
Stability of particle rotation in a rotating electric field

Yu. Dolinsky* and T. Elperin†

The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering,
Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel

�Received 29 August 2008; revised manuscript received 28 November 2008; published 3 February 2009�

Depending on the parameters of a particle and of a host medium, a particle in a rotating electric field can
rotate either in the direction of rotation of electric field or in the opposite direction. There exists a range of
parameters where both regimes of rotation can be realized simultaneously. In this study we investigate stability
of rotation regimes in the whole range of parameters. We determine the range of parameters where different
modes of particle rotation are stable, the range of parameters where only one regime of rotation is stable and
the range of parameters where both regimes of rotation are unstable. It is shown that if the mode of rotation is
realized outside the domain of the existence of two regimes of rotation, then this rotation mode is stable.
Consequently, unstable regimes can be realized only in the range of parameters where both modes of rotation
can exist simultaneously. We suggest a simple algorithm for determining the range of stability through the
parameters of the system which does not require calculating frequencies of particle rotation in each of the
possible rotation regimes.
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I. INTRODUCTION

Dynamics of solid or liquid particles in a host medium
under the action of an external electric field attracted much
attention lately because of numerous technological applica-
tions, e.g., manipulation of microparticles in biotechnology
and genetic engineering, nanotechnology, and noncontact
measurements of physical properties of particles. One of the
topics of these theoretical and experimental studies is rota-
tion of liquid or solid particles embedded into a weakly con-
ducting host medium �1–4�.

In our previous study �5� we investigated rotation of par-
ticle in a rotating electric field. In Ref. �5� it was shown that
depending upon permittivity �1 and conductivity �1 of the
host medium and electric conductivity �2 and permittivity �2
of the particle, under the action of a rotating electric field, the
particle immersed in a host medium can rotate either in the
direction of rotation of electric field or in the opposite direc-
tion. The first mode of rotation occurs when �1 /�2��1 /�2
while the second mode of rotation is realized when

�1/�2 � �1/�2. �1�

In the case when condition �1� is satisfied the particle rotates
against the direction of rotation of the external electric field.
The mechanism of rotation is associated with a finite time of
relaxation of the electric charge �0=�0�1 /�1, where �0 is
permittivity of the vacuum. It is natural to classify particles
which satisfy a condition �1� as negative electroviscosity
�NEV� particles, and particles which meet the opposite in-
equality can be classified as positive electroviscosity �PEV�
particles. The important difference between the NEV par-
ticles and the PEV particles is that in the whole range of
parameters the PEV particles rotate in the direction of rota-
tion of the external electric field while for the NEV particles

there exists a range of parameters �amplitude and frequency
of rotation of the external electric field� whereby NEV par-
ticles can rotate either in the direction of rotation of the ex-
ternal electric field or in the opposite direction. To put it
differently, the NEV particles can be either in the NEV or
PEV regime. The range of parameters where both regimes
can be realized simultaneously can be characterized by the
frequency of rotation of the electric field �c�E�, where E is
the amplitude of the external electric field, such that when
the frequency ���c�E�, both regimes PEV and NEV can be
realized simultaneously. In Ref. �5� this range of parameters
was called, not quite adequately, the bistable electroviscosity
region although the analysis of the range of instability was
not performed. In this study we distinguish between the
range of parameters where only one regime of rotation can
be realized, single electroviscosity �SEV� region, and the
range of parameters whereby different regimes of rotation
are possible, bielectroviscosity �BEV� region. We investigate
the BEV region and distinguish between three types of do-
mains where both regimes are stable, one regime is stable or
both regimes are unstable. We show that the domain where
both regimes are unstable exists only in the BEV region
while rotation regime in the SEV region is always stable.

It must be noted that formally the investigated model de-
scribes not only the behavior of the individual particle sub-
jected to the rotating electric field but also the behavior of
the sheared fluid-particle suspension in the constant electric
field �6�. In Ref. �6� the behavior of particle in the bistability
range was analyzed in the case when parameters were se-
lected such that both rotation regimes were stable. It was
found that random velocity fluctuations result in an uncom-
pensated flow regime whereby the number of particles rotat-
ing in the direction of shear flow vorticity is larger than the
number of particles rotating in the opposite direction. For-
mally, the behavior of particles with angular velocity di-
rected as the vector of the shear flow vorticity vector is
equivalent to the behavior of particles rotating against the
direction of rotation of the external field. The latter assertion
can be easily validated by using the frame of reference that
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rotates with the electric field. Consequently, the behavior of
the NEV particles in the NEV regime is equivalent to the
behavior of rotating particles having the angular velocity
vector directed as the vorticity vector of a shear flow and
subjected to the constant electric field. In Refs. �7–9� it was
established that in this regime particles reduce the effective
viscosity of the suspension while rotating particles with the
angular velocity vector directed against the shear flow vor-
ticity vector increase the effective viscosity of the suspen-
sion.

Rotation of particles with angular velocity vector directed
against the shear flow vorticity vector and subjected to the
constant electric field is formally equivalent to the behavior
of the NEV particles in the PEV regime under the action of
the rotating electric field. Note also that in Ref. �6� the analy-
sis of the bistability domain was conducted for the strength
of the electric field E2 /Ec

2=2, where Ec is a threshold ampli-
tude of the electric field required for the excitation of
Quincke rotation. In the present study we demonstrate that
when condition E2�8Ec

2 /3 is satisfied, the NEV and the
PEV regimes are stable irrespective of the particle inertia or
frequency of rotation of the electric field. The obtained re-
sults allow expanding the range of parameters and investi-
gating the dependence of the effect of particle velocity fluc-
tuations upon the deviation of the electric field strength from
the threshold value. On the other hand, from the theoretical
and experimental viewpoint the direct investigation of the
behavior of particle suspension under the action of electric
field is more involved than investigating a single rotating
particle �body�. Consequently, the results obtained in the
present study are of interest by themselves for validating
different physical models in this field. It must be noted that a
comprehensive theoretical and experimental investigation of
Quincke rotation of a rigid cylinder immersed in a liquid in
the case of constant electric field was performed in Ref. �10�.
The electric field in this study was directed perpendicular to
the rotation axis. The authors investigated stability of rota-
tion of a cylinder under the action of a constant electric field,
showed the similarity between this system and Lorenz model
�11� and demonstrated a chaotic character of cylinder rota-
tion in the range of the parameters where rotation of the
cylinder becomes unstable. In the present study we investi-
gate theoretically the dynamics of the body rotating around
its axis of symmetry under the action of electric field which
is directed perpendicular to the axis of rotation �see Fig. 1�.
As an example which illustrates the obtained results we ana-
lyze the change of the pattern of rotation of a system with the
parameters identical to those considered in Ref. �10�.

The main effect of the rotating electric field on the system
is associated with elimination of degeneration in the case of
a constant electric field where rotations of a cylinder in two
opposite directions are physically equivalent. Rotation of the
electric field eliminates this degeneration, and behavior of
the bodies rotating in opposite directions, for a fixed direc-
tion of rotation of the external electric field, is different, e.g.,
domains of rotation stability are different. Investigation of
the domains of stability of different regimes of rotation in the
whole range of parameters is the goal of this study.

In Sec. II of this study we describe a mathematical model
and in order to make the paper self-contained we present a

solution of the problem which has been derived in Ref. �5�.
In Sec. III we conduct a complete stability analysis of the
solutions obtained in Sec. II and demonstrate the obtained
results for the system with the parameters identical to those
studied in Ref. �10�. Finally, in Sec. IV we summarize the
obtained results.

II. MATHEMATICAL MODEL

Consider a system consisting of an axially symmetric par-
ticle with permittivity �2 and electric conductivity �2 that is
immersed into a liquid or gaseous host medium with permit-
tivity �1 and electric conductivity �1. The system is sub-
jected to the external electric field with an amplitude E0
which rotates with a constant angular velocity �̄:

FIG. 1. Spinning of axially symmetric body under the action of

electric field E� 0 which rotates in plane perpendicular to axis of
symmetry. In the base regime a angular velocity is directed opposite
direction to the angular velocities in the unstable rotation regimes b
and additional regime c.
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E� = E0 �
�=	1

u�� exp�− i��̄t�, u�� = e�1 + i�e�2, �2�

where e�1 and e�2 are unit Cartesian vectors. The dynamics of
particle rotation around the axis of symmetry is determined
by the following equation:

I
d
�

dt
= − �
� + P� � E� , �3�

where I is a moment of inertia with respect to the particle’s

axis, 
� =e�3
�t�, e�3 is a unit vector in the direction of the axis
of symmetry, 
 is angular velocity, � is a rotational friction
coefficient which is related with the viscosity of a host me-
dium 
, �= f�
V, and f� is a numerical coefficient which
depends upon the particle shape and V is a particle volume.

The effective dipole moment of the particle P� is deter-
mined by the following equation �5�:

�P�

�t
− 
� � P� +

P�

�m
=

�� − ��

�1 + f���1 + f��
P� s

�m
, �4�

where �m=�0�1+ f�� / �1+ f��, P� s=�0�1VE� �t�, f�=���1−n� /2,
f�=���1−n� /2, ��=�2 /�1−1, ��=�2 /�1−1, and �0
=�0�1 /�1.

The system of equations �1�–�3� has a stationary solution

which is written below using the dimensionless variables X�

=E� / Ē, Ē=�� / ��mV�, �� = P� / �ĒV�, �=
�m, �= �̄�m:

��
0 =

1 − i���0 − ��
1 + ��0 − ��2

�X0

2
, �5�

where frequency �−=�0−� is the solution of a cubic equa-
tion

�−
3 + ��−

2 + �1 − �X0
2��− + � = 0 �6�

and X0=E0 / Ē, �=�0�1���−��� / ��1+ f���1+ f���.
The dipole moment of the particle is determined by the

following formula:

���� = �
�=	1

��
0 exp�− i����, � =

t

�m
. �7�

Depending on the magnitude of the parameter �X0
2 and elec-

tric field rotation frequency �, Eq. �6� has either one or three
real roots. Hereafter we investigate the case of NEV particle
with the parameters satisfying condition �1�, so that ��0.
Equation �6� for rotation frequency �=0 implies that in ad-
dition to the solution �−=�0=0 there also exist solutions

�0= 	��X0
2−1. When condition E0�Ec= Ē /�� is met, the

particle state of rest, �0=0, loses stability, and the particle
begins to rotate with a constant angular velocity �0 which is
indicated above. Consider a case when frequency of rotation
of the external electric field ��0. Let us define the following
parameters �see Ref. �5��:

R = �X0
2 = E0

2/Ec
2, a1 = 9�1 + R/2�, a2 = 3�1 − R� ,

d1 = ���2 + a1�, d2 = �a2 − �2� . �8�

When R�1, Eq. �6� has only one root. If �2�a2 the root �−
is determined by the following formula:

�− = y1 −
�

3
, y1 =

1

3 �
�=	1

���d1
2 + d2

3 − �d1�1/3. �9�

When the frequency of rotation of the external electric field
�=0, then d1=0 and the body remains in the state of rest
�y1=0�. When the frequency of rotation differs from zero,
the body rotates in the main regime against the direction of
rotation of the external electric field ���0, see Ref. �5��.

The second domain is determined by the relations �2

�a2 and �d1���d2
3. There is also one root in this domain:

�− = y2 −
�

3
, y2 = −

1

3
sgn�d1� �

�=	1
��d1� + ��d1

2 − d2
3�1/3.

�10�

This domain also corresponds to a SEV region when the
body rotates in the main regime against the direction of ro-
tation of the external electric field.

The third domain with three real roots is determined by
the relations �2�a2 and �d1���d2

3. Formulas for the roots in
this domain ya�yb�yc read

ya = − 2 cos��0�, yb = 2 cos��0 + �/3� ,

yc = 2 cos��0 − �/3�, �0 =
1

3
cos−1� d1

�d2
3	 . �11�

Formula for the relative particle rotation frequency in this
domain �− reads

�−
k = −

�

3
+

�d2

3
yk, �12�

where k=a ,b ,c.
This domain corresponds to a BEV region when apart

from the main regime of rotation there appear additional re-
gimes whereby a particle rotates in the direction of rotation
of the external electric field. When the frequency of rotation
of the external electric field ��0, the rotation regime a cor-
responds to the main regime while additional regimes b and
c appear only in the amplitude range R�1. Furthermore, we
will show that regime b is always unstable. When direction
of rotation of the external field is changed to the opposite
�that corresponds to the substitution �→−�� the main regime
of rotation is determined by c branch of the solution while a
branch describes the additional solution which appears in the
amplitude range R�1. Denote by �k some characteristics of
the system in the regime k, e.g., particle rotation frequency,
increment of instability growth, range of stable rotation, etc.
Then �a is replaced by �c, when � is changed to −� and vice
versa.

In Fig. 2 we showed the dependence of �−
k�� ,R� vs rota-

tion frequency of the external electric field � for R=3, R
=5 and various solutions k=a ,b ,c. Equations �8�–�12� were
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derived in Ref. �5�. In the latter study we also determined the
critical magnitude of the rotation frequency �c�R� which
separates between the domains with various regimes of rota-
tion and domains where only one basic regime of rotation
can be realized. Formula for the critical rotation frequency
�c�R� reads

�c =
�R2 − 20R − 8 + �R�8 + R�3

2�2
. �13�

Formula �13� is equivalent to formula �19� in Ref. �5�. The
inverse of the function �c�R�, R=Rc���, satisfies a cubic
equation and determines the amplitude of the external field
for given �. Equation for Rc��� reads

�Rc − 1�3 +
�2

4
�Rc − 1�2 −

9�2

2
�Rc − 1� −

�2

4
�27 + 4�2� = 0.

�14�

For a given frequency � the BEV domain is realized when
the frequency of rotation of the external electric field �
��c�R� or if R�Rc���.

We do not present here an explicit formula for Rc���. Note
only that for small rotation frequencies of the external elec-
tric field ��1, Rc=1+3���2/3 /4, and Rc
� for �→�.

Consequently, to the bifurcation point R=Rc=1 which
separates between the domain where a body is at rest and a
rotation domain for �=0, corresponds a curve R=Rc��� when
��0 �see Fig. 6, curve 1�. This curve separates between the
domain where a body rotates against the direction of rotation
of the electric field �SEV region� and the domain where de-
pending on initial conditions a body can rotate in different
directions �BEV region�. In the next section we investigate
BEV and SEV domains with respect to the stability of the
regimes which are realized in these domains.

III. STABILITY OF PARTICLE ROTATION REGIMES

Using a standard procedure for investigating dynamic sta-
bility, we seek for the solution of Eqs. �3� and �4� in the

vicinity of a solution �5�–�7� in the following form:

��
k = �0�

k + exp��t��1�
k , �k�t� = �0

k + exp��t��1
k ,

�� = ��� · u�
�
*�exp�i��t� ,

where k denotes different solutions of Eqs. �5� and �6�. Using
this procedure and the Routh-Hurwitz stability condition
Re����0 �see, e.g., Ref. �12��, yields the following inequali-
ties:

�1�Zk� = Zk
2 + 2p�1 + p/2 − R/4�Zk − Rp2/2 � 0, �15�

�2�Zk� = Zk
2 + RZk − 2R � 0, �16�

where

Zk = 1 + ��−
k�2, p = ��m/I . �17�

Conditions �15� and �16� are the necessary and the sufficient
conditions for Re����0 when the magnitude of Zk�� ,R� is
given. Alternatively, considering �1�Z� and �2�Z� as qua-
dratic polynomials with respect to Z and taking into account
that we are interested in the range Z�1, we obtain the con-
ditions for the positivity of �1�Z� and �2�Z�. Condition �15�
is satisfied when Zk�� ,R��Z1�p ,R�, where

Z1�p,R� = p���1 + p/2 − R/4�2 + R/2 − �1 + p/2 − R/4�� .

�18�

Condition �16� is satisfied when Zk�� ,R��Zm�R�, where

Zm�R� = R��1 + 8/R − 1�/2. �19�

Equations �6� and �17� yield the following relation:

�2 = �Z − 1��R − Z�2/Z2. �20�

Equation �20� is a cubic equation with respect to the param-
eter Z and determines three functions Zk�� ,R� which corre-
spond to three branches of solutions of this equation. In Fig.
3 these branches are denoted by numbers 1, 2, 3. For ��0
the solutions a ,c ,b correspond to these branches. Function
�= 	��2�R ,Z� which is determined by Eq. �20� is an inverse
function of Zk�� ,R�. Function Zk�� ,R� is shown in Fig. 3 for

0.4
−4

−2

0

1

1a

2c
1c

2a

2b

1b

ω
−

ν0

FIG. 2. Dependence of the rotation frequency �− vs rotation
frequency of the external electric field � in the BEV domain for
three rotation regimes �−

a, �−
b, �−

c . �1a�, �1b�, �1c�: R=3; �2a�, �2b�,
�2c�: R=5.
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FIG. 3. Dependence of parameter Z for different branches of
particle rotation regimes vs amplitude of the rotating electric field.
1 :Z=Za�� ,R�, 2 :Z=Zc�� ,R�, 3 :Z=Zb�� ,R�, R=5, and ��0.
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R=5 and ��0. Analysis of cubic equation �20� yields the
following inequalities for functions Zk�� ,R� for ��0:

Za��,R� � R � Zc��,R� � Zm�R� � Zb��,R� . �21�

The point Z=R, �=0 is an intersection point of the branches
a and c. Consequently, the domain of stability of branches a
and c coincide only in the case of a constant electric field
while rotation of the external electric field violates the sym-
metry. The latter causes, as we will show further, expansion
of the domain of stability of the regime whereby a particle
rotates against the direction of rotation of the external field,
and contraction of the domain of stability of the regime
whereby a particle rotates in the direction of rotation of the
external field. The point Z=Zm�R�, �=�c�R�, where Zm�R� is
determined by Eq. �19�, is an intersection point for the
branches c and b. Consequently, the condition �16� is always
satisfied for the branches a and c but is not met for the
branch b. Therefore the branch b is always unstable while the
condition for stability of branches a and c reads

Zk��,R� � Z1�p,R�, k = a,c . �22�

For further analysis let us introduce the function

S��,R,Z� = �2 − �Z − 1��R − Z�2/Z2. �23�

This function has a minimum at Z=Zm�R�, a maximum at
Z=R and is shown in Fig. 4. In the interval Zm�R��Z�R
function S�� ,R ,Z� increases monotonically, and S=0 at Z
=Zk�� ,R�. Consequently, if Z1�p ,R��R then a condition of
stability Z1�p ,R��Zk�� ,R� implies that S�0 for Z
=Z1�p ,R�. Since in the interval Z�R function S�� ,R ,Z� de-
creases monotonically, a stability condition in this interval
implies that S�0 for Z=Z1�p ,R�. Therefore assessing the
stability of the realized rotation regimes can be performed
using Eqs. �18� and �23�. The resulting procedure is as fol-
lows. The magnitude of function Z1�p ,R� is determined from
Eq. �18� for given parameters of the problem p ,R ,�. If
Z1�p ,R��R and ��0, the branch a is always stable and the
branch c is stable if and only if S�� ,R ,Z1�p ,R���0. When
Z1�p ,R��R the branch c is always unstable and the branch a
is stable if and only if S�� ,R ,Z1�p ,R���0.

Hereafter we consider only the case ��0 since the ob-
tained results can be extended for ��0 after replacement a
→c, c→a as was mentioned above. Inequality �22� deter-
mines an intricately shaped domain in the space of the pa-
rameters �� , p ,R�. In the following we consider the projec-
tions of this domain on the planes �p ,R� and �� ,R�, see Figs.
5 and 6, respectively. For analysis of this domain let us in-
troduce the following function:

�cr
2 �p,R� = �Z1�p,R� − 1��R − Z1�p,R��2/Z1

2�p,R� . �24�

Taking into account the behavior of function S�� ,R ,Z� in the
interval Z�R and a condition of stability in this range of Z it
can be easily seen that Eq. �24� determines such �cr

a �p ,R�
=��Z1�p ,R� ,R� that for ���cr

a the branch a is always stable
for given p ,R. Since Za�� ,R��R for arbitrary values of � ,R,
the conditions of stability of the branch a read

� � �cr
a = �Z1�p,R� − 1�Z1�p,R� − R�/Z1�p,R�,

Z1�p,R� � R , �25�

and also

Z1�p,R� � R . �26�

The condition of stability �25� determines a lower bound for
the rotation frequency of the external electric field. Therefore
by increasing the rotation frequency of the external field � it
is always possible to stabilize rotation in regime a. Condition
�26� determines the domain where stability of rotation in
regime a does not depend upon the frequency of rotation of
the external field, �. On the �p ,R� plane these are domains

2 4 7

−4

0

2

S

Z

1

2

3

FIG. 4. Dependence S=S�� ,R ,Z� vs Z for different values of
parameters R ,�. 1 :�=0, R=1, 2 :�=1, R=5, 3 :�=1.5, R=7.
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FIG. 5. Subdomains of the different stability in the �p ,R� plane.
Curve 1:R=8 /3, curve 2:R=4, curve 3: p= p1�R�, curve 4: p
= pmax�R�, curve 5:R=8+2�12, curve 6: p= p+�R�, curve 7: p
= p−�R�. Subdomain I and subdomain II: The rotation regimes a and
c are stable irrespective of the frequency of rotation of the external
field. Subdomain IIIa: Regime a is stable and regime c is stable for
frequency ���cr,min

c �R� irrespectively of the magnitude of the pa-
rameter p. Subdomain IIIb: 1�R�4, the minimum frequency
�cr,min

c �R� does not exist and stability of regime c depends upon
parameter p. Subdomain IV: Regime a is stable and stability of the
regime c depends upon parameters p ,�. Subdomain V: The regime
c is unstable and the regime a is stable when ���cr,max

a �R�.
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I–IV in Fig. 5. Only in the domain V, where Z1�p ,R��R, is
the condition �26� violated. The curve Z1�p ,R�=R separating
between domain V and other domains, consists of two
branches p= p+�R� and p= p−�R�,

p	�R� = 2�R/4 − 1 	 ��R/4 − 1�2 − R/2� ,

which correspond to two branches of the equation R
=Rcr�p�= p�p+4� / �p−2�. For �=0 in the range R�Rcr�p�
rotation loses stability and becomes chaotic. In Ref. �10� it
was shown that when �=0, the system is similar to that in-
vestigated by Lorenz �11� and its behavior has been investi-
gated comprehensively in the literature �13�. Rotation of the
external electric field ���0� eliminates degeneration, and
domains of stability for branches a and c in this case do not
coincide. Inequality �21� and above considerations show that
in the domain V �see Fig. 5� only branch a of the solution
can be stable while branch c is always unstable because
Zc�� ,R��R�Z1�p ,R�. Taking into account inequality
Zc�� ,R��R and behavior of function S�� ,R ,Z� in this range
of parameter Z we arrive at the conditions of stability of the
branch c:

� � �cr
c = ��Z1�p,R� − 1��R − Z1�p,R��/Z1�p,R�,

Z1�p,R� � R , �27�

and also

Z1�p,R� � Zm�R� . �28�

Condition of stability �27� determines an upper bound for the
rotation frequency of the external electric field. Conse-
quently, stabilization of the rotation regime c requires the
reduction of the rotation frequency of the external electric
field. The condition of stability �28� arises because function
Zc�� ,R� varies in the range Zm�R��Zc�� ,R��R and mono-
tonically decreases with �. Since Zc�� ,R��Zm�R�, condition
�28� determines the domain of stability of the branch c inde-
pendent of the value of parameter �. In the Appendix we
show that this condition is satisfied for R�8 /3 and also for
R�8 /3, p� p1�R�, where

p1 = d1/2 + �d1
2/4 + d2,

d1 = 4Zm�R��1 − R/4�/�R − 2Zm� ,

d2 = 2Zm
2 /�R − 2Zm� . �29�

These domains are denoted in Fig. 5 as domains I and II.
Consequently, in domain I which is separated from other
domains by a curve R=8 /3, rotation regime c is always
stable. In domain II, R�8 /3, p� p1�R�, the rotation regime
c is also always stable. In domains IIIa, IIIb, and IV �see Fig.
5� stability of the rotation regime c depends upon the fre-
quency of rotation of the external electric field �. In domain
IIIa, which is realized for the external field strength in the
range 4�R�8+2�12, there exists a minimum value of fre-
quency �cr,min

c , such that for rotation frequency of the exter-
nal field ���cr,min

c the rotation regime c is always stable
independently of parameter p. The latter claim is the conse-
quence of the behavior of Z1�p ,R� as a function of a param-

eter p for given R. Function Z1�p ,R� attains a maximum
Zmax�R�, for p= pmax�R�, where

pmax�R� = �R2/4 + 1�/�R/4 − 1� . �30�

In the domain Zmax�R�=Z1�pmax�R� ,R��R or R�8+2�12,
the maximum value of Z1 corresponds to the minimum mag-
nitude of �=�cr,min

c �R�. We do not present here the apparent
but cumbersome expressions for Zmax�R� and �cr,min

c �R�
which can be obtained by direct substitution of Eq. �30� in
Eqs. �18� and �27�, correspondingly. Let us note only that
Zmax�R�→2 for R→4 and in this case �cr

c →1 �see Fig. 6�. In
the range R�8+2�12, Zmax�R��R. Substituting Zmax�R� in
Eq. �25� yields the maximum value of �cr

a , �cr,max
a �R�

=�cr�pmax�R� ,R� such that for ���cr,max
a the branch a is

stable in the whole range of p. In Fig. 6 functions �cr,min
c �R�

and �cr,max
a �R� are plotted as curves 3 and 4, respectively.

Finally, in the subdomain V �see Fig. 5�, R�8+2�12, p
� p+�R�, p� p−�R�, Z1�p ,R��R�Zc�� ,R�, branch c is al-
ways unstable. Branch a is stable everywhere except for the
subdomain V where it is stable irrespectively of the param-
eter p when ���cr,max

a .
In Fig. 6 we showed different stability domains on the

plane �� ,R�. The curve 1 which is determined by Eq. �13�
separates between the subdomain I where only the main re-
gime �SEV region� is realized and subdomains where differ-
ent rotation regimes can be realized simultaneously. The
curve 2 corresponds to R=8+2�12, curves 3, 4 correspond
to the functions �=�cr,min

c and �=�cr,max
c . The main regime a

is stable everywhere irrespective of the parameter p except
for the domain V where stability of the regime a depends
upon the particle’s inertia which is determined by the param-
eter p. Regime c can be stable only in the subdomains II, III,
IV. In the subdomain III the regime c is stable independent of
the parameter p. In the subdomain V the regime c is always
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FIG. 6. Subdomains with different stability in the �� ,R� plane.
Curve 1:�=�c�R�, curve 2:R=8+2�12, curve 3:�=�cr,min

c �R�,
curve 4:�=�cr,max

a �R�. Subdomain I: SEV region. Subdomain II:
The regime a is stable and stability of the regime c depends upon
the parameter p. Subdomain III: The regimes a and c are stable.
Subdomain IV: The regime a is stable and stability of the regime c
depends upon parameter p. Subdomain V: The regime c is unstable
and stability of regime a depends upon the parameter p.
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unstable. Subdomain III resides in the range 4�R�8
+2�12 because for R�4 function Z1�p ,R� does not have
maximum for given R.

In the above considerations we assumed that R�1 and
���c�R�. For R�1 and ���c�R� only the main regime is
realized, and the situation is substantially simplified. Analy-
sis of the function Z1�p ,R� shows that for R�1, Z1�p ,R�
�1�Zk�� ,R�, and, consequently, the main regime which is
realized in this domain is always stable. Stability of the main
regime for ���c�R� is the direct consequence of the inequal-
ity �cr,max

a ��c�R�, and the branch a remains continuous
when intersecting with the curve �=�c�R�.

For illustrating the physical meaning of the obtained re-
sults let us consider the dynamics of particle with p= p̄
=14.6. The latter choice of the parameter corresponds to the
parameter p of the dielectric cylinder whose rotation under
the action of a constant electric field directed normally to the
axis of the cylinder, was investigated in Ref. �10�. Consider
the behavior of the cylinder with the increase of R. Hereafter
the regime of rotation whereby the body rotates against the
direction of rotation of the external fields is called a base
regime while the rotation regime whereby directions of rota-
tion of the particle and the field coincide, is called the addi-
tional regime �AR�. The BR remains stable in the whole
range of the electric field strength E��8+2�12Ec. For E

��8+2�12Ec, BR remains stable up to the strength of the

electric field R̄= p̄�p̄+4� / �p̄−2�=21.5. For R� R̄ the BR re-
mains unstable until the rotation frequency of the external
electric field � remains less than the critical frequency
�cr

a �p̄ ,R� which is determined by Eq. �25� with p=14.6 �see
curve 4 in Fig. 7�. In the domain IV stable rotation modes do
not exist, and the behavior of the system can be chaotic. If
���cr

a �p̄ ,R�, the stationary regime is restored, and the par-
ticle rotates with the frequency corresponding to the BR. It
must be emphasized again that �cr

a �p ,R� is always smaller

than �cr,max
a =�cr

a �pmax�R� ,R�. This situation is shown in Fig.
7. The particle behavior in the AR can be analyzed similarly.
In the interval of the electric field strength 8 /3�R�1 this
regime is always stable. When R�8 /3 and p� p1�R� the AR
remains stable irrespectively of the rotation frequency � until
R�R� such that p̄= p1�R��. For p̄=14.6, R�=2.83. Beginning

from the latter value of R the AR regime is stable if R� R̄
=21.5 and ���cr

c �p̄ ,R�, where �cr
c �p̄ ,R� is determined by Eq.

�27� �see domain II in Fig. 7�. It was noted above that func-
tion �cr�p ,R� has a minimum �=�cr,min

c only in the interval
4�R�8+2�12, while outside this interval the minimum
does not exist �see Fig. 7�.

IV. CONCLUSIONS

We determined subdomains with different dependencies
of the criteria of the stability of particle rotation regimes
vs parameters of the problem. It was demonstrated that in
the subdomain, where several regimes can be realized,
these regimes can be either simultaneously stable, simulta-
neously unstable or only the main rotation regime can be
realized. In the SEV domain where only the base regime
�BR� is realized, this regime is always stable. A simple algo-
rithm for evaluating stability of the rotation regime based on
Eqs. �18� and �23� allows the determination of the stability of
the regimes without calculating frequency of particle rota-
tion.

APPENDIX: RANGES OF VALIDITY
OF THE CONDITION (26)

In the following we outline the proof that the condition
�26�

Z1�p,R� � Zm�R� �A1�

is satisfied only when R�8 /3 or R�8 /3, p� p1�R�, where
function p1�R� is determined by Eq. �29�.

Condition �A1� implies the following inequalities

�3 = p2�2Zm�R� − R� + 4Zm�R��1 − R/4�p + 2Zm
2 �R� � 0,

�A2�

�4 = p2 + 2�1 − R/4�p + 2Zm�R� � 0. �A3�

If R�8 /3, then Zm�R /2 and conditions �A2� and �A3� are
satisfied irrespectively of p�0. When R�8 /3, the condition
�A2� yields

p � p1 = d1/2 + �d1
2/4 + d2, �A4�

where d1=4Zm�R��1−R /4� / �R−2Zm�, d2=2Zm
2 / �R−2Zm�.

Condition �A3� is satisfied always if R�R0=4�2�2+�3
−1�. The latter condition is equivalent to Zm� �R /4−1�2 /2.
For R�R0, condition �A3� is satisfied if p� p2�R� or p
� p3�R�, where

p2,3 = R/4 − 1 	 ��R/4 − 1�2 − 2Zm. �A5�
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FIG. 7. Subdomains with different stability in the �� ,R� plane

for p̄=14.6. Curve 1:R=8+2�12, curve 2:R= R̄=21.5, curve 3:�
=�cr�p̄ ,R���cr,min

c , 4�R�8+2�12, curve 4:�=�cr�p̄ ,R���cr,max
a ,

R�8+2�12. Subdomain I: SEV region. Subdomain II: The regimes
a and c are stable. Subdomain III: The regime a is stable and the
regime c is unstable. Subdomain IV: The regimes a and c are
unstable.
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In the whole range of parameter R, p1�R�� p3�R�. Taking
into account that Eqs. �A2� and �A3� must be satisfied simul-
taneously we arrive at the condition of stability of the regime
c in the whole domain BV:

p � p1�R� . �A6�
The subdomain determined by condition �A6� is shown
in Fig. 4 �subdomain II�. When p� p1�R�, the stability of the
branch c depends upon the frequency �.
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