dipolar force distribution
of such structures under plane wave illumination at optical
frequencies. We show that the field bending behavior of
these structures produce local field enhancement and field
gradients that give rise to an optical dipolar force that is
sufficient to trap dielectric nanoparticles. We show that these
results hold for lossy metamterials as well.

II. THEORY

In this section we first review the material properties of
spherical cloaking shell structures, and then discuss the
method we use for computing optical forces on dielectric
particles. Consider a spherical shell that is centered at the
origin. Let the inner and outer radii of the shell be denoted
by R1 and R2, respectively. Following Pendry, Schurig, and
Smith �1�, we apply the following coordinate transformation
that “squeezes” the entire spherical region 0�r�R2 into the
annulus R1�r�R2:
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FIG. 1. Semishell of cloaking material in the computational

domain.
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This transformation is mapped to “cloaking” permittivity and
permeability material tensors �� c and �� c,
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where 0����, 0���2�, and r̂, �̂, �̂ are unit vectors in
spherical coordinates �1�. For the numerical analysis, we
convert these tensors to Cartesian components

�� c =
R2

R2 − R1�
1 + ��r�cos2���sin2��� ��r�sin���cos���sin2��� ��r�cos���sin���cos���
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	 , �3�

where 	�r�= �
r−R1

r �2 and ��r�=	�r�−1. Note that Eq. �3�
gives the Cartesian components of the relative material ten-
sors in terms of the spherical coordinates �r ,� ,��, i.e., �xx

=
R2

�R2−R1� �1+��r�cos2���sin2����. To analyze a cloaked sphere
�r�R1�, we solve Maxwell’s equations using the constitutive
relations

�� = �� = 
I , r � R1 and r 
 R2,

�� c, R1 � r � R2,
� �4�

where I is the 3�3 identity matrix.
We analyze the optical trapping of sub-wavelength par-

ticles by computing the time-averaged dipolar force

�Fi
 =
1

2�
j

Re��E0j�
i�E0j�*� , �5�

where E0j �j=1,2 ,3� are the Cartesian components of the
optical field and

� =
4��0�0

�1 − �0� k2

Rp
−

2

3
ik3�� �6�

is the polarizability of the particle, where �0=Rp
3��r−1� /

��r+2�. Rp and �p are the radius and relative permittivity of
the particle, respectively. The optical force consists of two
components, a scattering force and a gradient force. The
imaginary term in � accounts for the scattering force. It is
important to note that the sign of this term �i.e., 


2
3 ik3� de-

pends on the convention used in the time-harmonic analysis,
i.e., exp�
i�t� �33–35�. We use the COMSOL high-frequency
EM solver for our analysis, which employs the exp�i�t� con-
vention and is compatible with Eq. �6�.

III. RESULTS AND DISCUSSION

We begin our study with an analysis of a spherical shell of
cloaking metamaterial. We verify the performance of the

cloaking material properties in Eq. �3� via simulation. As
noted above, we use the COMSOL Multiphysics FEA-based
electromagnetic solver for our numerical analysis. The com-
putational domain spans 5 �m in the direction of propaga-
tion �z axis�, and 3 �m in both the x and y directions �Fig.
1�. The cloaking shell has inner and out radii R1=200 and
R2=600 nm, respectively, and is centered at the origin in the
computational domain �Fig. 2�. We apply perfectly matched
layers �PMLs� at the top and bottom of the computational
domain to reduce backscatter at these boundaries. The PMLs
are 0.5 �m in height, which leaves 4 �m of physical domain
along the z axis. We impose perfect electric conductor con-
ditions at the boundaries perpendicular to the E field at x
= 
1.5 �m, and perfect magnetic conductor conditions at
the boundaries perpendicular to the H field at y= 
1.5 �m.
These symmetry boundary conditions ensure normal inci-
dence of the respective fields at the boundaries transverse to
the direction of propagation, and they mimic a two–
dimensional �2D� array of spherical shells with a center-to-
center lattice spacing of 3 �m in both the x and y directions.
Thus, we are studying the field due to a single element of a
2D array of spherical cloaking shells.

We illuminate the spherical shell with a downward di-
rected uniform TEM plane wave with the E field along the x
axis. The incident field is generated by a time-harmonic ��
=800 nm� surface current source positioned in the x-y plane
2 �m above the top surface of the semishell, i.e., at z
=2 �m �immediately below the upper PML�. The magnitude
of the surface current is chosen to provide a plane wave with
a field magnitude of Ex=2�106 V /m, which corresponds to
an incident intensity of 5.29�109 W /m2. The numerical
FEA model comprised 16 000 cubic vector elements with
306 000 degrees of freedom. The full-wave analysis shown
in Fig. 2 demonstrates that the Cartesian material properties
in Eq. �3� render the interior of the shell cloaked, as ex-
pected. Specifically, an ideal cloaking metamaterial bends
and focuses the incident EM wave in a unique way so as to
shield its interior from the wave without reflection or loss. In
this regard, note from Figs. 2�a� and 2�b� that the field is
enhanced inside the shell but not outside. Specifically, inside
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the shell a peak field value of Ex=3�106 V /m is observed,
whereas outside, the unperturbed free-space magnitude is
Ex=2�106 V /m.

Next, we study a semishell of cloaking metamaterial as
shown in Fig. 1. All parameters and boundary conditions are
as above. However, instead of using a current source to gen-
erate the incident field we employ a scattering field analysis.
We specify a time-harmonic ��=800 nm� incident field with
a magnitude of Ex=2�106 V /m. The cloaking material
properties in Eq. �3� are applied to the semishell only; all
other regions are assumed to be free space. The FEA model
for this geometry consisted of 23 285 cubic vector elements
with 422 233 degrees of freedom.

A plot of the negative time-averaged electric energy den-
sity −�We
 at 1100 nm above the shell is shown in Fig. 3�a�.
This function is proportional to the dipolar gradient force
potential, i.e., �We
= 1

4�0Re�E ·E�, and we use it to identify
potential regions of particle trapping. Specifically, the plot in
Fig. 3�a� exhibits a central minimum, which implies particle
trapping or confinement in this plane, i.e., the lateral optical
forces act to keep a dielectric particle near the z axis. We
explore this in more detail below. A cross-sectional plot of
the total �incident plus scattered� x-directed field component

Ex in the y-z plane is shown in Fig. 3�b�. From this plot we
find that the E field in locally enhanced by the presence of
the semishell at various regions of the computational do-
main, i.e., the maximum observed field is Ex=2.699
�106 V /m, whereas the unperturbed free-space magnitude
is Ex=2�106 V /m. This is due to the EM bending and fo-
cusing nature of the semishell, which acts to deform the field
�see also Fig. 4�. The induced spatial field variation results in
localized field gradients that give rise to a dipolar force. We
confirm this by computing the time-averaged axial dipolar
force Fz on nanoparticles along the z axis. We assume that all
particles have a relative dielectric permittivity �p=2.25. We
compute Fz for different sized nanoparticles Rp=50, 75, 100,
and 125 nm �Fig. 3�c��. Axial trapping points occur where Fz
changes sign, i.e., from positive below the point to negative
above it. Thus, below the point Fz acts to move the particle
upward, whereas above the point Fz acts to move the particle
downward. In Fig. 3�c� we identify two such points near z
=1100 nm, one for Rp=100 nm and another for Rp
=125 nm. From this analysis, we find that the trapping posi-
tion depends of the particle size. Thus, a semishell metama-
terial structure could potentially be used for size selective
nanoparticle separation. It should also be noted that larger
particles are not necessarily trapped as their free-space scat-
tering force, which acts downward in the direction of propa-
gation of the incident field, can exceed their gradient force.

It is instructive to compare the time-averaged power flow
vectors in the y-z plane for the spherical shell and the semi-
shell geometries �Fig. 4�. In the former, the power flow is
uniform outside the sphere as is the field, and there is no
gradient force. However, as noted above, the semishell dis-
torts the power flow and field throughout the computational
domain, thereby producing local field gradients that give rise
to regions of particle trapping.

We also plot time-averaged force vectors along with
−�We
, which is proportional to the gradient force potential,
in the y-z plane for the semishell structure �Fig. 5�. We iden-
tify a trapping region near z=1100 nm using a dotted circle
that has a diameter equal to the wavelength of the incident
light �=800 nm. Note that the trapping region is subwave-
length. The trapping force in this region exceeds both the
gravitational force as well as the Langevin force, which we
estimate at T=300 K in air with the measurement period of
1 s. Another way to evaluate the viability of particle trapping
against Brownian motion is to compare the trapping potential
Utrap=−��0Rp

3���r−1� / ��r+2��Re�E ·E� with the Brownian
energy kBT. At room temperature of 300 K the Brownian
energy is 4.14�10−21 J. The magnitude of the trapping po-
tential for our system can be estimated from the plot of the
time-averaged electric energy density �We
= 1

4�0Re�E ·E� by
multiplying this quantity within the trap, where it is rela-
tively flat, by 4�Rp

3���r−1� / ��r+2�� �see Eqs. �5� and �6��.
For example, �We
=16.75 J /m3 in the center of the trapping
region at z=1100 nm �Fig. 5�. Therefore, for a dielectric par-
ticle ��r=2.25� with Rp=100 nm, the magnitude of the trap-
ping potential is 6.19�10−20 J, which is more than an order
of magnitude greater than the thermal energy. Moreover,
based on this first-order analysis, we estimate that particles
with a radius greater than 40 nm can be trapped with the
given incident intensity of 5.29�109 W /m2. Smaller par-

FIG. 2. �Color online� Full-wave 3D time-harmonic field analy-
sis for cloaked sphere ��=800 nm�: �a� Ex in two orthogonal planes
showing a cloaked core �r�R1�, �b� Ex in the x-z plane, and �c� Ex

in the y-z plane.
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ticles can be trapped by increasing the intensity. These re-
sults are similar to those obtained using plasmonic-based
nanotrapping where it was estimated that polystyrene nano-
particles with a radius greater than 27 nm could be trapped
using an incident intensity of 1011 W /m2 �28�. Thus, cloak-
ing metamaterial-based nanotrapping has performance that is
comparable to, and potentially exceeds, that of plasmonic-

FIG. 3. �Color online� TEM full-wave analy-
sis of semishell of cloaking metamaterial ��
=800 nm�: �a� time-averaged electric energy den-
sity −�We
 in the x-y plane 1100 nm above the
semishell, �b� Ex in the y-z plane, and �c� axial
dipolar force Fz along the z axis above the semi-
shell as a function of particle radius Rp.

FIG. 4. Tine-averaged power flow vectors in the y-z plane ��
=800 nm�: �a� cloaked sphere and �b� semishell of cloaking
metamaterial.

FIG. 5. �Color online� Time-averaged dipolar force on a dielec-
tric particle �Rp=100 nm�, and the time averaged electric energy
density −�We
 in the y-z plane for �=800 nm �dotted circle indi-
cates a trapping region�.
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based nanotrapping. It offers an additional potential advan-
tage in that metamaterial semishells can in principle be de-
signed for trapping at an arbitrary specified wavelength, as
opposed to natural �e.g., metallic� materials that have a more
limited resonant response to free-space illumination.

Last, we study the performance of a lossy semishell of
metamaterial �17,18,36�. Specifically, we introduce a loss
term into each component of the permittivity and permeabil-
ity tensors, and then recompute the field and force distribu-
tion of the semishell defined above �16,36�. We choose two
different values for the loss tangent, tan���=0.1 and 0.5, re-
spectively. In Fig. 6�a�, we compare the axial force on a
nanoparticle �Rp=100 nm, �p=2.25�, with and without loss.
Note that the shape of the force profile is similar in both
cases, but the magnitude of the force decreases as loss in-
creases and there is a shift in the trapping position. A plot of
the time-averaged force and −�We
 in the y-z plane for
tan���=0.1 and 0.5 are shown in Figs. 6�b� and 6�c�, respec-
tively. It is instructive to compare these with a similar plot
for the lossless material, which is shown in Fig. 5. We find

that as loss increases, the field focusing of the semishell de-
creases as does the trapping force.

IV. CONCLUSIONS

We have used full-wave time-harmonic analysis to study
the optical field, power flow, and dipolar force distribution
produced by spherical semishells of cloaking metamaterial in
free-space under plane wave illumination. We have shown
that the EM bending nature of the structures produce local
field enhancement and field gradients that give rise to forces
on dielectric particles. The induced optical forces are suffi-
cient to manipulate and trap neutral nanoscale particles,
and the strength and location of the trap depend on the
particle size. We have also shown that these results hold for
lossy metamaterials as well. Thus, the semishell structures
could potentially be used for active size-selective nanopar-
ticle separation. Moreover, cloaking metamaterial-based
nanotrapping has performance that is comparable to, and

FIG. 6. �Color online� TEM
full-wave analysis of the semishell
of lossy cloaking metamaterial ��
=800 nm, Rp=100 nm�: �a� axial
dipolar force Fz along the z axis
above the semishell as a function
of loss tangent introduced into
each component of the permittiv-
ity and permeability tensors, �b�
time-averaged electric energy den-
sity −�We
 in the y-z plane for
tan���=0.1, and �c� time-averaged
electric energy density −�We
 in
the y-z plane for tan���=0.5.
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potentially exceeds, that of plasmonic-based nanotrapping. It
has a potential advantage in that cloaking metamaterials
semishells can, in principle, be designed for trapping at an
arbitrary specified wavelength, as opposed to natural �e.g.,
metallic� materials that have a more limited resonant re-
sponse to free-space illumination. If cloaking metamaterial

can be realized in practice, then semishells of this material
could be used in a broad range of applications in fields such
as nanoparticle chemistry, nanorheology, nanophotonics, and
biophotonics. These structures would be especially useful for
bioseparation by enabling selective manipulation and trap-
ping of nanoscale biomaterial.
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