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The response behavior of strongly nonlinear binary fluid convection to temporal modulation of the heating
is investigated for the case of a negative Soret coupling between temperature and concentration gradients.
Finite difference numerical simulations are performed for ethanol-water parameters subject to realistic bound-
ary conditions. Traveling waves with modulated amplitudes and phase velocities, subharmonic standing waves,
and synchronously modulated patterns with fixed spatial phase are found as stable solutions. The hysteretic
transitions between subcritical traveling and standing waves that coexist bistably with the quiescent fluid state
are investigated. Various diagnostic analysis tools are used to elucidate the complex spatiotemporal and bifur-
cation properties that are ultimately caused by nonlinear advection and mixing of concentration being very
strong.
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I. INTRODUCTION

Nonlinear dissipative systems that are driven sufficiently
far away from thermal equilibrium show often self-
organization �1�. Convection in binary miscible fluids like,
e.g., ethanol-water is an example of such systems. It shows
rich and interesting pattern formation behavior and it dis-
plays a wide range of phenomena related to instabilities, bi-
furcations, and self-organization with complex spatiotempo-
ral behavior.

Compared to convection in one-component fluids like,
e.g., pure water the spatiotemporal properties are far more
complex. The reason is that concentration variations which
are generated via thermodiffusion—the Soret effect—by ex-
ternally imposed and by internal temperature gradients influ-
ence the buoyancy, i.e., the driving force for convective flow.
The latter in turn mixes by advectively redistributing concen-
tration. This nonlinear advection gets in developed convec-
tive flow typically much larger than the smoothening by lin-
ear diffusion—Péclet numbers measuring the strength of
advective concentration transport relative to diffusion are
easily O �1000�. Thus, the concentration balance is strongly
nonlinear giving rise to strong variations of the concentration
field and to boundary layer behavior. In contrast to that, mo-
mentum and heat balances remain weakly nonlinear close to
onset as in pure fluids implying only smooth and basically
harmonic variations of velocity and temperature fields as of
the critical modes.

Without the thermodiffusive Soret coupling between tem-
perature and concentration any initial concentration devia-
tion from the mean diffuses away and influences no longer
the balances of the other fields. Hence, the feedback inter-
play between �i� the Soret generated concentration varia-
tions, �ii� the resulting modified buoyancy, and �iii� the
strongly nonlinear advective transport and mixing causes bi-
nary mixture convection to be rather complex with respect to
its spatiotemporal properties and its bifurcation behavior.

Here we consider the case of negative Soret coupling, �
�0, between temperature and concentration fields �2,3�
when the lighter component migrates to the colder regions
thereby stabilizing the density stratification in the quiescent,
laterally homogeneous conductive fluid state. Then the above
described feedback interplay generates oscillations. In fact
the buoyancy difference in regions with different concentra-
tions was identified already in �4� as the cause for traveling
wave �TW� convection.

Oscillatory convection appears in a rather large variety:
As transient growth of convection at supercritical heating, in
spatially extended nonlinear TW and standing wave �SW�
solutions that branch out of the conductive state via a com-
mon Hopf bifurcation, in spatially localized TW states, and
in various types of fronts �1,5–23�.

In this work we investigate spatially extended convection
patterns consisting of straight rolls as they appear in narrow
rectangular and annular channels. These structures can effi-
ciently be described in the two-dimensional vertical x-z cross
section in the middle of the channel perpendicular to the roll
axes ignoring variations in axis direction. Furthermore, these
convection structures have relevant phase gradients only in x
direction thus causing effectively one-dimensional patterns
�24�. For such structures we explore the effect of modulating
the heating rate, i.e., the forcing mechanism that causes con-
vection in the first place.

The influence of time-dependent gravitational accelera-
tions or vibrations on the onset of Rayleigh-Benard convec-
tion was studied in �25,26�. The linear stability problem for
the single component system was reduced to the damped
Mathieu equation. It was shown that high-frequency vibra-
tions can increase the stability of the quiescent state. Finite
frequency vibrations, on the other hand, can destabilize the
quiescent state by a resonance phenomena. The effect of
modulating the temperatue of the horizontal boundaries on
the threshold for onset of convection in a horizontal layer of
a homogenous fluid was studied in Refs. �27–29�. In the
quiescent basic state the temperature modulation drives heat
waves that propagate diffusively between the boundaries of
the layer.*bsmorodin@yandex.ru
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The convective instability of a pure fluid under vibrations
or under a modulated temperature gradient can be related to
two types of critical disturbances that are in general the first
that get undamped: For a synchronous response the oscilla-
tion period of the convective disturbances coincides with the
period of the external modulation. In the case of a subhar-
monic response the period of the latter is 2 times as large as
the modulation period. The influence of temporal modulation
on pattern formation and nonlinear dynamics in pure liquids
was investigated experimentally �30�, and theoretically �31�.
A Lorenz-like model of the hydrodynamic equations was
used in these investigations.

In comparison to pure fluid convection a richer and more
interesting situation arises in binary mixtures when already
in the absence of modulation oscillatory convection appears.
Then two �symmetry degenerated� oscillating convective
modes get undamped via a Hopf bifurcation and a SW solu-
tion and two left or right propagating TW solutions branch
out of the quiescent basic state.

The purpose of the present paper is to present results of
numerical simulations of strongly nonlinear convection in
binary mixtures with negative Soret coefficient in the pres-
ence of finite-frequency temperature modulations with am-
plitudes of about 20% around the mean. We consider here the
hysteretic case where the bifurcation of SW and TWs with-
out modulation is backwards. We elucidate the spatiotempo-
ral behavior and the bifurcation properties of different re-
laxed convective structures under temporal modulation and
also transients between different solutions.

The paper is organized as follows: In Sec. II we describe
the problem and the governing equations. In Sec. III we give
a brief summary of the solutions in the unmodulated case
before presenting in Sec. IV our results in the presence of
modulation. The last section contains concluding remarks.

II. SYSTEM

Let us consider a horizontal plane layer of a binary fluid
mixture that is oriented perpendicular to the vertical gravita-
tional acceleration g. The fluid might be a mixture of water
with the lighter component ethanol at a mean mass concen-

tration C̄. The layer is bounded by rigid, impervious and
perfectly heat conducting parallel planes located at z=0 and
z=h. Thus, h is the thickness of the layer. The upper bound-
ary is kept at some fixed temperature Tu. The temperature Tl
that is imposed at the lower boundary is modulated sinusoi-
dally with frequency � according to

Tl�t� = Tu + �T�1 + � sin �t� . �2.1�

The mean temperature difference is �T and its relative
modulation amplitude is �. We take Tu as the reference tem-

perature T̄ and we consider the �small� variations of the fluid
density � due to temperature and concentration variations to
be governed by the linear thermal and solutal expansion co-
efficients �=− 1

�
��
�T and 	=− 1

�
��
�C , respectively. Both are posi-

tive for ethanol-water.

A. Equations

To describe convection in this system we use the balance
equations for mass, momentum, heat, and concentration in
Oberbeck-Boussinesq approximation which read in nondi-
mensional form �21,33,34�

� · v = 0, �2.2a�

�v

�t
+ �v · ��v = − �p + 
�2v + 
R�T + C�ez, �2.2b�

�T

�t
+ �v · ��T = �2T , �2.2c�

�C

�t
+ �v · ��C = L�2�C − �T� . �2.2d�

Here, v is the velocity field, ez is the unit vector directed
upward, and p is the pressure. T and C are scaled �cf. below�
deviations of temperature and concentration from T̄ and C̄,
respectively. Rayleigh number R, Prandtl number 
, Lewis
number L, and separation ratio � are given by

R =
g��Th3

��
, 
 =

�

�
, L =

D

�
,

� = −
	�T

�T̄
= STC̄�1 − C̄�

	

�
. �2.3�

Here � is the kinematic viscosity, � is the thermal diffusivity,
and D is the concentration diffusion constant of the mixture

while kT= T̄C̄�1− C̄�ST is the thermodiffusion coefficient �33�
and ST is the Soret coefficient. Furthermore, the following
scales have been used in Eqs. �2.2�: Length, h; time, h2 /�;
velocity, � /h; temperature, �T; concentration ��T /	; pres-
sure, ��2 /h2.

We solved the field equations �2.2� for two-dimensional
�2D� roll convection with axes oriented in y direction. To that
end we introduced the stream function 
 and the vorticity �
which are connected to the velocity field in the following
way:

v = � �


�z
,0,−

�


�x
�, � = �� � v�y . �2.4�

Then the partial differential equations �2.2� are transformed
into

� = − �2
 , �2.5a�

��

�t
+

�


�z

��

�x
−

�


�x

��

�z
= 
�2� + 
R

��T + C�
�x

, �2.5b�

�T

�t
+

�


�z

�T

�x
−

�


�x

�T

�z
= �2T , �2.5c�

�C

�t
+

�


�z

�C

�x
−

�


�x

�C

�z
= L�2�C − �T� . �2.5d�
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1. Boundary conditions

The horizontal boundaries at z=0,1 are taken to be no-
slip �v=0� and impervious so that


 = 0,
�


�z
= 0,

�C

�z
− �

�T

�z
= 0. �2.6�

The temperatures at the boundaries are T�0�=1+� sin �t and
T�1�=0, respectively.

Laterally we impose periodic boundary conditions,
f�x ,z , t�= f�x+� ,z , t�, on all fields f =
 ,� ,T ,C with �=2
throughout the paper. Thus, the wave number of the convec-
tion pattern k=� is close to the critical one and close to the
one that one typically observes for oscillatory convection
rolls at negative �, say, in narrow annular containers.

2. Solution method

For solving the system of equations �2.5� an alternating-
direction implicit scheme is used with central differences for
the spatial derivatives and one-sided right differences for the
time derivatives. This is a finite difference method of second
order. The stream function was determined with an iterative
method of successive over relaxation at each time step. Typi-
cally, a state of relaxed finite amplitude convective oscilla-
tions obtained at a particular set of parameters was used as
initial condition for a run at another set of parameters.

3. Parameters

In this paper we consider mixtures with L=0.01, 
=10,
and �=−0.25. This set of parameters is characteristic for and
easily experimentally realizable with ethanol-water mixtures.
The wave number of the convection rolls is k=�. The rela-
tive amplitude of the temperature modulation �2.1� of the
lower boundary is �=0.2.

B. Diagnostic tools

To measure the intensity of the heating we use the re-
duced Rayleigh number r=R /Rc

0, where Rc
0 is the critical

Rayleigh number for onset of pure-fluid convection with the
critical wave number kc

0. Linear stability theory predicts Rc
0

=1707.8 and kc
0=3.116. However, to compare our finite dif-

ferences numerical results presented in this paper with ex-
perimental, analytical, or numerical ones we scale R by the
threshold Rc

0=1701.5 of our numerical code. Most of the
calculations are executed using grids of 47�31 nodes. A
further mesh refinement to 82�61 nodes does not provide a
significant improvement in the evaluation of oscillation char-
acteristics and shows no relevant differences.

To monitor the convection intensity we use the Nusselt
number

Nu�t� = �
0

� �T�x,z,t�
�z

dx , �2.7�

say, at z=1 measuring the total vertical heat flux there. Fur-
thermore, we monitor the maximum of the vertical flow field
in the x-z cross section perpendicular to the roll axes

wmax�t� = maxx,z w�x,z,t� �2.8�

as well as the time evolution of w at a fixed position x0 ,z0.
We also consider running time averages of various quan-

tites f�t� over some time interval, in particular over a period
of the modulation �=2� /�,

�f	�t� =
1

�
�

t−�/2

t+�/2

f�t��dt�, �2.9�

as well as long-time averages

�f	 =
1

T�0

T
f�t�dt �2.10�

with very large T. The latter is used among others to deter-
mine the mean lateral velocity �vph	 of the phase of w as
measured by the time derivative of node locations of w�x ,z
=1 /2, t� at midheight of the fluid layer, vph=dx�w=0� /dt.
Thus,

�vph	 = �x�w=0��T� − x�w=0��0��/T . �2.11�

To elucidate the spatiotemporal complexity of the convec-
tive behavior and of the transitions between various regimes
we have also studied lateral Fourier decompositions,

f�x,t� = f0�t� + Re�

n=1

�

f̂ n�t�e−inkx� �2.12�

of the fields at midheight position, z=1 /2. The behavior
there is largely representative for all other z.

Finally we analyzed the evolution of the spatial variance
of the concentration field in the layer. To that end we moni-
tored the mixing number

M = �C2/�Ccond
0 �2, �2.13�

of the concentration field. Here, the overbar implies a spatial
average over the layer. The Soret induced conductive con-
centration profile Ccond

0 �z�=−��z−1 /2� in the quiescent �v
=0� unmodulated ��=0� layer varies from −� /2 at the top
boundary to � /2 at the bottom one with �Ccond

0 �2=�2 /12.
Note that M lies in the interval 0�M �1. The better the
fluid is mixed advectively the smaller is the mean-square
deviation C2 of the concentration. In the unmodulated con-
ductive state without advective mixing M =1 while M =0 in a
perfectly homogenized mixture with C=0.

III. STATIONARY HEATING

Here we briefly recall some of the bifurcation and spa-
tiotemporal properties of the laterally extended convective
states in mixtures for our parameters of Sec. II A 3 in the
absence of modulation, �=0. See Refs. �5,20� for details.

The convective instability of the ethanol-water mixture
arises as a Hopf bifurcation at the reduced Rayleigh number
rosc=1.335 with a Hopf frequency �H�k=� ,rosc�=11.246.
Our finite-differences numerical method, on the other hand,
yields rosc=1.318. Thin lines in Fig. 1�a� show for �=0 the
bifurcation diagrams of maximal vertical flow velocity wmax
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versus reduced Rayleigh number r for the traveling wave
�TW� solution, the stationary overturning convection �SOC�
solution, and the standing wave �SW� solution. The SOC
solution branch is disconnected from the quiescent conduc-
tive state. Both, the TW and SW solutions bifurcate back-
wards out of the conductive state at rosc.

When following the solution branches SWs remain un-
stable while TWs gain stability in a saddle-node bifurcation
at rS

TW=1.175. So, for r�rS
TW convection in the unmodulated

fluid layer dies out whereas above rS
TW stable, strongly non-

linear TW convection exists. However, this stable TW solu-
tion branch ends at r*=1.36 by merging with zero frequency
in the SOC branch thereby transferring its stability to the
SOC solution.

The thin lines in Fig. 1�b� show the bifurcation behavior
of the frequency � of the nonlinear TW and SW solutions for
stationary heating, �=0. These frequencies are largest at the
Hopf bifurcation treshold rosc. There one has �H=11.246.
Then, upon moving with increasing flow amplitude wmax
along the solution branches in Fig. 1�a� the frequency de-
creases. Thus, e.g., the TW frequency at the saddle, rS

TW

=1.175, has dropped already to �S
TW=3.88. Continuing

further—now with increasing r—along the upper TW solu-
tion branch of Fig. 1�a� the TW frequency decreases further
until it reaches zero at r*=1.36 where the TW branch ends in
a drift instability of the SOC branch.

It should be noted that the size of the Soret induced con-
centration gradients determine the magnitude of the restoring
force for oscillatory convection, i.e., the frequencies of TWs
and SWs �Fig. 3 of Ref. �20� shows that the relation � /�H
�M holds for TWs as well as for SWs�: Above r* the heat-
ing has become so large that the advective mixing is strong
enough to reduce the Soret induced concentration gradients
to effectively zero so that �=0 in the SOC state. On the
other hand, when moving downwards along the TW solution
branch in Fig. 1�a� all the way to rosc the flow intensity and
with it the advective mixing decreases all the way to zero,
the Soret induced concentration gradients and with it the
mixing number M increase to their maximum value M =1 in
the quiescent conductive state, and the restoring force for
oscillations, i.e., the oscillation frequency increases to its
maximal value �H at rosc.

IV. MODULATED HEATING

Modulation of the thermal driving force for convection
with the relative amplitude of �=0.2 considered here gener-
ates a very rich response behavior. This is not really surpris-
ing since already the unmodulated convective states are
strongly nonlinear with quite complex spatiotemporal behav-
ior of the concentration field that is largely determined by
strong advective transport. Furthermore, for most of the r
values shown in Fig. 1 the reduced Rayleigh number

r�t� = r�1 + � sin��t�� �4.1�

covers an interval from well below the lower existence limit
of unmodulated nonlinear TWs at rS

TW=1.175 to well above
its upper existence limit at r*=1.36. Thus, an important cri-
terion to classify the response behavior is, e.g., how long the
actual driving r�t� �4.1� remains during the modulation cycle
below rS

TW where unmodulated convection would decay into
the conductive state or below the saddle location rS

SW=1.11
of the unmodulated unstable SWs.

In this paper we consider “large frequency” modulation in
the sense that r�t� does not stay too long subcritical, i.e.,
below rS

TW so that the advection amplitudes remain of suffi-
cient size during the whole modulation cycle. In a second
paper we address the behavior at lower frequencies. Here, we
investigate the range 0.4�H����H in which we found the
qualitative similar characteristics of a “large frequency” re-
sponse and we discuss in detail the case �=�H=11.246 as a
representative example for this behavior.

Depending on the size of r this convective response is
subharmonic in the form of a stable SW, quasiperiodic in the
form of a modulated TW, or harmonic in the form of phase
fixed modulated convection. All these states explored here
display in the driving range of Fig. 1 the mirror-glide sym-
metry

1 1.2 1.4 r

0

4

8

12

w

0

4

8

12

ω
w1

w2

A BD

Ω

Ω
2

ωSW

ωMC

SH QP H

SW

TW

MC

C

SOC

SOC

SW

ωSW

ωTW

ωTW

FIG. 1. �Color online� Bifurcation diagrams of laterally ex-
tended convective states with wave number k=� in binary fluid
mixtures as functions of reduced Rayleigh number r. Thick lines
refer to temperature modulation �2.1� of the lower boundary with
relative amplitude �=0.2 and frequency �=�H=11.246. Vertical
dotted lines mark boundaries of subharmonic �SH�, quasiperiodic
�QP�, and harmonic �H� response to modulation in the form of SWs,
TWs, and phase fixed modulated convection �MC�, respectively.
Under modulation the maximal vertical velocity wmax�t� defined in
Eq. �2.8� oscillates between the thick lines labeled by w1 and w2,
respectively, in �a�. Thick lines in �b� denote the largest Fourier
contribution in the frequency spectrum of w�t�. Arrows labeled A,
B, C, D locate states that are discussed in more detail in the text.
Thin lines refer to the maximal vertical flow velocity �a� and the
frequency �b� of the reference states under stationary heating, �
=0, with full �dashed� ones denoting stable �unstable� solutions.
The dot in �a� is explained in the text. Parameters are L=0.01, 

=10, �=−0.25.
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f�x,z;t� = − f�x + �/2,1 − z;t� �4.2�

with f denoting 
, �, T, or C that is also observed in TWs,
SWs, and SOCs under stationary heating �5,20�.

The quasiperiodic modulated TWs at larger driving have
practically constant phase velocities with only their ampli-
tudes being modulated. But with decreasing r the phase
modulation and the modulation of the phase velocity in-
creases.

Before we discuss all these properties in more detail in the
Secs. IV B–IV F we shortly want to address the question of
the relevant time scales.

A. Time scales

Consider first the time scales �measured in units of the
vertical thermal diffusion time h2 /�� for diffusive transport
of momentum, heat, and concentration �1 /
 ,1 ,1 /L�
= �0.1,1 ,100� and for vertical advection of these fields
1 /wmax. So, for flow intensities wmax�1 that are typical for
nonlinear convective states concentration is advection domi-
nated and is not smoothened diffusively while the converse
is true for the velocity field: The balance equation for mo-
mentum is weakly nonlinear �as long as the rate for advec-
tive momentum transport is small compared to the diffusive
transport rate� while the balance equation for concentration is
strongly nonlinear with its Peclet number, wmax /L, being
typically very large.

The external modulation period �=2� /�
0.56 is larger
than the momentum diffusion time so that the velocity field
has enough time to be smoothed out diffusively while the
concentration field remains to be advection dominated. Note
also that for most of the states investigated here ��1 /wmax
so that even for such “large frequency” modulation the char-
acteristic time for nonlinear advective transport is smaller
than the modulation period. But � is larger by, say, a factor
of 3 than the unmodulated TW and SW frequencies, �S

TW and
�S

SW, respectively, near their respective saddle locations. So,
in this respect we have a “large frequency” modulation.

Furthermore, � is small compared to the decay time of a
TW or SW initial state that is prepared with saddle charac-
teristics �slightly� below rS

TW or rS
SW. Such decay dynamics

will take place when the driving r�t� stays long enough be-
low the saddle locations. Thus, the smallness of � relative to
the decay time for this “large frequency” driving guarantees
that wmax remains of significant size. In contrast to that, the
flow amplitude can decay to very small values for “low fre-
quency” driving since then r�t� will be a long time below the
saddle positions.

B. Amplitude modulated traveling waves

“Large frequency” temperature modulation enlarges the
existence range of unmodulated TWs from 1.175�r
�1.361 to 1.091�r�1.368 as indicated by the thick lines in
Fig. 1. At the upper end of this r interval the phase velocity
vph of the TWs is practically constant and only the amplitude
is modulated. Then, with decreasing r also vph gets modu-
lated as described in Sec. IV D. Here, we discuss first the
case where the TWs are only amplitude modulated.

Amplitude modulated TWs are quasiperiodic oscillatory
convective states with two different characteristic frequen-
cies, the external driving � and a frequency �TW that char-
acterizes for small modulation amplitude as for �=0.2 the
main peak in the Fourier spectrum �cf. further below�. In
general the ratio

Q = �/�TW �4.3�

is not a rational number. For the TW marked by the arrow A
in Fig. 1 at r=1.281 one has Q=13.47.

1. Flow behavior

For this TW we show in Fig. 2 the vertical velocity w�t� at
a fixed lateral position, x0, and at midheight, z0=1 /2, by a
thick line together with its running average �w	�t�, �2.9�. The
oscillation of wmax�t�, �2.8�, indicated by the dotted line in
Fig. 2 covers the range from w2 to w1. The latter values are
shown also in the bifurcation diagram of Fig. 1�a�. The maxi-
mal vertical flow velocity in a TW is a constant under sta-
tionary heating but it oscillates with the period of the modu-
lation of the heating. On the other hand, the running average
�w	�t�, �2.9�, of w at a fixed location, �x0 ,z0�, oscillates with
the frequency �TW that is shown by the thick line in Fig.
1�b�. Note that the mean of wmax�t�, �2.8�, which is marked
by the dot in Fig. 1�a� for r=1.281, is practically given by
wmax for stationary driving: The thin line in Fig. 1�a� lies
practically in the middle between the thick lines for w1 and
w2.

The Fourier spectrum of the vertical velocity w�x0 ,z
=1 /2, t� shown in Fig. 3�a� contains three main contribu-
tions. The largest one at �TW, shown by the thick line in Fig.
1�b�, differs at location A only slightly from the unmodulated

tωTW/2π

-8

-4

0

4

8

w

ωTW/Ω

w1

w2

<w>

0 10.5

wmax(t)

FIG. 2. �Color online� Time evolution of vertical velocity of the
amplitude modulated TW identified by arrow A in Fig. 1. Thick line
shows w�t� at a fixed location, �x0 ,z0=1 /2�, thin line shows running
average �w	�t� �2.9�, and dotted line the maximum in the whole
layer, wmax�t� �2.8�. The oscillation range of the latter is indicated
by w1 and w2. The plot covers one oscillation period 2� /�TW de-
fined by the largest contribution to the Fourier spectrum of w�t�
shown in Fig. 3. Arrows labeled �TW /� indicate the period of the
heating modulation. Parameters are L=0.01, 
=10, �=−0.25, r
=1.281.
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TW frequency �thin line in Fig. 1�b��. But when approaching
the saddle location rS

TW the difference increases.
The height of the other peaks in the spectrum of Fig. 3�a�

are smaller. They are located at the frequencies ���TW.
They move with increasing �decreasing� r as indicated by the
full �dashed� arrows in Fig. 3�a� with �TW varying as shown
in Fig. 1�b�. Higher Fourier harmonics in the evolution of
w�x0 ,z=1 /2, t� are very small since the momentum balance
equation is only weakly nonlinear. On the other hand, the
frequency spectrum of the concentration wave contains sig-
nificant anharmonicities as one can also infer from the spatial
profiles of the C waves discussed in Sec. IV B 2.

For all modulated TWs of Fig. 1 �TW and the mean phase
velocity �vph	, �2.11�, are related to each other by �TW
= �vph	k. Furthermore, for amplitude modulated TWs one has
vph��vph	. For example, at location A the maximal differ-
ence of the phase velocity vph from its mean value �vph	 is
6%.

2. Concentration field

The evolution of the concentration field for the amplitude
modulated TW at r=1.281 �arrow A in Fig. 1� is shown in
Fig. 4 by four shapshots of C in the x-z plane. The times
�a ,b ,c ,d ,e�= �0.150,0.185,0.220,0.260,0.775�2� /�TW
correspond to local extrema in the plot of w�t� in Fig. 2. One
can see that our TW propagates to the left.

With the phase velocity vph=0.265 being very small com-
pared to the extrema w2=4.17 and w1=8.5 of wmax�t� this
TW is a slow �32�, strongly nonlinear state with strong ad-
vectice mixing of the concentration field �5�: The difference

between maximal and minimal C is much smaller than in the
unmodulated conductive state �color bar on the right-hand
side of Fig. 4�.

In our left-propagating TW the regions of closed stream-
lines in the comoving frame for the right �left� turning fluid
domains are poor �rich� in ethanol and they are displaced
towards the upper cold �lower warm� plate, where the Soret
effect maintains a boundary layer with alcohol surplus �defi-
ciency�. Furthermore, there are narrow boundary layers be-
tween the rolls and close to the plates with large concentra-
tion gradients. The fluid becomes diffusively homogenized in
the closed-streamline regions of the rolls leading to anhar-
monic concentration profiles of trapezoidal shape. The mo-
tion of the rolls with their specific concentration distribution
implies a mean concentration current which is directed to the
left in the upper and to the right in the lower one-half of the
layer.

C. Harmonic response with fixed phase

When the mean heating rate is increased the TW fre-
quency �TW decreases as in the absence of modulation.
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FIG. 3. �Color online� Fourier amplitudes A �in arbitrary units�
in the spectrum of w�x0 ,z0=1 /2, t� versus frequency �. �a� Ampli-
tude modulated TW at r=1.281 �arrow A in Fig. 1�, �b� amplitude
and phase modulated TW at r=1.091 �arrow C in Fig. 1�, and �c�
SW at r=1.087 �arrow D in Fig. 1�. Full �dashed� horizontal arrows
indicate how the peaks move when r increases �decreases� as a
consequence of the variation of �TW�r� shown in Fig. 1�b�.
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Thus, the two peaks in the spectra of Fig. 3 at ���TW
approach each other as indicated schematically by the full
horizontal arrows in Fig. 3�a�. At r=1.368 the TW frequency
�TW drops to zero, cf. Fig. 1�b�. Beyond this r value, a dif-
ferent type of solution appears with phase fixed modulated
convection �MC� that oscillates synchronously with the
modulated heating: In the regime marked as MC in Fig. 1
only one main peak remains in the Fourier spectrum of
w�x0 ,z0=1 /2, t� that is located at the externally imposed
modulation frequency � plus higher harmonics thereof.

In this MC regime, the flow amplitudes basically just os-
cillate around the unmodulated SOC state’s flow. Also the
mean of wmax�t�, �2.8�, is practically given by wmax in the
SOC state for stationary driving: The thin line in Fig. 1�a�
lies in the middle between the thick lines for w1 and w2.

Figure 5 shows two snapshots of the concentration distri-
bution in the layer when the vertical flow velocity at a fixed
location, say, between two rolls at x0=1 in Fig. 5 is maximal
�a� and minimal �b�, respectively. This concentration field
looks like the one in SOC states under stationary driving �20�
with the mirror symmetry between oppositly turning rolls
and with the advective mixing being much stronger than for
TWs.

Also here, for modulated heating, ��0, one observes the
�=0 scenario for the transition from TWs to SOCs: �TW and
vph decrease since whith increasing r advection increases.
Thereby, the regions of closed streamlines grow at the ex-
pense of the open ones. Consequently, the former also come
closer to the respective opposing horizontal boundary layers.
This decreases the asymmetry of the boundary layer feeding
into oppositely turning rolls. As a consequence, the concen-
tration contrast between adjacent TW rolls—which drives the
lateral phase propagation of the TWs—decreases until in the
MC state with vph=0 the rolls are fed symmetrically by both
boundary layers and mirror symmetry between the rolls is
established.

D. Amplitude and phase modulated traveling waves

Here we return to the quasiperiodic, modulated TWs. We
want to discuss in particular the behavior at low r where not

only the TW amplitudes but also the phase velocities are
modulated significantly and where the concentration dynam-
ics gets quite complex.

The main TW frequency �TW as identified by the main
contribution to the frequency spectrum of w�x0 ,z0=1 /2, t� in
Fig. 3 increases with decreasing r: With decreasing heating
the flow intensity and the advective mixing decreases, the
Soret induced diffusive concentration gradients become less
washed out, the resulting driving �restoring� forces for oscil-
lations increase, and thus �TW grows. Consequently, the
peaks in Fig. 3 at �TW and �−�TW approach each other. In
Fig. 3�b� we show the spectrum for the TW at r=1.091 �ar-
row C in Fig. 1� at the lower end of the existence interval of
modulated TWs. Its frequency �TW=4.33 and with it its
mean phase velocity �vph�t�	=�TW /k is significantly larger
than that of TW A in Fig. 1.

In Fig. 6 we show the time variation of w at a fixed
location, of wmax�t�, and of the phase velocity vph�t� of the
TW at the arrow C in Fig. 1. The latter two velocities oscil-
late with the period �=2� /� of the heating. With the large
amplitude oscillations of the phase velocity and with the
complicated variation of w in Fig. 6�a�—reflecting the fact
that the two frequencies �TW and �−�TW are close to each
other—the flow dynamics of TW C is significantly more
complex than that of TW A.

The increase in spatiotemporal complexity is even more
dramatic for the concentration field of TW C in comparison
to that of TW A, cf. Fig. 7: Since vph�t� is sometimes larger
and sometimes smaller than w�t� or wmax�t� open and closed
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FIG. 5. �Color online� Snapshots of the concentration distribu-
tion for phase fixed modulated convection at r=1.368 �arrow B in
Fig. 1�. The vertical flow velocity between the rolls at x=1 is maxi-
mal in �a� and minimal in �b�. The color coding is the same as in
Fig. 4.
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streamline regions appear alternatingly with the associated
advective characteristics �22,35�. The snapshots of C in Figs.
7�a�–7�g� are taken at times �0.138,0.234,0.331,0.569,
0.769,0.954,1.154�2� /�TW �cf. points in the plot of wmax�t�
in Fig. 6�a��. Figure 7�a� corresponds to the maximum of
advective flow velocity and the phase velocity of TW C is
minimal in this time. The concentration streamline is opened.
In Fig. 7�b� concentration field evolves in TW solution with

the roll-like regions of closed streamlines. In the following
time interval the advective velocity leads to a minimum and
therefore the advective mixing decreases �Fig. 7�c��. In this
case the TW has a maximum of phase velocity. Later on
closed �Figs. 7�d� and 7�f�� and open �Figs. 7�e� and 7�g��
streamlines of concentration field alternate.

Note finally that TW C is located well below the saddle
location of unmodulated TWs at rS

TW��=0�=1.175. However,
with the modulation �4.1� of the thermal driving, r�t� peri-
odically grows beyond rS

TW��=0� when �=0.2 as in our case.
Thus, rS

TW��=0� /1.2 could be expected to be a lower limit
for the existence of modulated TWs.

E. Subharmonic standing waves

We found stable SW convection that oscillates subhar-
monically with frequency �SW=� /2 at small r as indicated
by the thick lines labeled SW in Fig. 1. The existence range,
1.0526�r�1.1055, of these modulation-stabilized SWs lies
below the existence range of the unstable unmodulated SWs
that are indicated by thin dashed lines in Fig. 1. Note also
that there is a small hysteresis in the transitions between TW
and SW solutions when one varies the mean heating rate r
quasistatically: Modulated TW and SW solutions coexist
bistably in the interval 1.091�r�1.105 �delimited by verti-
cal dotted lines in Fig. 1�.

In contrast to the quasiperiodic TWs discussed in Secs.
IV B and IV D the SWs are periodic states, i.e., their Fourier
spectrum �cf. Fig. 3�c�� contains only the dominant fre-
quency �SW and its higher harmonics, in particular 2 �SW
and 3 �SW. The third harmonic being larger in amplitude
than the second one lies outside the plot range of Fig. 3�c�.
The SWs have the mirror-time-shift �MTS� symmetry

f�x,z;t� = − f�x,1 − z;t + �SW/2� �4.4�

with f denoting 
, �, T, or C that is also observed in SWs
under stationary heating �20�. Here, in our subharmonic SWs
�SW=2�=4� /�. The MTS symmetry reflects the fact that in
the SW the left and right turning rolls—which are always
mirror images of each other—change periodically their vor-
ticity: After a time �SW /2 a left �right� turning roll becomes a
right �left� turning one.

Because of MTS �4.4�, the Nusselt number Nu�t� �2.7�
and the mixing number M�t� �2.13�, both into which enter
lateral integrations, have oscillation periods of �SW /2=�, i.e.,
their oscillation frequency is the driving frequency �.

The SWs are less nonlinear and in particular with respect
to their concentration field structure also closer to the quies-
cent conductive state than the highly nonlinear TWs. In the
snapshots of the SW concentration distribution in Fig. 8 the
boundary layers are less sharp than, say, in the TW shown in
Fig. 4 and the Soret induced concentration contrasts in the
SW are much less washed out by nonlinear advection than in
the TW: Figure 8 is much more colorful �with a color distri-
bution that is closer to the one in the coding bar for the
quiescent conductive state� than the Fig. 4 for TW A which is
dominated by the green color representing a better mixed
situation with mean concentration. This explains that the
mean mixing number �M	 �2.13� which measures variations
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FIG. 7. �Color online� Snapshots of the concentration distribu-
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of the concentration field is much larger for the SW D
��M	=0.432� than for the TW A ��M	=0.118� and also
larger, albeit less so, than for the TW C ��M	=0.321�.

F. Fourier dynamics of the flow

To elucidate the spatiotemporal behavior of the different
convection types discussed here so far and the transitions
between them we used also the diagnostic tool of the lateral
Fourier decomposition �2.12� of all fields in particular at
midheight position, z=1 /2. The behavior of the fields there
is representative also for other vertical positions. Here we
present results for the vertical velocity field. In contrast to
the concentration field the lateral variation of w is largely
harmonic so that the first Fourier mode ŵ1 in the presentation
�2.12� of w�x ,z=1 /2, t� determines the flow behavior.

In Fig. 9 the time evolution of the complex mode ŵ1�t� is
shown in the plane spanned by its real and imaginary part,
respectively, for various convection types. In the case of the
amplitude modulated TW A discussed in Sec. IV B the tra-
jectory of ŵ1�t� in Fig. 9�a� looks like a daisy. The daisy is
the projection of the spatiotemporal flow dynamics of the
whole TW in real space into Fourier space. It complements
the picture of the TW dynamics of w at a fixed location
shown in Fig. 2.

The motion of ŵ1�t� in Fig. 9�a� is limited by two circles.
Their radii are given by the extrema of wmax�t� �cf. Figs. 1�a�
and 2�—i.e., w1 for the outer radius and w2 for the inner one,
respectively—since w is very well represented by the first
lateral Fourier mode ŵ1. Without modulation, w1=w2, the
daisy in Fig. 9�a� degenerates to a circle along which ŵ1�t�
moves clockwise in the case of a TW propagating to the left.
For a TW propagating to the right ŵ1�t� moves counterclock-
wise.

Since the two characteristic frequencies �TW and � of the
modulated quasiperiodic TW A are not rationally related to
each other the trajectory of ŵ1�t� is not closed in Fig. 9�a�.
There we show the time interval of 14 modulation periods
which is slightly larger than 2� /�TW since Q=� /�TW
=13.47. In this time ŵ1�t� moves 14 times from the inner to

the outer radius and back as a result of the amplitude modu-
lation. The time between successive maxima of �ŵ1�t�� is the
period of the temperature modulation. Here the motion of
ŵ1�t�= �ŵ1�t��ei�1�t� is such that the phase velocity �̇1 is prac-
tically constant with ��̇1��vph.

With decreasing r the TW frequency �TW increases �cf.
Fig. 1�b�� and Q decreases. In Fig. 9�b� we show the Fourier
dynamics of a modulated TW with Q=3.91 at r=1.117, i.e.,
somewhat closer to the location of TW C than to TW A
covering a time interval of about 15 periods of the driving.
Unlike TW A this TW shows a significant modulation of the
phase velocity of about 40% around a mean �vph	=0.912.
Here ��̇1� is large when �ŵ1� is small.

Figure 9�c� shows TW C with Q=2.60 over the same time
interval as that of Fig. 6, i.e., also about 15 periods of the
modulation. For the convenience of the reader we have indi-
cated the start by 0. Consecutive maxima of �ŵ1� are num-
bered from 1 to 14. Here we have large oscillations of the
amplitude �ŵ1� as well as of the phase velocity �̇1. Again the
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FIG. 8. �Color online� Snapshots of the concentration distribu-
tion in the subharmonically oscillating SW at r=1.087 �arrow D in
Fig. 1�. The time difference between �a� and �b� is �SW /2=�. The
color coding is the same as in Fig. 4.
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lated TW A �r=1.281, Q=13.47�, �b� amplitude and phase modu-
lated TW �r=1.117, Q=3.91�, �c� amplitude and phase modulated
TW C �r=1.091, Q=2.60�, �d� SW D �r=1.087, � /�SW=2�, �e�
transient from TW C after decreasing r towards SW D.

CONVECTION IN BINARY FLUID MIXTURES WITH … PHYSICAL REVIEW E 79, 026315 �2009�

026315-9



latter is very large when �ŵ1� is small—the spikes of vph�t� in
Fig. 6 are located at the minima of wmax�t�.

Figure 9�d� shows the motion of ŵ1�t� along a straight line
through the origin for the SW D discussed in Sec. IV E. The
orientation of the line is given by a constant contribution to
the phase that itself is determined, say, by the lateral loca-
tions of the extrema of upflow and downflow. This phase
location depends on initial conditions and the driving history.
In our case the procedure was the following: We took as
initial condition the modulated TW C at r=1.091 and then
reduced r instantaneously to r=1.090 lying slightly below
the existence range of modulated TWs.

The transient from the modulated TW to the SW D sub-
sequent to this driving step is shown in Fig. 9�e�. At first one
can see the trihedral shape of the trajectory as traced out
along the points 1,2,3 in the TW C in Fig. 9�c�. Then these
trihedrons elongate as the maxima of �ŵ1� grow towards the
SW value being larger than that of TW C �cf. Fig. 9�a��.
After that the shape of the trajectory rapidly transforms into
a thin ellipsoidal form which itself rotates counterclockwise
as indicated by the arrow in Fig. 9�e�. The ellipses become
thinner and thinner and the phase difference between succes-
sive maxima of �ŵ1� decreases until the trajectory locks into
the straight line of the stable SW in Fig. 9�d�.

V. CONCLUSION

The spatiotemporal behavior and the bifurcation proper-
ties of oscillating convection rolls in binary fluid mixtures
subject to sinusoidal modulation of the lower boundary’s
temperature have been investigated with finite difference nu-
merical simulations. The simulations have been performed
for parameters adapted to experiments that use ethanol-water
mixtures with sufficiently negative Soret coupling to show
subcritical Hopf bifurcations into TWs and SWs. Various di-
agnostic and visualization tools have been used to elucidate
the spatiotemporal structure and bifurcation properties of the
rich and rather complex, strongly nonlinear response behav-
ior to modulation of the thermal driving. The richness and

complexity is partly due to the fact that subcritically bifur-
cating convection of sizeable amplitudes is already without
modulation strongly nonlinear because of the advection
dominated concentration dynamics. With temperature modu-
lation the bouyancy induced advection gets modulated and
leads in particular for the modulated TWs to complex non-
linear mixing behavior. However, all solutions investigated
here displayed the mirror-glide symmetry �4.2�.

When modulating with a frequency � that is large com-
pared to the TW frequencies under stationary driving, �=0,
we found the following different response characteristics de-
pending on r: �i� Stable SOC states occuring for �=0 at large
r�r* become synchronously modulated and oscillate with
fixed phase around the SOC solution. �ii� The TWs shortly
below the upper existence limit r* of unmodulated TWs ex-
perience basically only a modulation of their amplitude thus
becoming quasiperiodic states. �iii� With decreasing r the
TW phase velocity vph becomes modulated more and more
as well. Here, the mixing behavior of the concentration is
very complex with open and closed streamline regions ap-
pearing alternatingly. The existence range of these modulated
TWs extends down to r values well below the saddle loca-
tion rS

TW of unmodulated TWs. Thus, modulation stabilizes
TW convection. �iv� At the lower end of the r range of
modulated TWs there is a hysteretic transition to subhar-
monic SWs. These periodic states are frequency locked over
a finite r interval to oscillate with half the modulation fre-
quency and they show the mirror-time-shift symmetry �4.4�.
The modulation stabilized SWs occur below the saddle rS

SW

of unstable unmodulated SWs. They are less nonlinear
and—in particular with respect to their concentration field
structure—closer to the quiescent conductive state than the
highly nonlinear TWs.
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