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It is shown that cascade quasisynchronous frequency conversion due to quadratic nonlinearity can be de-
scribed in terms of an effective cubic nonlinearity. This enables one to reduce a four-mode interaction problem
to solving a system of two coupled nonlinear Schrödinger equations for the amplitudes of the waves partici-
pating in both nonlinear processes. Exact analytic solutions of the corresponding system are found in the form
of multicomponent cnoidal waves with components expressed through a sum and a difference of two similar
fundamental solutions of the Lamé equation with shifted arguments. It is shown that solutions obtained in such
a way enable one to optimize the conversion efficiency because of full coverage of the range of possible
boundary conditions.
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I. INTRODUCTION

Cnoidal waves �CWs� are self-consistent periodic solu-
tions of many nonlinear differential equations of second and
higher orders—such as the nonlinear Schrödinger equation
�NLSE�, the Korteweg–de Vries equation �KdV�, the sine-
Gordon equation, and others �1–7�—and are essentially the
modes of corresponding nonlinear problems. When a CW
consists of some self-consistent components it is generally
referred to as the multicomponent CW �MCW�. The MCW
notion is widely used in nonlinear hydrodynamics �1,8� and
plasma physics �2,9�, in description of packets of electronic
wave functions �excitons, biexcitons, superconducting pairs,
and others�, in physics of one-dimensional �1D� chains �con-
jugate polymers� �10� and two-dimensional �2D� surfaces
�ferromagnetics and high-temperature superconductors� �11�.
In optics, the MCW concept is also rather universal because
taking into account the lowest-order terms in the expansion
of nonlinear polarization usually results in equations of such
type. Here, MCWs are solutions of 1D problems of nondis-
persive propagation of pulse trains in optical fibers �3–6,12�
and of parametric generation with synchronous pumping
�13�, of 2D problems of nondiffractive propagation of wave
fronts with special periodic transverse structure through pho-
torefractive crystals �7,14�, and crystals with quadratic non-
linearity �15�.

It was recently shown �16� that MCWs play a crucial role
in a classical problem of nonlinear optics—in the description
of parametric frequency conversion in media with quadratic
nonlinearity �17�. It was proved that an exact analytic solu-
tion of a problem of steady-state interaction of three modes
with frequencies �1–3 can be found in a nonstandard
way—by increasing the order of the corresponding system of
truncated �first-order� nonlinear equations. In doing so, the
problem is reduced to three NLSEs coupled to each other
only through the boundary conditions. The possibility of
such a reduction was interpreted as describing the result of
competition of two quadratic nonlinear processes �composi-
tion �1+�2→�3 and decomposition �3→�1+�2 of quanta�
by an effective cascade cubic nonlinearity of Kerr type �18�.

Below, through the use of the approach of Ref. �16�, we
show that, when the wave mismatch is neglected �quasi-

phase-matching conditions�, four-mode cascade frequency
conversion due to quadratic nonlinearity can also be de-
scribed in terms of such effective cubic nonlinearity. After
that, the initial problem is reduced to solving a standard sys-
tem of two coupled NLSEs for the complex amplitudes of
the waves participating in both nonlinear processes �14,19�.
We show that the obtained system can be transformed to two
identical independent equations, so defining its solutions as
the sum and difference of two identical solutions of the same
NLSE with shifted arguments. Exact analytic solutions ob-
tained in such a way enable one to optimize the conversion
efficiency through full coverage of the range of possible
boundary conditions.

We present our paper in the following way. First �Sec. II�,
we show that, in a four-coupled-mode approximation without
wave mismatch, a steady-state cascade frequency conversion
problem can be reduced to solving a standard system of two
coupled NLSEs governing the complex amplitudes of two
waves participating in the two nonlinear processes. Then
�Sec. III�, we formulate a quasi-phase-matched problem for a
periodically poled nonlinear crystal and, after averaging the
obtained equations, reduce this problem to a system of two
coupled NLSEs. In Sec. IV, we solve the obtained system by
separating it into two uncoupled equations and writing down
exact analytic solutions for all possible relationships between
the coupling constants of the two nonlinear processes. Spe-
cific features and nontrivial limits of these solutions are dis-
cussed in Sec. V, where we illustrate their peculiarities by
changing the coupling constants and boundary conditions
�intensities of interacting modes in the input plane�. Finally
�Sec. VI�, we make some conclusions.

II. CASCADE FREQUENCY CONVERSION AND
EFFECTIVE CUBIC NONLINEARITY

Let us consider the propagation of four �subscripts i
=1, . . . ,4� plane colinear monochromatic waves �modes� at
frequencies �1, �2=�1, �3=�1+�2=2�1, and �4=�1+�3
=3�1 with wave vectors k1–4 and complex amplitudes A1–4
in a medium with quadratic nonlinearity. We will suppose
that interaction of the waves follows from two nonlinear pro-
cesses �1+�2,3→�3,4 with wave mismatches �k1,2=k1
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+k2,3−k3,4 correspondingly. Such a model can be used in the
case when �i� two modes �subscripts 1 and 2� at the same
frequencies �2=�1 are of different �orthogonal to each
other� polarizations ��3=�1+�2=2�1 is a sum-frequency
generation of so-called type-II �17�� and �ii� efficiency of
generation of all other waves �the modes with i�1, . . . ,4�
can be neglected. The first suggestion �i� is not of fundamen-
tal importance and is used here to simplify all further expres-
sions. The second one �ii� is much more important. This
suggestion determines the possibility of highly efficient cas-
cade up- and down-conversion and can be realized by so-
called quasi-phase-matching techniques �see next section�.
Supposing the nonlinearity is of nonresonant character and
directing the z axis along k1–4, we write a system of equa-
tions, describing the mode interaction, in the form

dA1

dz
= − i�1A2

*A3 exp�− i�k1z� − i�2A3
*A4 exp�− i�k2z� ,

�1a�

dA2

dz
= − i�1A1

*A3 exp�− i�k1z� , �1b�

dA3

dz
= − i2�1A1A2 exp�i�k1z� − i2�2A1

*A4 exp�− i�k2z� ,

�1c�

dA4

dz
= − i3�2A1A3 exp�i�k2z� . �1d�

Here �1,2 are the coupling constants for processes �1+�2,3
→�3,4.

It is easy to check that there are five second-order inte-
grals J0–4=const of Eq. �1�, which describe conservation of
the energy flux

J0 = I1 + I2 + I3 + I4 �2�

and the so-called Manley-Rowe relationships

J1 = I1 − 2I2 −
1

2
I3, J2 = I1 − I2 +

1

3
I4,

J3 = I1 +
1

2
I3 +

2

3
I4, J4 = I2 +

1

2
I3 +

1

3
I4 �3�

but only two of these integrals are independent and we can
write, for example, that

I2 − I20 =
1

2
�I1 − I10� −

1

4
�I3 − I30� ,

I4 − I40 = −
3

2
�I1 − I10� −

3

4
�I3 − I30� , �4�

where Ii=AiAi
* are proportional to intensities of the waves

and Ii0=Ai0A
i0
* = �AiAi

*�z=0.
Notice here that system �1� can be rewritten in Hamil-

tonian form

dAi

dz
= − i

�i

�1

�H

�A
i
* , �5�

where

H = �1A1A2A3
* exp�i�k1z� + �2A1A3A4

* exp�i�k2z� + c.c.

�6�

is a time-averaged density of free energy, which in the case
�k1,2=0 describes a field-medium interaction �20�. It is easy
to see that in the phase-matched case ��k1,2=0� dH /dz�0
and H=H0=const is one more integral of system �1�. After
transition to real variables �intensities Ii and phases �i of the
modes� by the substitution

Ai = �Ii exp�i�i� , �7�

expression �6� can be rewritten as

H = 2�1
�I1I2I3 cos ��1 + 2�2

�I1I3I4 cos ��2, �8�

where ��1,2=�1+�2,3−�3,4+�k1,2z. This gives the evolu-
tion equations in the form

dIi

dz
=

�i

�1

�H

��i
,

d�i

dz
= −

�i

�1

�H

�Ii
�9�

known from Ref. �20�. Using Eq. �9� we find dH /dz
=�H /�z, which in the most general case gives

H�z� = H�z = 0� + �k1�I2�z� − I20� +
1

3
�k2�I4�z� − I40� .

�10�

It is very important that I2,4 must be used here as explicit
functions of z.

Following the approach of Ref. �16�, we can try to obtain
a system of second-order differential equations correspond-

ing to Eq. �1�. To do this we change the variables Ai→ Ãi by
the substitution

Ai�z� = Ãi�z�exp�− i�iz� �11�

and choose the constants �i in such a way that the relations

��1,2 = �1 + �2,3 − �3,4 = �k1,2 �12�

are fulfilled. After a series of almost the same �see Ref. �16��
simple transformations we obtain

d2Ã1

dz2 = − ��1
2 + 3�2

2��Ã1�2Ã1 +
3

2
��1

2 − 3�2
2��Ã3�2Ã1

+ ��1
2J1 + 3�2

2J3 − �1
2�Ã1 + ��1 − �2 + �3��1Ã2

*Ã3

+ ��1 − �3 + �4��2Ã3
*Ã4, �13a�

d2Ã2

dz2 = − 4�1
2�Ã2�2Ã2 − �1

2�2I10 − 4I20 − I30�Ã2 + �1�2Ã3Ã3Ã4
*

− 2�1�2Ã1
*Ã1

*Ã4 − ��1 − �2 − �3��1Ã1
*Ã3 − �2

2Ã2,

�13b�
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d2Ã3

dz2 = − 3��1
2 + 3�2

2��Ã1�2Ã3 +
1

2
��1

2 − 3�2
2��Ã3�2Ã3

+ ��1
2J1 + 3�2

2J3 − �3
2�Ã3 + 2��1 + �2 + �3��1Ã1Ã2

− 2��1 − �3 − �4��2Ã1
*Ã4, �13c�

d2Ã4

dz2 = 4�2
2�Ã4�2Ã4 − �2

2�6I10 + 3I30 + 4I40�Ã4 − 6�1�2Ã1Ã1Ã2

− 3�1�2Ã2
*Ã3Ã3 + 3��1 + �3 + �4��2Ã1Ã3 − �4

2Ã4.

�13d�

It is easy to check that only in the case �k1,2=0, Eqs. �13a�
and �13c� can be reduced to a closed system of two coupled
NLSEs which describes interaction of the waves A1,3 in
terms of an effective cubic nonlinearity. When �k1,2�0, the

right-hand sides of both equations include the products ÃiÃj

and ÃiÃj
*, which makes such a reduced description impos-

sible. Notice here that Eqs. �13b� and �13d� can also come to
a similar closed system but in this case in addition to the
condition �k1,2=0 one must also require real A1,3.

III. QUASI-PHASE MATCHING

Generally, dispersion prevents conditions �k1,2=0 from
being satisfied �17�. For this reason, a quasi-phase-matching
technique is usually used to realize cascade processes �21�.
To do this, in a nonlinear medium one can create, for ex-
ample, a special structure, in which the signs of �1,2 change
periodically along the z axis �22�. This can be described by
the replacement �1,2→�1,2g�z�, where g�z� is an alternating-
sign function with spatial period �= �2m1,2+1��2� /�k1,2�
given by the coherence lengths 2� /�k1,2 of the two nonlin-
ear processes, m1,2 are positive integers. Using a Fourier ex-
pansion g�z�=�m=−	

m=+	gm exp�i2�m z
� �, averaging Eq. �1�, and

retaining four synchronous modes in consideration, we ob-
tain the system

dA1

dz
= − i
1A2

*A3 − i
2A3
*A4, �14a�

dA2

dz
= − i
1A1

*A3, �14b�

dA3

dz
= − i2
1

*A1A2 − i2
2A1
*A4, �14c�

dA4

dz
= − i3
2

*A1A3. �14d�

Here 
1,2= 	�1,2 exp�−i�k1,2z�
z are averaged constants of
nonlinear coupling for the processes �1+�2,3→�3,4, respec-
tively. Further transformation from Eq. �14� to second-order
equations gives a sought closed system of two nonlinear
equations for A1,3 in the form

d2A1

dz2 = − G+�A1�2A1 +
3

2
G−�A3�2A1 + ��
1�2J1 + 3�
2�2J3�A1,

�15a�

d2A3

dz2 = − 3G+�A1�2A3 +
1

2
G−�A3�2A3 + ��
1�2J1 + 3�
2�2J3�A3

�15b�

with the boundary conditions

�A1�z=0 = A10, �dA1

dz
�

z=0
= − i
1A20

* A30 − i
2A30
* A40,

�16a�

�A3�z=0 = A30, �dA3

dz
�

z=0
= − i2
1

*A10A20 − i2
2A10
* A40,

�16b�

where G�= �
1�2�3�
2�2. Notice that while equations for
A2,4 do not reduce to a similar system �see Eq. �13��, inten-
sities of both these waves can be easily found from Eq. �4�.
Notice also that analysis of solutions of similar systems is
now a subject of intensive research �12,19,23�.

Following the approach of Ref. �16�, let us introduce the
magnitudes Xj and the phases � j of the modes Aj by

Aj�z� = Xj�z�exp�i� j�z�� . �17�

After substitution of Eq. �17� into Eq. �15� and separating the
real and imaginary parts, we obtain

d2X1

dz2 − X1�d�1

dz

2

= − G+X1
3 +

3

2
G−X3

2X1

+ ��
1�2J1 + 3�
2�2J3�X1, �18a�

2
dX1

dz

d�1

dz
+ X1

d2�1

dz2 = 0, �18b�

d2X3

dz2 − X3�d�3

dz

2

= − 3G+X1
2X3 +

1

2
G−X3

3

+ ��
1�2J1 + 3�
2�2J3�X3, �18c�

2
dX3

dz

d�3

dz
+ X3

d2�3

dz2 = 0. �18d�

Because the case X1,3�z��0 is out of our interest, two inte-
grals �see Ref. �16�� for �1,3 follow from Eqs. �18b� and
�18d�. Moreover, it is easy to show that these two integrals
are also dependent and that

X1
2d�1

dz
= I10�10� = −

1

2
H, X3

2d�3

dz
= I30�30� = − H , �19�

where

H = 
1
*A1A2A3

* + 
1A1
*A2

*A3 + 
2
*A1A3A4

* + 
2A1
*A3

*A4 = const

�20�

and ��1,3�z=0=�10,30, �d�1,3 /dz�z=0=��10,30, and �Xi
2�z=0= Ii0.
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As in Ref. �16�, it follows from Eqs. �18b�, �18d�, and
�19� that if there is a value z�, where �X1,3�z=z�=0 and
�dX1,3 /dz�z=z��0, then for all other values z, where X1,3�z�
�0, the equality d�1,3 /dz�0 must be satisfied. This means
that �1,3 must be stepwise functions of z which can be taken
into account ��1,3=const� by allowing X1,3�z�= � �A1,3�z�� to
be negative. If this is not the case, we can find �1,3�z� by
integrating Eq. �19� as

�1�z� = �10 −
1

2
H�

0

z

X1
−2�z��dz�,

�3�z� = �30 − H�
0

z

X3
−2�z��dz�. �21�

IV. EXACT ANALYTIC SOLUTIONS

We have shown that the problem under consideration can
be reduced to solving a closed system of two ordinary dif-
ferential equations, which describes interaction of the com-
plex amplitudes A1,3 in terms of an effective cubic nonlinear-
ity. After another change of variables

z = z̃/�G+, �22�

the obtained system can be rewritten in the form

d2X1

dz̃2 +
1

4G+

H2

X1
3 = − X1

3 +
3

2

G−

G+
X3

2X1 + J13X1, �23a�

d2X3

dz̃2 +
1

G+

H2

X3
3 = − 3X1

2X3 +
1

2

G−

G+
X3

3 + J13X3, �23b�

where J13=
�
1�2J1+3�
2�2J3

�
1�2+3�
2�2 . Further we consider situations, when
there is a value z� at which A1�z��=0 or A3�z��=0 �that is,
one of these two waves is completely depleted or does not
present in the plane z�=z=0�, so that, H=0 and �1,3�z�
=�10,30 �see above�.

Notice here, that in the particular case �
1�2=3�
2�2 the
obtained system becomes

d2X1

dz̃2 = − X1
3 +

1

2
�J1 + J3�X1, �24a�

d2X3

dz̃2 = − 3X1
2X3 +

1

2
�J1 + J3�X3, �24b�

which is a well-known problem of the independent periodic
change of amplitude X1 in a medium with Kerr-type nonlin-
earity �14�. Nevertheless, the period of X1�z̃� oscillations de-
pends on initial intensities of all other waves �on the sum
J1+J3� and seeking the dependence X3�z̃� is reduced to solv-
ing the second-order Lamé equation �24�.

Seeking solutions of Eq. �24a� in forms typical for non-
linearity of this type �14� gives

X1 = �I10cn��z̃,k� , �25a�

X3 = �I3Msn��z̃,k�dn��z̃,k� �25b�

for �2= I20− 1
3 I40, k2= 1

2 I10�I20− 1
3 I40�−1, 2�I20− 1

3 I40�� I10
�0 and

X1 = �I10dn��z̃,k� , �26a�

X3 = �I3Msn��z̃,k�cn��z̃,k� �26b�

for �2= 1
2 I10, k2=2I10

−1�I20− 1
3 I40�, I10�2�I20− 1

3 I40�. Here 1
�k�0 is the modulus of the Jacobi elliptic functions
sn�z ,k�, cn�z ,k�, and dn�z ,k� �25� and is adjustable, the pa-
rameter I3M is related to boundary conditions and depends
both on the initial intensities Ii0 and on relations between the
initial phases �i0 �see Eq. �16b��. Notice that all other solu-
tions of system �24�, including the case I20− 1

3 I40
0, are
reduced to translation of solutions �25� and �26� along the z̃
axis. The forms written above correspond to the particular
case I10�0 and I30=0 that describes the situation which is
analyzed in Sec. V. Here and below expressions for I2,4�z�
are not written because they can be easily found from Eq.
�4�.

To analyze the case �
1�2�3�
2�2, let us first introduce
normalized variables

X1 = X̃1, X3 = �2�G+/G−�X̃3 �27�

and turn system �23� into

d2X̃1

dz̃2 = − X̃1
3 − 3�X̃3

2X̃1 + J13X̃1, �28a�

d2X̃3

dz̃2 = − 3X̃1
2X̃3 − �X̃3

3 + J13X̃3. �28b�

Here, �=1 and �=−1 correspond to the cases �
1�2�3�
2�2
and �
1�2�3�
2�2. Notice that the integrability and the char-
acter of solutions of systems of such type is determined by
the relationship between the coefficients of the nonlinear
terms �25�.

The case �=1 ��
1�2�3�
2�2� is not so difficult because it
is known �25� that the substitution

Ỹ� = X̃1 � X̃3 �29�

separates the variables and so reduces system �28� to two
independent NLSEs with nonlinearity of focusing type

d2Ỹ�

dz̃2 = − Ỹ�
3 + J13Ỹ�. �30�

It is easy to check that the two equations are coupled only
through the boundary conditions and have the same propor-
tionality constants in their linear terms. Equality of these
constants makes impossible the use of a standard approach in
which Y� are supposed to be proportional to two different
fundamental solutions cn�z ,k� and dn�z ,k� of the first-order
Lamé equation �14�, because such solutions are degenerate

only for k=1 �cn�z ,k=1�=dn�z ,k=1�=cosh�z��, so that X̃1

�0 or X̃3�0 corresponding to parametric bleaching with
I1–4=const.
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However, there are two other possibilities. First, solutions
of the two equations in Eq. �30� may be proportional to the
same elliptic functions shifted along the z̃ axis, that is,

Ỹ� = Acn��z̃ � �z̃0,k� or Ỹ� = Adn��z̃ � �z̃0,k� . �31�

Here, the parameter z̃0 describes the shift of the functions Ỹ�

which is taken as symmetrical about z̃=0. This corresponds
to the presence of extrema for I1,3 on the z̃=0 plane and
determines four nontrivial solutions of system �28�:

X̃1,3 = Acn��z̃0,k�
cn��z̃,k�

1 − k2sn2��z̃0,k�sn2��z̃,k�
, �32a�

X̃3,1 = − Asn��z̃0,k�dn��z̃0,k�
sn��z̃,k�dn��z̃,k�

1 − k2sn2��z̃0,k�sn2��z̃,k�
�32b�

for �2=A2−J13, k2= 1
2A2�A2−J13�−1, A2�max�J13,2J13�,

X̃1,3 = Adn��z̃0,k�
dn��z̃,k�

1 − k2sn2��z̃0,k�sn2��z̃,k�
, �33a�

X̃3,1 = − k2Asn��z̃0,k�cn��z̃0,k�
sn��z̃,k�cn��z̃,k�

1 − k2sn2��z̃0,k�sn2��z̃,k�
�33b�

for �2= 1
2A2, k2=2�A2−J13�A−2, and 2J13�A2�J13. Here,

the values of the real constants A and z̃0 must be chosen to
satisfy the boundary conditions �16� which determine exis-
tence regions for the solutions �32� and �33�. Notice that
returning to the initial variables X1,3 breaks the symmetry of
expressions �32� and �33� in relation to the index replace-
ment 1↔3.

Second, the solution of one equation in system �30� may
be a constant whereas the solution of the other may by pro-
portional to one of the fundamental solutions cn�z ,k� and
dn�z ,k� of the first-order Lamé equation, that is,

Ỹ� = A = const, �34a�

and

Ỹ� = Bcn��z̃,k� . �34b�

This possibility determines four other solutions of system
�28�:

X̃1,3 =
1

2
��J13 � Bcn��z̃,k�� �35�

for �2=B2−J13, k2= 1
2B2�B2−J13�−1, and B2�2J13�0;

X̃1,3 =
1

2
��J13 � Bdn��z̃,k�� �36�

for �2= 1
2B2, k2=2�B2−J13�B−2, and 2J13�B2�J13�0.

Here, the real constant B must be also chosen to satisfy the
boundary conditions �16�. Notice that in expressions �35� and
�36� the indexes can be replaced 1↔3 and, as earlier, due to

renormalization of X̃3, return to the initial variables X1,3

breaks the symmetry of Eqs. �35� and �36� regarding this
replacement.

In the case �
1�2�3�
2�2 �i.e., �=−1�, the approach de-
scribed above is also applicable. To use it, let us make first a
formal replacement z̃= iz> �see Ref. �26�� and then seek solu-
tions in two classes of functions for which

X̃1�iz̃� = iX> 1�z̃�, X̃3�iz>� = X> 3�z>� �37a�

or

X̃1�iz>� = X> 1�z>�, X̃3�iz>� = iX> 3�z>� , �37b�

where X> 1,3�z>� and X̃1,3�z̃� are real. Notice that the elliptic
functions sn�z ,k�, cn�z ,k�, and dn�z ,k� satisfy the well-
known relations sn�iz ,k�= isn�z ,k��cn−1�z ,k��, cn�iz ,k�
=cn−1�z ,k�� and dn�iz ,k�=dn�z ,k��cn−1�z ,k��, where k�
=�1−k2, that is, they satisfy Eq. �37a� and �37b� �24�. After
such a replacement, system �28� is rewritten in one of two
forms, corresponding to different solution classes

d2X> 1

dz>2 = − X> 1
3 − 3X> 3

2X> 1 − J13X> 1, �38a�

d2X> 3

dz>2 = − 3X> 1
2X> 3 − X> 3

3 − J13X> 3 �38b�

or

d2X> 1

dz>2 = X> 1
3 + 3X> 3

2X> 1 − J13X> 1, �39a�

d2X> 3

dz>2 = 3X> 1
2X> 3 + X> 3

3 − J13X> 3. �39b�

It is easy to see that now after the substitutions

Y>� = X> 3 � X> 1, �40�

we obtain two possible pairs of independent NLSEs

d2Y>�

dz>2 = − Y>�
3 − J13Y>� �41a�

or

d2Y>�

dz>2 = Y>�
3 − J13Y>�. �41b�

The two equations of pairs �41a� and �41b� are again coupled
only through the boundary conditions and have identical
constants of proportionality in the linear terms. However,
now these pairs correspond to situations with nonlinearity of
either focusing �41a� or defocusing �41b� type. For the same
reasons solutions of equations of each pair must be propor-
tional to the same elliptic functions, but by taking into ac-
count conditions �37a� and �37b� the shift of their arguments
must be imaginary:

Y>� = Acn��z> � i�z>0,k�� , �42a�

Y>� = Adn��z> � i�z>0,k�� , �42b�

or
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Y>� = Asn��z> � i�z>0,k�� . �42c�

Here, the parameter z>0 describes the shift �so that iz>0 is
imaginary� and the modulus of the Jacobi elliptic functions is
denoted by k� in order to obtain the modulus k in the final
expressions �see below� for all z̃-dependent elliptic functions.
The possibilities listed above determine three nontrivial so-
lutions of system �28�:

X̃1 = − Asn��z̃0,k��dn��z̃0,k��

�
sn��z̃,k�dn��z̃,k�

cn2��z̃,k� + �k��2sn2��z̃0,k��sn2��z̃,k�
, �43a�

X̃3 = Acn��z̃0,k��
cn��z̃,k�

cn2��z̃,k� + �k��2sn2��z̃0,k��sn2��z̃,k�
�43b�

for �2=A2+J13, �k��2= 1
2A2�A2+J13�−1, where A2�2�J13� for

J13
0 and any for J13�0;

X̃1 = − �k��2Asn��z̃0,k��cn��z̃0,k��

�
sn��z̃,k�

cn2��z̃,k� + �k��2sn2��z̃0,k��sn2��z̃,k�
, �44a�

X̃3 = Adn��z̃0,k��
cn��z̃,k�dn��z̃,k�

cn2��z̃,k� + �k��2sn2��z̃0,k��sn2��z̃,k�
�44b�

for �2= 1
2A2, �k��2=2A−2�A2+J13� and 2�J13��A2� �J13� for

J13
0;

X̃1 = Asn��z̃0,k��
dn��z̃,k�

cn2��z̃,k� + �k��2sn2��z̃0,k��sn2��z̃,k�
,

�45a�

X̃3 = − Acn��z̃0,k��dn��z̃0,k��

�
sn��z̃,k�cn��z̃,k�

cn2��z̃,k� + �k��2sn2��z̃0,k��sn2��z̃,k�
�45b�

for �2=J13− 1
2A2, �k��2=A2�2J13−A2�−1, and A2
J13 for J13

�0.
However, the above solutions do not exhaust all situations

determined by the boundary conditions. Really, variants of
I10–40 can arise for J13�0 in Eq. �41a� and �41b�. For non-
linearity of focusing type this case is described by solutions
�43� and �44�, whereas in the case of the nonlinearity of
defocusing type, solution �45� does not exist. However, de-
spite the existence of singular points, the function
sn�iz,k�dn�iz,k�

cn�iz,k� = i sn�z,k��dn�z,k��
cn�z,k��

= i�1−cn�2z,k��
1+cn�2z,k��

=if�z ,k��, which is
not a fundamental solution of the Lamé equation, satisfies
each equation of the pair �41b�. Moreover, by a shift of ar-
guments, existence of such points does not prevent looking
for solutions of Eq. �41b� in the form

Y>� = Af��z> � i�z>0,k�� , �46�

that gives the expressions

X̃1�z̃� = A
sn�2�z̃0,k��dn�2�z̃,k�

1 + cn�2�z̃0,k��cn�2�z̃,k��
, �47a�

X̃3�z̃� = A
dn�2�z̃0,k��sn�2�z̃,k�

1 + cn�2�z̃0,k��cn�2�z̃,k��
�47b�

for �2= 1
2A2, �k��2= 1

2 �A2+J13�A−2, and A2� �J13�. As previ-
ously, the values of the real constants A and z̃0 here must be
matched to the boundary conditions �16� which determine
domains of existence of solutions in such of the forms
�43�–�45� and �47�. Notice that in the case �
1�2�3�
2�2 the

symmetry of expressions for X̃1,3 in relation to replacement
1↔3 of the indexes is initially broken by requirements �37a�
and �37b�.

V. SPECIFIC FEATURES OF SOLUTIONS

To illustrate the character and peculiarities of the solu-
tions obtained we consider here the case when I10,20�0 and
I30= I40=0 �that is, H=0�. For such boundary conditions, two
low-frequency modes �A1,2� play the role of two-component
pumping which is used to generate two high-frequency
modes �A3,4�. Recall that the position of the plane z=0 is
conventional and the argument of any solution listed above
can be arbitrary shifted. Thus, to satisfy the mentioned
boundary conditions, we will use solutions �43� and �44�
shifted along the z axis by a quarter of their period.

Let us introduce the plane �� ,N� defined by the two pa-
rameters �=3�
2�2 / �
1�2−1�−1 and N= I10 / I20�0 which
describe the relationship between nonlinear coupling con-
stants and the role of boundary conditions for solutions �25�,
�26�, �32�, �33�, �43�–�45�, and �47�. Regions of existence of
these solutions are limited on this plane by separatrixes �see
Fig. 1�

�0�N� = − 1/N , �48a�

���N� =
2

N
�2 − N � �2�2 − N�� . �48b�

Separatrixes ���N� are substantially two branches of a
double-valued solution of the equation N���=8��+1� / ��2

+4��+1�� and analytically continue each other at the point
��=0, N=2�. Separatrixes �0�N� and �−�N� are tangent to
each other at the point ��=−2 /3, N=3 /2� and are also ana-
lytically joined at this point. This joining results in formation
of two intersecting curves with k=0 and k=1, respectively
�Fig. 1�. Their intersection point ��=−2 /3, N=3 /2� is singu-
lar �see below�. The regions �
1�2�3�
2�2 ���0, solutions
�32� and �33�� and �
1�2�3�
2�2 ���0, solutions �43�–�45�
and �47�� are located above and below the line �=0 which
corresponds to solutions �25� and �26� �Fig. 1�.

Expressions �25�, �32�, and �43� are proved to be respon-
sible for the region on the left side of the separatrixes ���N�,
where all three solutions can be rewritten in unified form as

X1

�A10�
=

cn��z�

1 −
�1 + �N − 1

2�1 + �N
sn2��z�

, �49a�
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X2

�A10�
= N−1/2

1 −
�1 + �N − 1 + N

2�1 + �N
sn2��z�

1 −
�1 + �N − 1

2�1 + �N
sn2��z�

, �49b�

X3

�A10�
= �2�1 + �N�−1/4 sn��z�dn��z�

1 −
�1 + �N − 1

2�1 + �N
sn2��z�

, �49c�

X4

�A10�
=

1

2
�3N�1 + ��

1 + �N

sn2��z�

1 −
�1 + �N − 1

2�1 + �N
sn2��z�

, �49d�

k =
�2��1 + �N − 1� + N�2 + ��

2�1 + �N�1/4 ,

� =� 2

N
�1 + �N�1/4�
1��A10� . �49e�

Expressions �26�, �33�, and �45� correspond to the region on
the right side of the separatrixes ���N� above the separatrix
�0�N� for ��−2 /3, where all these solutions can be also
rewritten in unified form as

X1

�A10�
=

dn��z�

1 − 2
�

2 + 3� + �2 + ���1 + �N
sn2��z�

, �50a�

X2

�A10�
= N−1/2

1 − 2
1 + � + �1 + �N

2 + 3� + �2 + ���1 + �N
sn2��z�

1 − 2
�

2 + 3� + �2 + ���1 + �N
sn2��z�

,

�50b�

X3

�A10�
= 2N−1/2� 2�1 + �1 + �N�

2 + 3� + �2 + ���1 + �N

�
sn��z�cn��z�

1 − 2
�

2 + 3� + �2 + ���1 + �N
sn2��z�

, �50c�

X4

�A10�
= 2N−1/2

�3�1 + ���1 + �1 + �N�

2 + 3� + �2 + ���1 + �N

�
sn2��z�

1 − 2
�

2 + 3� + �2 + ���1 + �N
sn2��z�

,

�50d�

k = 2� ��1 + �N

�2 + 3� + �2 + ���1 + �N���1 + �N − 1�
,

� =� 2

N

�1 + �N�1/4

k
�
1��A10� . �50e�

Expressions �44�, shifted by a quarter of their period along
the z axis, are responsible for the region on the left side of
the separatrix �0�N� below the separatrix �−�N� for ��
−2 /3, where the corresponding solution can be rewritten as

X1

�A10�
=

cn��z�dn��z�

1 + �2 + ��
�1 + �N − 1

2 + 3� − �2 + ���1 + �N
sn2��z�

,

�51a�

X2

�A10�
= N−1/2

1 + �
�1 + �N − 1

2 + 3� − �2 + ���1 + �N
sn2��z�

1 + �2 + ��
�1 + �N − 1

2 + 3� − �2 + ���1 + �N
sn2��z�

,

�51b�

X3

�A10�
= 2N−1/2� 2��1 + �N − 1�

2 + 3� − �2 + ���1 + �N

�
sn��z�

1 + �2 + ��
�1 + �N − 1

2 + 3� − �2 + ���1 + �N
sn2��z�

,

�51c�

FIG. 1. Grayscale map of the modulus k of the Jacobi elliptic
functions on the plane �� ,N� for I10,20�0 and I30= I40=0. The line
�=0 and the boundary �=−1 are shown by dash and solid lines,
whereas the separatrixes �0�N�=−1 /N and ���N�= 2

N �2
−N��2�2−N�� are identified by short dash, short dash-dot, and
dash-dot lines. The segments corresponding to k=1 and k=0 values
are shown by black and white lines. Numerical parameters �
=3�
2�2 / �
1�2−1 and N= I10 / I20 describe the relationship between
nonlinear coupling constants �
1,2�2 and the role of boundary con-
ditions �I10,20�.
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X4

�A10�
= 2N−1/2

�3�1 + ����1 + �N − 1�

2 + 3� − �2 + ���1 + �N

�
sn2��z�

1 + �2 + ��
�1 + �N − 1

2 + 3� − �2 + ���1 + �N
sn2��z�

,

�51d�

k =��1 − �1 + �N��2 + 3� + �2 + ���1 + �N�

�1 + �1 + �N��2 + 3� − �2 + ���1 + �N�
,

� =��1 + �1 + �N��2 + 3� − �2 + ���1 + �N�
2�N

�
1��A10� .

�51e�

Expressions �47� correspond to the last region, located below
the separatrix �0�N�, where this solution can be rewritten in
the form

X1

�A10�
=

2�

� + 1

dn��z�

1 +
� − 1

� + 1
cn��z�

, �52a�

X2

�A10�
= N−1/2 �2 + ���� + 1� − 2

�2 + ���� + 1�

1 +
�2 + ���� − 1� + 2

�2 + ���� + 1� − 2
cn��z�

1 +
� − 1

� + 1
cn��z�

,

�52b�

X3

�A10�
= N−1/2 2

� + 1
� 2�

2 + �

sn��z�

1 +
� − 1

� + 1
cn��z�

, �52c�

X4

�A10�
= 2N−1/2

�3�1 + ��
�2 + ���� + 1�

1 − cn��z�

1 +
� − 1

� + 1
cn��z�

, �52d�

k =�2 + �2 + ���� − 1�N
2�2 + ���N

, � = �2�2 + ����
1��A10� ,

�52e�

� =�1 − 8
1 + �

N�2 + ��2 .

Finally, the solution for the singular point ��=−2 /3, N
=3 /2� can be easily obtained as a limit of the above-written
expressions what gives an algebraic solution of solitary type

X1

�A10�
=

1

1 + �z2 , �53a�

X2

�A10�
=

1
�6

2 − �z2

1 + �z2 , �53b�

X3

�A10�
=

2��z

1 + �z2 , �53c�

X4

�A10�
=�3

2

�z2

1 + �z2 , �53d�

� =
2

3
�
1�2I10. �53e�

Notice, to determine X2,4�z� in Eqs. �49�–�53�, we used ex-
pressions �4� and took into account the sign of dA2,4 /dz near
the points X2,4=0 �see Eqs. �14b� and �14d��.

Peculiarities of these solutions are illustrated by Fig. 2
which show the dependence of X1–4 �normalized by �A10�� on
z �normalized by �� as the values of � and N are changed.
The given dependencies correspond to expressions �25a� and
�25b� ��49� for �=0, Fig. 2�a��, �26� ��50� for �=0, Fig.
2�b��, �32� ��49� for ��0, Fig. 2�c��, �33� ��50� for ��0,
Fig. 2�d��, �45� ��50� for ��0, Fig. 2�e��, and �47� ��52�,
Figs. 2�f�–2�h��, as well as, to shifted solutions �43� ��49� for
��0, Figs. 2�i� and 2�j�� and �44� ��51a�–�51e�, Figs. 2�k�
and 2�l��. The values of � and N used for all the cases are
shown on the plane �� ,N� by the points marked with the
number of the corresponding expressions �Fig. 1�.

It is easy to see that the sharpest changes in the character
of X1–4�z� are observed near to the separatrixes that deter-
mine our choice of points for calculations. On the border �
=−1, the amplitude X4�z� vanishes and expressions
�51a�–�51e� and �52� become the classical analytic formulas
describing the generation of the wave A3 from the waves A1,2
�17�. One can see also that while all solutions shown in Fig.
2 are built by using the fundamental solutions of the first-
order Lamé equation �see Ref. �16��, in addition to the
period-doubling 2K→4K, which takes place on passing
from the fixed-sign function dn�z ,k� to functions sn�z ,k� and
cn�z ,k� having alternating signs, such a doubling is observed
here for all components with alternating signs. Here K
=K�k� is the complete elliptic integral of the first kind, which
determines both the period of the fundamental solutions of
the first-order Lamé equation �i.e., the Jacobi elliptic func-
tions �24�� and the period of the above-written analytic solu-
tions.

In the case under consideration, two modes A1,2 play the
role of two-component pumping which is used to generate
two other modes A3,4. This means that the possibility of
pumping depletion is of great importance. It is easy to see
that the intensity of at least one of the pumping components
almost always can vanish. The only exclusion is solution
�50� for ��0 �Fig. 2�d�� where the minimal �superscript
�min�� pumping intensities are determined by expressions

I1
�min� = I10�1 −

8�� + 1�
N�� + 2�2�, I2

�min� = I20� �

2 + �

2

. �54�

In solutions �50� for �
0 and �52� for −2 /3��
0 the
minimal intensity I1

�min� is determined by the same expression
�54� and corresponds to points where I2=0 �Figs. 2�e� and
2�f��. However, for ��−2 /3, solution �52� exhibits two dif-
ferent minima I1

�min�= I10��N+1� /�N arising at points where
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the intensities I2–4 of all other modes are neither minimal nor
maximal �Fig. 2�g��. Notice that the dependence I3�z� dem-
onstrates extrema of the latter type in almost all the solutions
obtained �Figs. 2�b�–2�g�, 2�i�, and 2�j��. In solutions �49�
and �51a�–�51e�, the intensity I1

�min� is zero, because X1�z� is
an alternating-sign function �Figs. 2�a�, 2�c�, and 2�i�–2�l��.
Here, the minimal intensity of the second pumping compo-
nent is determined by the expression

I2
�min� = I20�1 + � − �1 + �N

�

2

. �55�

It is evident that, because of full covering of the range of
possible boundary conditions, the obtained analytic solutions
provide one with a possibility to optimize the conversion
efficiency in any concrete situation. For example, the choice
of � and N values corresponding to solution �45� near sepa-
ratrix �−�N� results in up-conversion to frequency �4 with
maximal efficiency �Fig. 2�e��.

VI. CONCLUSIONS

With the use of an approach similar to Ref. �16�, we show
that in cases when one can neglect the wave mismatch

�quasi-phase-matching conditions� the process of parametric
interaction of four modes in cascade frequency conversion
with quadratic nonlinearity can be also described in terms of
an effective cubic nonlinearity. After that, the initial problem
is reduced to solving a standard system of two coupled
NLSEs for the complex amplitudes of the waves participat-
ing in both nonlinear processes �14,19�. This system is fully
integrable and can be transformed to two identical indepen-
dent NLSEs by a simple change of variables. This defines its
solutions in an unusual MCW form: as a sum and a differ-
ence of two solutions of the same NLSE, identical but for a
shift in arguments. Exact analytic solutions obtained in such
a way enable one to optimize the conversion efficiency be-
cause the range of possible boundary conditions is fully cov-
ered.

It is natural, that all the above-written analytic solutions
can be obtained in other ways. For example, in the particular
case I30=0 and �i0=const, a full set of solutions similar to
Eq. �25�, �26�, �32�, �33�, �43�–�45�, and �47� has been ob-
tained by using a traditional unwieldy approach �17�—with
successive solution of a classical system of truncated first-
order differential equations �14�.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

FIG. 2. Evolution of X1–4�z� as the values of parameters � and N are changed. X and Y axes are normalized by � and �A10�. Shown plots
correspond to expressions �25� �a�, �26� �b�, �32� �c�, �33� �d�, �45� �e�, and �47� ��f�–�h�� as well as to shifted solutions �43� and �44� ��i�–�l��.
The � and N values used are shown on the plane �� ,N� by points marked by the solution number �see Fig. 1�.
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Notice here that the technique used above for constructing
particular solutions of a system of two NLSEs in the form of
a sum and a difference of two identical fundamental solu-
tions with shifted arguments can be rather universal and, as
far as we know, has never been used. In our opinion, this

technique can be useful in all cases when the variables of a
problem under consideration can be separated �25,27�. We
emphasize here that exact analytic solutions of a system of
two NLSEs in the form �28� have also not been obtained
before.
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