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A set of boundary conditions requiring vanishing of the normal components of the D and B vectors at the
boundary surface is introduced and labeled as that of DB boundary. Basic properties of the DB boundary are
studied in this paper. Reflection of an arbitrary plane wave, incident with a complex propagation vector, is
analyzed for the planar DB boundary. It is shown that waves polarized transverse electric �TE� and transverse
magnetic �TM� with respect to the normal of the boundary are reflected as from respective perfect electric
conductor and perfect magnetic conductor planes. The basic problem of current source above the planar DB
boundary is solved by applying TE and TM decomposition for the source. Realization of the DB boundary in
terms of an interface of uniaxially anisotropic metamaterial half-space with zero axial medium parameters is
considered. It is also shown that such a medium with small axial parameters acts as a spatial filter for waves
incident at the interface which could be used for narrowing the beam of a directive antenna. Application of DB
boundary as an isotropic soft surface with low interaction between antenna apertures also appears possible.
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I. INTRODUCTION

Electromagnetic problems defined by differential equa-
tions require boundary conditions for the fields to have
unique solutions. Boundary conditions are expressed in the
form of restricting conditions at the surface bounding the
region of interest. For uniqueness they must have a proper
form, being too loose makes the solution nonunique, being
too tight makes the solution nonexistent. For time-harmonic
electromagnetic field problems, proper boundary conditions
appear to involve two scalar conditions at the boundary sur-
face.

Boundary conditions1 should not be confused with inter-
face conditions, valid at interfaces of two media. The region
behind the boundary does not affect the problem at all while
the region behind the interface belongs to the region of in-
terest and must be taken into account. However, since any
boundary is a mathematical idealization, it must also have a
relation to some material interfaces. This relation can be seen
from two directions which can be called analytical and syn-
thetical views.

The analytical view starts from the interface problem and
calls for a boundary condition to approximate the interface in
order to simplify the mathematical problem. In this case the
boundary condition is an approximation. The synthetical
problem is the opposite. It starts from the boundary condi-
tion, which is considered exact and calls for its realization in
terms of an interface of some possible materials. Knowing
the properties of certain boundary conditions on electromag-

netic fields one has the possibility of synthesizing useful
structures defined by boundary surfaces. To realize such a
structure one must approximate the boundary in terms of an
interface of suitable material which need not be unique. For
example, surface-wave antennas have been first designed in
terms of surfaces with reactive impedance boundary condi-
tions after which the realization of such surfaces in terms of
dielectric slabs above a metallic surface have been suggested
�3�.

In this paper we take the synthetical view by starting from
a set of certain boundary conditions with interesting proper-
ties and considering its realization. Let us, however, first start
by some well-known examples of boundary conditions. The
perfect electric conductor �PEC� boundary condition for the
electric field

n � E = 0 �1�

is defined on a surface with unit normal vector n. The PEC
boundary can be realized by a medium with limiting values
of permittivity �→� and permeability �→0 �4�. The field
inside the medium depends on the value of the limiting ��
while the field outside the medium is unique. Similarly, the
perfect magnetic conductor �PMC� boundary with the condi-
tion

n � H = 0 �2�

can be realized by an interface of a medium with �→� and
�→0. Such a boundary is also known by the name “high-
impedance electromagnetic surface” and structures for its re-
alization have been constructed �5�. The perfect electromag-
netic conductor �PEMC� boundary, introduced in �6� by

n � �H + ME� = 0 , �3�

where M denotes the �pseudo� scalar admittance parameter,
is a generalization of PMC �M→0� and PEC �M→��
boundaries. Realization of the planar PEMC boundary z=0
can be achieved in terms of the interface of a certain limiting
isotropic Tellegen medium as described in �6� or of an aniso-
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1To emphasize the difference between boundary and its realization

by a medium interface, a distinction between the concepts of
boundary condition and interface condition is made following �1�,
pp. 71,74, in spite of common usage in the literature making no
such distinction �see, e.g., �2��.
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tropic medium with dyadic permittivity and permeability

�� = �zuzuz + �� t, �� = �zuzuz + �� t, �4�

uz · �� t = �� t · uz = 0, uz · �� t = �� t · uz = 0 , �5�

as suggested in �7�. To yield �3�, the axial parameters of �4�
are required to satisfy �z→� and �z→� and the transverse
medium dyadics �t ,�t are restricted by certain gyrotropic
properties.

All of the previous boundary conditions are special cases
of impedance conditions on a surface with unit normal vector
n in the form �8,9,1�

�E − Z� s · �n � H��t = 0, n · Z� s = Z� s · n = 0 , �6�

for some surface impedance dyadic Zs. Realization of the
general planar impedance boundary in terms of the uniaxial
medium �4� with infinite axial parameters was suggested in
�10�.

Let us now introduce another set of boundary conditions
in terms of the vectors D and B satisfying the following two
scalar equations:

n · D = 0, n · B = 0. �7�

Boundaries with conditions �7� are labeled DB boundaries
for brevity in this paper. The corresponding boundary condi-
tions for the E and H vectors depend on the medium in front
of the boundary. Assuming a simple isotropic medium with
permittivity � and permeability �, �7� is equivalent to the
conditions

n · E = 0, n · H = 0. �8�

The same conditions �8� are also valid for bi-isotropic media
satisfying the medium equations

�D

B
� = �� �

� �
��E

H
� , �9�

provided the medium matrix has an inverse which corre-
sponds to the condition ��−���0. For bianisotropic media
with dyadic medium parameters the DB-boundary condition
for the E and H fields is not so simple.

Boundary conditions of the form �7� or �8� for the planar
boundary z=0 were briefly introduced in �11� as following
from the interface conditions for a half-space of certain ex-
otic material labeled as uniaxial skewon-axion medium or IB
medium �12,13�. Thus, conversely, the medium interface
serves as a possible realization of the DB-boundary condi-
tions. However, another, much simpler, realization for the
DB boundary can be obtained in terms of the interface of the
uniaxial anisotropic medium �4� or its axially symmetric spe-
cial case

�� = �zuzuz + �tI�t, �� = �zuzuz + �tI�t, �10�

where the transverse unit dyadic is defined by

I�t = uxux + uyuy . �11�

Because of the continuity of the normal components of the D
and B vectors across the interface, the conditions �7� are

obtained for vanishing axial parameters, �z→0, �z→0 while
the values of the transverse parameters do not affect the
fields outside the medium when the limits are attained. It is
interesting to note that the uniaxial medium �4� can be ap-
plied for the realization of boundary conditions for either
tangential �6� or normal �7� field components. In the former
case the axial medium parameters must become infinite and
in the latter case zero.

Because the conditions �7� have such a simple form and
since they have not been treated in the literature known to
these authors, they deserve to be studied in their own right,
which serves as the basic motivation of this paper. Realiza-
tion of the boundary in terms of an interface of the uniaxial
medium �10� creates the problem how to realize the medium.
The importance of this problem will grow if and when engi-
neering applications for such a boundary will be found. Me-
dia with small permittivity and/or permeability have been of
interest in the recent surge of metamaterial research because
of their promising applications �14�. Since the work on
metamaterials has produced structures with effectively nega-
tive values of permittivity and permeability, zero parameter
values have become possible by combining regions of posi-
tive and negative parameter values �15–17�. For example, in
the case of uniaxial anisotropic medium half-space the re-
gions could be thin alternating layers of opposite-valued per-
mittivity and permeability, all parallel to the plane z=0.

The first objective of the present paper is to study the
effect of the ideal DB boundary conditions �7� on the elec-
tromagnetic field created by infinite sources �plane wave�
and localized sources �field from a dipole�. The second ob-
jective is to study the approximate realization of the DB
boundary in terms of the uniaxial medium defined by �10�
with small but finite axial parameter �z ,�z values. In the
analysis we assume that the medium above the DB boundary
is isotropic with the parameters � ,�, whence the ideal DB-
boundary conditions can be taken in the form �8�.

II. REFLECTION FROM DB BOUNDARY

The basic problem associated with the planar DB bound-
ary z=0 is to find the reflection of a plane wave from the
boundary. Let us assume incident and reflected fields of the
form

Ei�r� = Eie−jki·r, Hi�r� = Hie−jki·r, �12�

Er�r� = Ere−jkr·r, Hr�r� = Hre−jkr·r, �13�

propagating in the isotropic half-space z�0 with the wave
vectors

ki = − kzuz + K, kr = kzuz + K , �14�

satisfying the conditions

ki · ki = kr · kr = kz
2 + K · K = k2, k = ���� . �15�

Here K is a vector transverse to uz and it may have complex
components. Let us, however, assume that K2=K ·K�0, in
which case any vector a can be expanded as
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a = uz�uz · a� +
1

K2K�K · a� +
1

K2uz � K�uz � K · a� .

�16�

Now it is well known that any plane wave can be
uniquely decomposed in two components, transverse electric
�TE� and transverse magnetic �TM�, polarized with respect to
a direction in space not coinciding with that of the k vector.
Assuming that the special direction is parallel to uz we can
express

Ei,r = ETE
i,r + ETM

i,r , Hi,r = HTE
i,r + HTM

i,r �17�

with

uz · ETE
i,r = 0, uz · HTM

i,r = 0. �18�

From the Maxwell equations the field amplitudes satisfy

ki,r · Ei,r = 0, ki,r · Hi,r = 0. �19�

From these and �18� we conclude that the field components
can be expressed as

ETE
i,r = ETE

i,r uz � K, HTM
i,e = HTM

i,r uz � K , �20�

and the other components are obtained as

HTE
i,r =

ETE
i,r

k	
�uzK

2 − �uz · ki,r�K� , �21�

ETM
i,r = −

	HTM
i,r

k
�uzK

2 − �uz · ki,r�K� , �22�

with 	=�� /�. One can easily check that the plane-wave
equations are satisfied for TE and TM components sepa-
rately.

Considering the total fields ETE
i +ETE

r and HTM
i +HTM

r one
can notice that the DB-boundary conditions at z=0 in the
form �8� are satisfied automatically. On the other hand, the
remaining field components are subject to the conditions

uz · �ETM
i + ETM

r � = −
	

k
�HTM

i + HTM
r �K2 = 0, �23�

uz · �HTE
i + HTE

r � =
1

k	
�ETE

i + ETE
r �K2 = 0, �24�

whence the fields satisfy

uz � �ETE
i + ETE

r � = − K�ETE
i + ETE

r � = 0 , �25�

uz � �HTM
i + HTM

r � = − K�HTM
i + HTM

r � = 0 . �26�

Since the total TE field satisfies the PEC conditions and the
total TM field satisfies the PMC conditions, one can say that
the DB boundary appears as the PEC boundary for the TE
component and the PMC boundary for the TM component of
the plane wave. Since this is a linear relation valid for any
plane wave, it is valid for any linear combination of plane
waves and, eventually, for any field outside the sources be-
cause it can be expressed as a Fourier integral of plane
waves. A proof without resorting to plane waves is suggested
in the Appendix.

From �26� we obtain

uz � �ki � ETM
i + kr � ETM

r � = kz�ETM
i − ETM

r �t = 0 ,

�27�

whence combining with �25� a relation between the reflected
and incident transverse field components can be expressed as

Et
r = R� t · Et

i, �28�

with the reflection dyadic defined by

R� t =
1

K2 �KK − �uz � K��uz � K�� . �29�

As a check, the eigenvectors of the reflection dyadic �K and
u�K� are seen to correspond to the TM and TE waves with
the respective eigenvalues +1 and −1 corresponding to re-
flections from respective PMC and PEC planes.

For any fields at the DB boundary we can write

n � �E � H*� = E�n · H�* − �n · E�H* = 0 , �30�

whence the complex Poynting vector is either normal to the
boundary or zero. Conversely, if the complex Poynting vec-
tor is not zero and it satisfies �30� for any fields E ,H at the
boundary of an isotropic medium, the fields satisfy the DB
conditions �8�.

A boundary with no power propagation along the surface
has been called an electromagnetic soft surface in the past
�18�. Since this requires that the real part of the Poynting
vector have no tangential component, a DB boundary is a
soft surface but the converse is not necessarily true. Early
realizations have required an anisotropic boundary surface
representing the soft-surface property to waves propagating
in a certain direction, for example, transverse to corrugations
on a metal plane. Because the DB boundary has no compo-
nent of the complex Poynting vector parallel to the surface, it
can be called the isotropic soft surface. Isotropic soft sur-
faces have been realized in terms of band-gap structures
�5,19�. There are engineering applications for the soft sur-
face, like forming circularly symmetric radiation patterns for
a horn antenna. An isotropic soft surface can be used to
reduce coupling between antenna apertures in the surface so
that they can be positioned closer to each other for a more
compact array. The DB boundary serves as a simple model
for the numerical implementation of problems involving cer-
tain soft surfaces regardless of their realization.

A parallel-plane waveguide with DB-boundary conditions
on each plane supports modes consisting of plane waves re-
flecting from both planes. It is obvious that the modes can be
split in two groups, those TE and those TM with respect to
the normal of both planes. In this case, the TE modes are the
same as those corresponding to two PEC planes while the
TM modes correspond to two PMC planes.

In the previous study we have excluded the case K=0,
i.e., the normally incident plane wave. This case appears
somewhat strange, because the fields appear to satisfy iden-
tically the DB-boundary conditions �7�. This means that an
incident TEM wave does not see a planar DB boundary at all
and, consequently, there is no reflection from it. For a source
of limited extent, with radiation consisting of a continuous
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distribution of plane waves, this is not important, since the
normally incident plane-wave component corresponds to a
part of zero energy of the whole spectrum and can be easily
neglected. A physical insight to this case can be obtained
when considering a realization of the DB boundary in terms
of the interface of anisotropic medium �10�, as discussed in
Sec. V

III. IMAGE THEORY

As a problem involving a localized source let us consider
a current element above the planar DB boundary z=0. De-
composing the source in two parts radiating TE and TM
fields in a homogeneous isotropic space splits the problem in
two noninteracting parts because TE and TM fields do not
couple at the DB boundary.

Because an axial �vertical� electric dipole source

J = uzIL
�r − uzh� = uzIL
���
�z − h�, � = uxx + uyy ,

�31�

radiates a TM field, the reflected field can be straightfor-
wardly found by applying the image theory. In this case the
image source yielding the reflected field equals that of the
PMC plane,

Jr�r� = − uzIL
�r + uzh� . �32�

The problem is more complicated for the transverse �hori-
zontal� electric dipole

J = uxIL
�r − uzh� , �33�

since its field contains both TE and TM components. How-
ever, we can now apply the theory described in �20� on how
to decompose the source in two parts,

J�r� = JTE�r� + JTM�r� , �34�

so that JTE gives rise to a TE field and, JTM, to a TM field. In
this case the total reflection image can be obtained by com-
bining the respective images in the PEC and PMC planes.

From the three possible decompositions given in �20� we
choose the one in terms of surface currents on the plane z
=h,

JTM��,z� = uxIL
��z − h�
x

2��2 , �35�

JTE��,z� = J�r� − JTM��,z� , �36�

in terms of which the reflection image can now be con-
structed as follows. The image of JTM equals that of the PMC
plane,

JTM
r �r� = uxIL
��z + h�

x

2��2 . �37�

The image of JTE equals that of the PEC plane,

JTE
r �r� = − uxIL
�r + uzh� + uxIL
��z + h�

x

2��2 . �38�

Thus, the total image has the form

Jr�r� = − uxIL
�r + uzh� + ux2IL
��z + h�
x

2��2 . �39�

The derivative of the 
 function indicates that the surface
current is formed of two current layers flowing in opposite
directions.

IV. PROPAGATION IN UNIAXIAL HALF-SPACE

Let us now consider the realization of the planar DB
boundary in terms of the interface of a uniaxial anisotropic
medium defined by permittivity and permeability dyadics
�10�. The ideal DB boundary is obtained in the limit �z→0
and �z→0. However, let us consider the approximate case
with small values of these parameters.

Since the plane-wave fields in any medium satisfy the
orthogonality conditions

E · B = 0, H · D = 0, �40�

for the anisotropic medium �10� we have

E · �A�� + B��T� · H = 0 �41�

for any coefficients A and B. Choosing A=�t and B=−�t this
reduces to

��t�z − �t�z�EzHz = 0. �42�

Assuming that the parenthetical term does not vanish �which
corresponds to the special case of an affine-isotropic medium
�1��, any plane wave must satisfy either Ez=0 or Hz=0,
which means that the plane waves have either TE or TM
polarization with respect to the axial direction. Thus, a TE
wave incident at the interface of such a medium is reflected
and transmitted as a TE wave and similar rule is valid for the
TM wave.

Let us only consider the TE wave, the TM-wave case can
be analyzed through similar steps. Assuming the wave vector
of the form

k = uxkx + uz
 , �43�

the field vectors of the TE field can be expressed as

E = uyE , �44�

H = uxH + uzHz = H�ux − �kx�t/
�z�uz� . �45�

The last expression is due to the condition k ·B=0. The Max-
well equations now reduce to two scalar equations


E = − ��tH , �46�

�
 + �kx
2�t/
�z��H = − ��tE , �47�

whence the dispersion equation becomes


2 + ��t/�z�kx
2 = �2�t�t = kt

2. �48�

The k-vector diagram is a spheroid. For axial propagation
kx=0 �TEM wave� we have 
=kt and for transverse propa-
gation 
=0, kx=kt

��z /�t=���z�t. In the limit �z /�t→0
the spheroid becomes a needle whence real 
 values are
obtained only for small kx values.
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Solving the axial propagation factor 
 from �48� as


 = � �kt
2 − kx

2�t/�z, �49�

real values for 
 are only obtained for real kx values satisfy-
ing

kx
2 � kt

2�z/�t. �50�

If �z /�t is small, real propagation is possible only in a nar-
row cone of k vectors around the z axis. For larger kx values

 becomes imaginary, and in the limit �z /�t→0 
 obtains a
large imaginary value


 → jkx
��t/�z. �51�

The sign is chosen so that the field decays in the direction of
negative z.

Denoting

	t = ��t/�t, �52�

the ratio of the transverse fields is

ZTE = E/H = − 	tkt/
 , �53�

which becomes small and imaginary for small �z /�t,

ZTE → j���t�z/kx → 0. �54�

For the TM wave the results are dual to those of the TE
wave �1�. The dispersion equation has the form


2 + ��t/�z�kx
2 = kt

2. �55�

V. REFLECTION FROM THE INTERFACE

Let us now consider the plane wave �12� incident at the
interface z=0 of the uniaxial medium. Because there is no
coupling between the TE and TM waves at the interface, we
can consider these components separately. Let us assume that
the lateral component of the wave vector, K=uxkx is real.
Because of continuity of the transverse components of the
total E and H fields across the interface, their ratio must
equal the transverse wave impedance of the wave transmitted
to the uniaxial medium. For the TE polarization we have

Ey
i + Ey

r

Hx
i + Hx

r = ZTE = − 	tkt/
 = −
	tkt

�kt
2 − kx

2�t/�z

. �56�

From the Maxwell equations the incident and reflected wave
amplitudes satisfy

kz
iEy

i = − k	Hx
i , kz

iEy
r = k	Hx

r . �57�

Defining

kz
i = k cos �i, kx = k sin �i, �58�

where �i is the angle of incidence �see Fig. 1�, the reflection
coefficient

RTE = Ey
r/Ey

i = − Hx
r/Hx

i , �59�

can be solved from �53� as

RTE =
ZTE cos �i + 	

ZTE cos �i − 	
=

	t cos �i − 	�1 − sin2�i��/�z�t

	t cos �i + 	�1 − sin2�i��/�z�t

.

�60�

It is of interest to consider the reflection coefficient for dif-
ferent angles of incidence. For grazing incidence, �i=� /2,
we obviously have RTE=−1 or the boundary acts as a PEC
plane. For smaller angles RTE is complex with �RTE�=1 until
the square root in �60� becomes zero, which happens at the
angle �i=�TE defined by

sin2 �TE =
�z�t

��
. �61�

For this angle we have 
=0 and RTE= +1, or the boundary
acts as a PMC plane. For still smaller angles RTE becomes
real and smaller than +1 until for normal incidence �i=0 we
have

RTE =
	t − 	

	t + 	
. �62�

If 	t=	, this limit is zero, whence there is no reflection for
TE waves. Obviously, this limit is also valid for TM waves
because the field is TEM for normal incidence. For small
values of �z /�t the angle �TE is small as

�TE 	��z

�t

kt

k
, �63�

which means that the above-mentioned change in the reflec-
tion coefficient happens within a small cone of incidence
angles. Figure 2 illustrates the absolute value and the phase
angle of the reflection coefficient for the TE-polarized field
for three values of the relative axial permeability �z /�t. It
can be clearly seen that when �z /�t decreases, the angular
filtering region around �i=0 becomes narrower. In Fig. 3 the
reflection coefficient is shown in the complex plane. Consid-
ering the impedance �53� of the TE wave which for oblique
incidence can be approximated by �54� and comparing with
�56�, we can interpret the �almost� total reflection for large
angles of incidence as being due to the impedance mismatch
while the opposite is true for normal incidence when 	t=	.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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FIG. 1. Geometry of the reflection from a DB surface.
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Similar analysis can be applied to the TM component with
interchanged permittivity and permeability parameters.
Taken together we can state that, for 	t=	 the medium acts
as a spatial filter for incident plane waves. For small �z and
�z the fields are completely reflected by the interface for
angles of incidence greater than �TE and �TM. Within the
narrow cones defined by these angles the field components
are let through as multiplied by the corresponding transmis-
sion functions TTE=1−RTE and TTM=1−RTM. A slab of this
kind of medium may have application in narrowing radiation
beams of directional antennas or reducing their sidelobes,
with the expense of lowering the effectivity due to reflection
of the radiated power outside the filtering angular cone. A
similar filtering effect has been previously reported for iso-
tropic epsilon-near-zero metamaterials in �15,16�. This effect
is different from that due to the metamaterial layer described
in �21� which is based on concentrated refraction in which
the sidelobes are refracted instead of being filtered out. Simi-
lar effect in terms of a layer of magnetoelectric chiral me-
dium was described in �22�.

In the present analysis we have not taken into account the
limitations of real media as being dispersive and lossy. How-
ever, for a narrow frequency band with relatively constant
permittivity and permeability values the dispersion and loss
effects may be neglected as the first approximation.

VI. CONCLUSION

Boundary conditions requiring vanishing of the D and B
vector components normal to the boundary were studied in
this paper. The conditions, labeled here as those of DB
boundary, were briefly introduced in �11� as arising at an
interface of an exotic bianisotropic medium. In the present
paper realization of the same conditions is considered in
terms of the interface of a simple uniaxial anisotropic me-
dium in the case when the axial permittivity and permeability
parameter values tend to zero. Fabrication of such media
appears possible by alternating layers of metamaterials with
positive and negative values of the permittivity and perme-
ability parameters. The most interesting property of a planar
DB boundary is that it appears as a perfect electric and mag-
netic conductor �PEC and PMC� boundary for fields with
respective TE and TM polarizations. This allows one to solve
the basic problem of a source above a DB plane through
image theory by applying the known TE and TM decompo-
sition theory for sources. Finally, wave reflection from an

interface of the uniaxial anisotropic half-space with small
axial components is analyzed. It is shown that, for this ap-
proximate realization of the DB boundary, there is a narrow
cone around the normal incidence where the wave is trans-
mitted through the interface. Since a layer of such a medium
acts as a spatial filter it may have application for narrowing
the beam or reducing the sidelobes of an antenna. Also, since
the Poynting vector does not have a component along the DB
boundary, interaction of aperture antennas on such a surface
can be reduced.

APPENDIX: GENERAL FIELDS AT DB BOUNDARY

To study fields from general sources above a planar DB
boundary, we apply the known property that any field in a
homogeneous isotropic medium outside the sources can be
expressed in terms of two scalar potential quantities ��r�,
��r� as �4,23,24�

E�r� = � � �uz�� + � � �� � �uz��� , �A1�
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FIG. 3. �Color online� The TE reflection coefficient from a DB
surface with parameters �t=�, �t=� in the complex plane �solid
line�. Note that the TM reflection �dashed line� follows the same
path multiplied by −1.
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H�r� =
j

��
� � �� � �uz��� + j�� � � �uz�� . �A2�

To satisfy the Maxwell equations, the potential functions
must satisfy outside the sources the Helmholtz equation

��2 + k2�� = 0, ��2 + k2�� = 0. �A3�

Obviously, the � function defines the TE component, and the
� function the TM component, of the electromagnetic field,

ETE�r� = � � �uz�� , �A4�

ETM�r� = � � �� � �uz��� , �A5�

HTE�r� =
j

��
� � �� � �uz��� , �A6�

HTM�r� = j�� � � �uz�� . �A7�

Let us study the DB boundary conditions on the plane z
=0 for the TE part. Since the electric field satisfies uz ·ETE
=0 everywhere, we must require that the condition

− j�uz · BTE = uz · � � ETE = uz · 
� � �� � �uz����

= �z
2� − �2� = 0 �A8�

be valid at the boundary z=0. Applying �A3� yields the con-
dition

�t
2��r� = 0, uz · r = 0. �A9�

Since there are no sources at the boundary, the potential
cannot have any singularities on the plane z=0. Also, assum-
ing that the sources have finite extent close to the z axis, the
field must reduce to zero for increasing distance �x2+y2. It is
known that a function f�x ,y� satisfying the Laplace equation
in a region on a plane has its maxima and minima at the
boundary curve. Taking the boundary far from the axis
shows us that the minima and maxima must tend to zero.
This leaves us with the following solution at the boundary:

��r� = 0, ⇒ uz � ETE�r� = 0, uz · r = 0. �A10�

Thus, the TE field ETE�r�, HTE�r� satisfies the PEC condi-
tions at the boundary. The magnetic field at the boundary
becomes

HTE�r� =
j

��
� � �� � �uz��� =

j

��
�t�z�, uz · r = 0,

�A11�

which is tangential to the boundary and does not vanish in
the general case.

After a similar analysis one can show that the TM field
ETM�r�, HTM�r� satisfies the PMC condition at the boundary
z=0.
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