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Measurements of the thermal dissipation field in turbulent Rayleigh-Bénard convection
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A systematic study of the thermal dissipation field and its statistical properties is carried out in turbulent
Rayleigh-Bénard convection. A local temperature gradient probe consisting of four identical thermistors is
made to measure the normalized thermal dissipation rate €y(r) in two convection cells filled with water. The
measurements are conducted over varying Rayleigh numbers Ra (8.9 X 108 <Ra=<9.3X 10°) and spatial posi-
tions r across the entire cell. It is found that ey(r) contains two contributions; one is generated by thermal
plumes, present mainly in the plume-dominated bulk region, and decreases with increasing Ra. The other
contribution comes from the mean temperature gradient, being concentrated in the thermal boundary layers,
and increases with Ra. The experiment provides a complete physical picture about the thermal dissipation field

and its statistical properties in turbulent convection.
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I. INTRODUCTION

Fluid turbulence is often considered as a cascade process
with turbulent kinetic energy being continuously transferred
from the largest eddies of size €, to eddies of smaller size,
until it dissipates when the size of the eddies becomes com-
parable to the viscous dissipation length €,. In the inertial
range €,<{<{,, the energy cascades at a constant rate e,
without dissipation [1]. The Kolmogorov dissipation length
¢, is defined by equating the Reynolds number Re(€,)
=€ u({,)/ v to unity, where v is the kinematic viscosity of the
fluid and u(€) is the velocity difference associated with ed-
dies of size €. Direct measurement of ¢, in fully developed
turbulence is difficult, because it involves simultaneous mea-
surements of nine components of the velocity gradient tensor
with fine spatial resolution below €, [2]. Good temporal res-
olution is also required in order to follow the rapid develop-
ment of intensive turbulent events.

In an analogous manner, the transfer of fluctuations of a
passive scalar 6, such as temperature or concentration of a
contaminant, to smaller scales is described by the dissipation
rate €4 which measures the mixing rate at which fluctuations
of 6 (or &) are destroyed. Measurements of the local dissi-
pation rate €, have been carried out in turbulent wind tunnels
[3] and water jets [4]. These experiments aimed at studying
the intermittent nature of passive scalar fluctuations in turbu-
lent flows [5]. For a temperature field 7(r,7), the thermal
dissipation field is defined as

er(r,1) = k|VT(r,0)]?, (1)

where « is the thermal diffusivity and VT(r,7) is the tem-
perature gradient field. The value of e(r,7) is always posi-
tive and the determination of €;(r,7) involves simultaneous
measurements of the three components of VT(r,1).

In turbulent Rayleigh-Bénard convection, where a fluid
layer of thickness H is heated from below and cooled from
the top, temperature becomes an active scalar which drives
the convective turbulence. In this case, the thermal dissipa-
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tion field €;(r,7) is determined by the dynamics of the flow
and the global average of €;(r,t) becomes proportional to the
total heat flux transported vertically through the convection
cell. In particular, one finds [6]

erlr,t
(en(r.D)y, = —<K(TQT/Z)V; = Nu(Ra,Pr), )
where ey(r,t)= e;(r,1)/[k(AT/H)?] is the normalized ther-
mal dissipation field, Nu(Ra, Pr) is the Nusselt number (nor-
malized heat flux), AT is the temperature difference across
the cell of height H, and (- - )y, represents averages over the
fluid volume V and time ¢. There are two experimental con-
trol parameters in turbulent Rayleigh-Bénard convection.
One is the Rayleigh number Ra=agATH?/(vk), where g is
the gravitational acceleration, and «, v, and « are, respec-
tively, the thermal expansion coefficient, the kinematic vis-
cosity, and the thermal diffusivity of the convecting fluid.
The other control parameter is the Prandtl number Pr=v/ k.

The theory by Grossmann and Lohse (GL) [7-10] ex-
plains the scaling behavior of Nu(Ra, Pr) by a decomposition
of the dissipation field ey(r)=(ey(r,?)), into two parts. In one
scenario [7-9], ey(r) is decomposed into the boundary layer
and bulk contributions, which have different scaling behavior
with varying Ra and Pr. More recently, a second scenario
was proposed [10] with €y(r) being decomposed into two
different contributions: Thermal plumes (including the
boundary layers) and turbulent background. While the two
scenarios involve different physical pictures about the local
dynamics of turbulent convection, the calculated Nu(Ra, Pr)
using the two different models turns out to be of the same
scaling form. This suggests that while the GL theory is ca-
pable of providing a correct functional form of Nu(Ra, Pr)
for a large number of transport measurements [11-19], the
microscopic mechanism of heat transport and its connection
to the local dynamics of turbulent convection still remain
illusive.

In this paper, we report a systematic study of the dissipa-
tion field ey(r,t) over varying Rayleigh numbers Ra and
spatial positions r across the entire convection cell. It is
found that €y(r) contains two contributions; one is generated
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by thermal plumes, present mainly in the plume-dominated
bulk region, and decreases with increasing Ra. The other
contribution comes from the mean temperature gradient, be-
ing concentrated in the thermal boundary layers, and in-
creases with Ra. The experiment provides a complete physi-
cal picture about the thermal dissipation field and its
statistical properties in turbulent convection.

The remainder of the paper is organized as follows. We
first describe the apparatus and the experimental method in
Sec. II. Experimental results are discussed in Sec. III. Fi-
nally, the work is summarized in Sec. IV.

II. EXPERIMENT

The experiment is conducted in two upright cylindrical
cells filled with water. The two convection cells have the
same inner diameter of D=19.0 cm but their height is differ-
ent; one is 20.5 cm and the other is 40.9 cm. The corre-
sponding aspect ratio (I'=D/H) of the two cells is I'=1 and
I'=0.5, respectively. Details about the apparatus and tem-
perature measurements have been described elsewhere
[20-22], and here we mention only some key points. The
sidewall of the cells is made of a transparent Plexiglas ring
with a wall thickness of 0.6 cm. The top and bottom plates
are made of brass and their surfaces are electroplated with a
thin layer of gold. The thickness of the top plate is 1.0 cm
and that of the bottom plate is 0.85 cm. The Plexiglas ring is
sandwiched between the two plates and is sealed to the top
and bottom plates via two rubber O rings. Two silicon rubber
film heaters connected in parallel are sandwiched on the
backside of the bottom plate to provide constant and uniform
heating. A dc power supply with 99.99% long-term stability
is used to provide the heating power. The voltage applied to
the heaters varies from 20 to 80 volts, and the corresponding
heating power is in the range between 23 W and 371 W. The
upper side of the top plate together with a circular aluminum
cover form a closed cooling chamber, whose temperature is
maintained constant by circulating cold water from a
temperature-controlled bath and/or circulator. The tempera-
ture stability of the circulator is 0.01 °C.

The two cells are used to change the aspect ratio and to
extend the accessible range of the Rayleigh number Ra. The
I'=1 cell covers the Ra range between 8.9 10% and 9.3
X 10°. In the I'=0.5 cell, the maximum value of Ra can
reach up to 5.9X 10'°. The temperature difference AT be-
tween the top and bottom plates is measured by two ther-
mistors embedded in each plate. In the experiment, the value
of AT varies from 4.8 °C to 50 °C depending on the heating
power. By adjusting the temperature of the cooling water, we
maintain the temperature of the bulk fluid at ~30 °C for all
the measurements. At this temperature, one has v=8.2
X 1073 ecm?/s, k=1.5X107% cm?/s and the corresponding
Prandtl number, Pr=v/x=5.5. The temperature stability of
the top and bottom plates is found to be within 0.1 °C in
standard deviation, which is less than 2% of the minimum
AT used in the experiment. The convection cell is placed
inside a closed square box, whose temperature is maintained
at 30£0.3 °C to prevent heat exchange between the con-
vecting fluid (water) and the surroundings.
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FIG. 1. (a) Upper figure shows the assembly of a homemade
temperature gradient probe consisting of four identical thermistor
beads. Lower figure shows a preassembled thermistor (AB6E3-
B0O5KA202R) purchased from GE Thermometrics. (b) Space coor-
dinates used for the presentation of the measurements. The long
horizontal (HS) and vertical (VS) arrows indicate, respectively, the
tracks of the horizontal and vertical scans of the local dissipation
measurements. The three crosses marked with a number indicate the
positions used for the statistical study of dissipation fluctuations.
The dashed arrows near the sidewall indicate the direction of the
large-scale circulation.

Four identical thermistors are used to measure the three
components of the local temperature gradient simulta-
neously. One of the thermistors is placed at the origin, la-
beled as T,, and the other three thermistors are arranged
along the x, y, and z axis, respectively. By simultaneously
measuring the four temperature signals, we obtain the three
temperature gradient components 67,/ 8¢, where OT;=T;
—T, (i=x,y,z) is the temperature difference between a pair
of the thermistors with separation 6¢. Two temperature gra-
dient probes are used in the experiment. One consists of four
preassembled thermistors with 0.17 mm in diameter and &¢
=0.80.1 mm. The preassembled thermistors (AB6E3-
BO5KA202R) were purchased from GE Thermometrics and
their construction is shown in the lower figure of Fig. 1(a).
This probe is used to measure the spatial distribution of €y(r)
at fixed values of Ra and its spatial resolution &¢ is compa-
rable to the thermal boundary layer thickness § (=0.8 mm at
Ra=3.6 X 10°), which is the smallest length scale in turbulent
convection.
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The second probe is made of four smaller thermistor
beads of 0.11 mm in diameter and is assembled in our own
laboratory, as shown in the upper figure of Fig. 1(a). The
small thermistor beads (BB05JA243N) were purchased from
GE Thermometrics. Each of them has a semiconductor head
of 80 um in diameter and two 1-cm-long metal legs of
10 wm in diameter. Silver paste is used to glue each of the
metal legs to a 100-um-diameter copper extension wire. The
thermistor assembly is then coated with a thin layer of wa-
terproof varnish for use in water. The second probe has a
higher spatial resolution of 6¢=0.25=* 0.1 mm. This probe is
used to measure the Ra dependence of ey(r) and the spatial
distribution of €y(r) across the lower thermal boundary layer
(at a fixed value of Ra). All the thermistors are calibrated
individually with an accuracy of ~5 mK for 6T7;.

Each of the thermistors is connected to an ac transformer
bridge as a resistor arm and the other resistor arm is con-
nected to a variable resistor to balance the bridge. The bridge
is driven by a lock-in amplifier (SR830, Stanford Research
System) at a working frequency f,= 1 = 0.2 kHz. Four iden-
tical bridges and lock-in amplifiers are used; each operates at
a slightly different reference frequency (shifted by 100 Hz)
to avoid cross-talks between the four signals. The output
signals are digitized simultaneously by a multichannel
A-to-D 1/0O board (BNC2110, National Instrument) and the
final data are stored in a host computer. The sampling rate of
the temperature measurements is set at 40 Hz. Typically, we
take 2-h-long time series data (2.88% 10° data points) at
each location for the measurement of the spatial distribution
of €y(r) and 8-h-long time series data (1.15X10° data
points) at a fixed location for the study of the Ra dependence
and the statistical properties of €y(r).

To guide the temperature gradient probe into the cell, we
install a horizontal stainless steel tube on the sidewall. The
stainless steel tube (type 304 SS hyperdermic tubing, 19 Ga,
McMASTER-CARR) has an outer diameter 1.1 mm and
wall thickness 0.19 mm. Thin thermistor wires thread
through the tube from the outside and a small head piece of
the probe sticks out of the tube end inside the convection
cell. The tube end is sealed with glue so that the convecting
fluid cannot leak out through the stainless steel tube. The
tube can slide in and out so that €y(r) can be measured at
various positions. For the horizontal scan [see Fig. 1(b)], the
tube is installed at the mid-height of the cell along a cell
diameter. For the vertical scan, the tube is installed vertically
through the center of the top plate so that €y(r) can be mea-
sured along the central axis of the cell.

Figure 1(b) shows the space coordinates to be used below
in the presentation of the measurements of ey(r). The origin
of the coordinate system is chosen to coincide with the lower
left corner of the vertical cross section of the cell. The x and
z axes are in the rotation plane of the large-scale circulation
(LSC) and the y axis is perpendicular to the rotation plane.
The long horizontal (HS) and vertical (VS) arrows indicate,
respectively, the tracks of the horizontal and vertical scans of
the local dissipation measurements. The three crosses
marked with a number indicate the positions used for the
statistical study of fluctuations of the local thermal dissipa-
tion rate. To pin down the azimuthal motion of the LSC, we
tip the cell with a small angle (<1°) by adding a few sheets
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FIG. 2. Measured standard deviation o,(€) as a function of
separation €. The solid line shows a linear fit to the data point with
small values of €. The measurements are made at the cell center
with Ra=3.9x 10°.

of paper at position O shown in Fig. 1(b). It has been shown
[23] that such a small tilt does not affect the convective flow
very much. When the cell is tilted at position O, the LSC is
set up in the x-z plane and the direction of the LSC is shown
by the two long-dashed arrows in Fig. 1(b). All the measure-
ments reported here are conducted in the rotation plane of
the LSC.

III. RESULTS AND DISCUSSION
A. Measurement of the local thermal dissipation rate

To measure the local gradient of the temperature field, one
needs to keep the separation 8¢ between the thermistors as
small as possible. This separation should be smaller than the
thermal boundary layer thickness &, which is the smallest
dissipation length in turbulent thermal convection. At length
scales smaller than &, temperature fluctuations are dissipated
by diffusion. The value of & decreases with increasing Ra
(6=425Ra"? mm [26]). On the other hand, the probe
separation should be large enough to minimize the distur-
bances produced by a thermistor tip to the nearby tempera-
ture measurements. In the experiment, we set the ther-
mistor’s separation at a minimal value of 6¢=0.8+0.1 mm
for the first temperature gradient probe and &¢
=0.25*=0.1 mm for the second probe. These values are 3—5
times larger than the tip diameter of the thermistor but 1-3
times smaller than the measured value of & at Ra=3.6
X 10° (=0.8 mm).

Another way to examine whether the thermistor’s separa-
tion &¢ is set properly in the experiment is to directly mea-
sure the standard deviation of the temperature difference,
o,(0)=([T,(r+€)-T,(r)>)!2, between two thermistors with
varying separation €. Figure 2 shows the measured o,(€) as
a function of separation €. It is found that the measured
o,(€) is a linear function of € for small values of €, with the
ratio 0,(€)/€ remaining constant in the range € <4 mm. Fig-
ure 2 thus suggests that the measured €(r)=x((ST;/ 5()%)
= k[ o,(€)/€]* will remain constant, so long as that the ther-
mistor’s separation ¢ chosen is in the linear region with ¢
=<4 mm. Here ¢(r) is a component of €/r). The ther-
mistor’s separation 8¢ chosen for the two temperature gradi-
ent probes are indeed in this linear region.
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FIG. 3. (a) Measured temperature histograms H(ST)/H, as a
function of 8T/ o7. Four histograms (circles, squares, triangles, and
diamonds) are obtained using the four thermistors, of which the
temperature gradient probe is made. The solid line shows the fitted
function, H(S8T)/Hy=exp[—a(ST/ o7)], with a=1.4. (b) Frequency
power spectra P(f) of the temperature signals obtained from the
four thermistors. All the measurements in (a) and (b) are made at
the center of the I'=1 cell with Ra=3.96x 10°.

Another issue in the measurement of €,(r) concerns with
the perturbations to the local temperature measurement pro-
duced by the three nearby thermistors. To examine this ef-
fect, we compare the histograms H(8T) of the local tempera-
ture signals measured by the four thermistors, of which the
temperature gradient probe is made. Here the temperature
fluctuation 8T is defined as ST=T(r,t)—(T), with (T) being
the local mean value of T(r,7). Figure 3(a) shows the result-
ing H(8T)/ Hyy using the 8-h-long time series data obtained at
Ra=3.96 X 10°. In the plot, the measured H(ST) is normal-
ized by its peak value H,, and the horizontal variable T is
normalized by its standard deviation o ={T(r,?)
—(T)(r)]*)""2. The histograms obtained from the four differ-
ent thermistors superpose nicely, and they all show a simple
exponential form (solid line) over an amplitude range of
more than 5 decades. Such an exponential form was also
observed previously in a similar convection system using a
single thermistor probe [24]. Figure 3(b) shows the measured
frequency power spectra P(f) of the temperature signals ob-
tained from the four thermistors. The four temperature power
spectra superpose nicely, indicating that the temperature sig-
nal measured by one of the thermistors is not affected by the
surrounding thermistors, at least in the statistical sense. Fig-
ure 3 thus demonstrates that the four thermistors at the cho-
sen separation do not interfere with each other very much, so
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FIG. 4. (a) Comparison between ¢,,(x) (open squares) and €/(x)
(solid circles) obtained from the horizontal scan along a cell diam-
eter at the mid-height of the cell. (b) Comparison between e,,(z)
(open squares) and €/(z) (solid circles) obtained from the vertical
scan along the central axis of the cell. All the measurements in (a)
and (b) are made in the I'=1 cell with Ra=3.9x 10°.

that the measured temperature signals have the same statis-
tical properties.

B. Spatial distribution of the thermal dissipation field
1. I'=1 cell

We first discuss the measurements of ey(r) in the I'=1
cell. Some of the results described here have been reported
briefly [25]. From Eq. (1), one finds that €y(r) contains three
contributions, e’)v(r) (i=x,y,z), resulting from the three com-
ponents of the temperature gradient. Each contribution can
be further decomposed into two terms: €}V(r)=efn(r)+6;c(r),
with €, (r) resulting from the mean temperature gradient and
e‘}(r) coming from the fluctuations. As a result, the total dis-
sipation can be written as €y(r)=¢,,(r)+€/r). In the horizon-
tal scan (HS) shown in Fig. 1(b), we measure ey(r) from one
side of the cell to the other side along a cell diameter at the
mid-height of the cell. In the vertical scan (VS), we measure
€y(r) along the central axis of the cell from the center of the
bottom plate to the center of the cell. All the measurements
are conducted in the plane of the LSC.

Figure 4(a) compares the measured dissipation profiles
€,,(x) (open squares) and e/(x) (solid circles) as a function of
the normalized horizontal position x/D (x/D=0.5 at the cell
center). The measured €,,(x) is negligibly small when com-
pared with €/(x). We find that €y(r)==€/r) is true for all the
measurements in the bulk region outside the thermal bound-
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FIG. 5. Measured horizontal profile ef(x) as a function of x/D
for three different values of Ra: 6.6 10° (circles), 2.7 X 10° (tri-
angles), and 9.2 X 10® (diamonds). The solid line shows the fitted
function, ef(x)=a+b(x/D—0.5)4, to the circles with @=0.56 and
b=74.4.

ary layer. Figure 4(b) compares €,,(z) (open squares) with
€/z) (solid circles) obtained from the vertical scan along the
central axis of the cell. The measured ¢,,(z) shows drastic
changes in three different regions of z/4. (i) In the z/8=<1
region (inside the thermal boundary layer), €,(z) is larger
than €{z) and the difference between the two quantities
peaks at z/ 8=0.2. The largest value of the ratio €,,(r)/ e/r)
is 7.4 at z/6=0.2. The decrease of the measured em(z§ at
smaller values of z/J is an artifact due to the fact that the
temperature gradient probe used has a finite spatial reso-
lution of 8¢ =0.25 mm. (ii) In the 1=<z/5<60 region, the
measured ¢€,,(z) decreases sharply by a factor of ~103, mak-
ing it much smaller than €/(z). (iii) In the z/ 5= 60 region,
the measured €,,(z) is further reduced by a factor of more
than 10, so that €/z) remains dominant over ¢,,(z).

Figure 5 shows the measured horizontal profiles of e{x)
as a function of x/D for three different values of Ra. Because
of the cylindrical symmetry of the cell, the measured €/(x) is
symmetric about the central axis with a minimum value at
the cell center and increases sharply in the sidewall region, in
which both the local velocity and local convective heat flux
reach maximum [22,27-29]. The value of €/(x) near the side-
wall is ~10 times larger than that at the cell center. The
overall amplitude of the horizontal profile €/x) decreases
slightly with increasing Ra, but its general shape remains
unchanged in the Ra range studied. The solid curve in Fig. 5
shows the fitted function, €{x)=a+b(x/D-0.5)*, to the
circles with a=0.56 and b=74.4.

Figure 6(a) shows the measured vertical profiles of €/(z)
as a function of the normalized vertical position z/ ¢ for dif-
ferent values of Ra. The measured ef(z) has a minimal value
at the cell center (z/ 6=100) and reaches maximum near the
lower conducting plate. When compared with Fig. 5, we find
€/(z) increases more rapidly near the conducting plate. The
maximal value of €/z) at z/ §=1 is ~140 times larger than
the minimal value at the cell center. Another important fea-
ture shown in Fig. 6(a) is that the measured profiles e/z) at
different values of Ra superpose nicely, once the vertical
position z is normalized by the boundary layer thickness 6.

Figure 6(b) shows the resulting vertical profiles of the
total thermal dissipation rate €y(z) as a function of z/ & for
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FIG. 6. (a) Measured vertical profile €/z) as a function of z/&
for different values of Ra. (b) Measured vertical profile ey(z) as a
function of z/ & for different values of Ra. The measurements in (a)
and (b) are made in the I'=1 cell with Ra=9.2 X 10® (triangles),
2.7 X 10° (diamonds), 3.9 X 10° (squares), and 6.6 X 10° (circles).

different values of Ra. As discussed earlier, in the bulk re-
gion of the cell we find €y(z)=€f{z), whereas near the
boundary layer ey(z) is taken over by e€,(z). Figure 6(b)
clearly reveals that €y(z) is dominated by the boundary layer
contribution. This is because the mean temperature differ-
ence AT/2 across the thermal boundary layer gives the larg-
est temperature gradient [and hence the largest €,,(z)].

As mentioned earlier, the measured ef(r) contains three
terms: 6}(1‘):(dT/dxi)z/(AT/H)2 (i=x,y,z). Figure 7(a)
shows the measured horizontal profiles e"f(x) (diamonds),
e}ﬁ(x) (circles), and 6}(x) (triangles) as a function of x/D. As
expected, the three horizontal profiles are symmetric about
the central axis of the cell and their minimal value is located
at the cell center. Because the flow in the central core region
is nearly isotropic, the three terms of ef(r) have almost the
same value. In the sidewall region, €(x) becomes approxi-
mately 2 times larger than €;(x) and €(x). The values of
e’;(x) and e;f-(x) are approximately the same because of the
azimuthal symmetry of the flow system. By carefully com-
paring the time series data of the local temperature and local
temperature gradient, we find that the large value of efe(x)
comes from fluctuations of the temperature gradient pro-
duced by the rising (or falling) thermal plumes. Figure 7(b)
shows the measured vertical profiles e"f(z) (diamonds), ej’;(z)
(circles), and e}(z) (triangles) as a function of z/ 8. Similar to
the horizontal scan, the vertical scan also reveals that the
dominant contribution to €/(z) is from ejzc(z). Near the edge of
the thermal boundary layer (z/ 6= 1), €(z) is approximately
4 times larger than €;(x) and €/(z).

026306-5



XIAOZHOU HE AND PENGER TONG

0f 4 ()]

15} 1
~
Nd\ 10+ A .
W A

6 A
st . A 1
oo A
ol %@%@é@@m 1
1 10 100
7/

FIG. 7. (a) Measured horizontal profiles 6;(x) (diamonds), ejy;(x)
(circles), and E}(x) (triangles) as a function of x/D. (b) Measured
vertical profiles €(z) (diamonds), €/(z) (circles), and €{(z) (tri-
angles) as a function of z/ &. All the measurements in (a) and (b) are
conducted in the I'=1 cell at Ra=2.7 X 10°.

2. I'=0.5 cell

We also measure the spatial distribution of €(r) in the
I'=0.5 cell. Similar to the I'=1 cell, the dominant contribu-
tion to ey(r) in the bulk region of the I'=0.5 cell comes
from the fluctuation term ef(r) and the mean gradient term
€,,(r) is negligibly small. Figure 8(a) shows the measured
horizontal profiles of €/(x) as a function of x/D for two dif-
ferent values of Ra. The spatial distribution of e(r) in the
I'=0.5 cell is similar to that in the I'=1 cell. The measured
€/x) is symmetric about the central axis with a minimum
value at the cell center and increases quickly in the sidewall
region. Because the LSC in the I'=0.5 cell is less stable
compared with that in the I'=1 cell (it wobbles even when
the cell is tilted at a larger angle), the measured rms veloci-
ties are larger than their mean values in the entire region of
the cell [27]. Consequently, the measured e/(x) at the cell
center is larger than that in the I'=1 cell. The overall ampli-
tude of the horizontal profile €/(x) decreases with increasing
Ra, a trend which is also seen in the I'=1 cell.

Figure 8(b) shows the measured vertical profiles €/(z) as a
function of z/ & for two different values of Ra. Similar to the
horizontal scan, the measured ef(z) has a minimal value at
the cell center (z/5=100) and increases sharply near the
lower conducting plate. The maximal value of e/z) at z/6
=72 is approximately 200 times larger than the minimal value
at the cell center. As in the I'=1 cell, the measured vertical
profiles Ef(Z) at different values of Ra scale with the bound-
ary layer thickness o.
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FIG. 8. (a) Measured horizontal profile e{x) as a function of
x/D for two different values of Ra. (b) Measured vertical profile
ef(z) as a function of z/ & for two different values of Ra. The mea-
surements in (a) and (b) are made in the I'=0.5 cell with Ra=9.1
X 10° (squares) and 2.7 X 100 (circles).

From the measurements in both the I'=1 and I'=0.5
cells, we arrive at the following physical picture about the
thermal dissipation field in turbulent convection. The thermal
dissipation field can be divided into two regions. (i) In the
bulk region outside the thermal boundary layers, the domi-
nant contribution to €y(r) comes from fluctuations of the
local temperature gradient. The dissipation field e/r) is gen-
erated by the detached thermal plumes and occupies mainly
in the plume-dominated region near the sidewall and near the
boundary layers (z/ 8> 1). In the central region of the cell,
the measured ef(r) has a minimal value because of the small
number of thermal plumes in the region. (ii) Inside the ther-
mal boundary layers (z/ §<1), the dominant contribution to
€y(r) comes from the mean temperature gradient in the di-
rection perpendicular to the conducting surfaces. Such a spa-
tial decomposition of ey(r)=e€/r)+e¢,(r) is consistent with
the first scenario of the GL theory [7].

C. Ra dependence of the local thermal dissipation rate

Although the spatial distribution of ey(r) does not change
very much in the range of Ra studied, the absolute value of
€y(r) does change with Ra. We now discuss the Ra depen-
dence of €y(r) at three representative locations in the con-
vection cell. As indicated in Fig. 1(b), the three locations are
marked as position 1 (at the cell center far away from the
boundaries), position 2 (at the mid-height 2 cm away from
the sidewall) and position 3 (at variable distances above the
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Ra

FIG. 9. Measured ef(r) as a function of Ra at the cell center
(circles) and near the sidewall (triangles). The solid lines show the
power-law fits, e;=aRa¥, with =033 and a=1.9X10* (lower
curve) and a=1.05X 10* (upper curve).

center of the lower conducting surface). Figure 9 shows the
measured €/(r) as a function of Ra at position 1 (circles) and
position 2 (triangles). The measured €/(r) at the cell center
and near the sidewall is well described by a power law
efr)=aRa? (solid lines) with the same value of B
=0.33+0.03 for both sets of the data. The power-law ampli-
tude « for the circles is 1.9 X 103 and that for the triangles is
1.05X 10*. As shown in Fig. 4(a), the contribution of €, at
the two positions is negligibly small.

Figure 10(a) shows the measured e/(r) as a function of Ra
near the lower conducting plate at distance ~1 mm above

10

10
(a)

W™,

10

10

FIG. 10. (a) Measured e/(r) as a function of Ra near the lower
conducting plate at distance ~1 mm above the bottom plate (dia-
monds) and ~2 mm above the bottom plate (triangles). The solid
lines indicate the power-law fits, ef=aRaﬁ, with 8=0.33 and «
=2.05X 10° (upper curve) and @=9.2x 10* (lower curve). (b) Mea-
sured Ra dependence of e€,(r) inside the thermal boundary layer
(~0.2 mm above the bottom plate). The solid line is a power-law
fit, €,=1.1X10"2Ra%%3. The dashed line shows (H/28)>=5.54
X 1072 Ra%7 (see text).
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the bottom plate (diamonds) and ~2 mm above the bottom
plate (triangles). The measured €/r) reveals a crossover be-
havior. For example, the diamonds shown in Fig. 10(a) first
increase with Ra for small values of Ra and then decrease at
larger values of Ra. This is because the measuring position at
small values of Ra is located inside the thermal boundary
layer. As the value of Ra increases, the boundary layer thick-
ness decreases and the measuring position moves outside the
boundary layer. The large-Ra portion of the data can be de-
scribed by the same power law, €=a Ra?, with B=0.33 and
@=2.05X%10° (upper curve) and @=9.2X 10* (lower curve).

To obtain the Ra dependence of €,,(r) inside the thermal
boundary layer, we place the temperature gradient probe
even closer to the lower conduction plate (~0.2 mm above
the bottom plate) and the result is shown in Fig. 10(b). The
solid line is a power-law fit, €,=1.1X10"2Ra?, with y
=0.63 =0.05. Because of finite heat capacity of the conduct-
ing plates and finite spatial resolution of the temperature gra-
dient probe used, the obtained value of 7 has relatively larger
uncertainties. However, the qualitative difference in the Ra
dependence between €/(r) and €,,(r) shown in Figs. 9 and 10
is so robust that it will not be affected by these experimental
uncertainties.

While the spatial decomposition of €y(r)=€Ar)+¢,(r) is
consistent with the first scenario of the GL theory [7], the
measured Ra dependence of e{r) and ¢,(r) does not agree
with this scenario. It is found that e/r) throughout the bulk
region scales as Ra™"33 whereas €,(r) inside the thermal
boundary layers scales with Ra differently [e,,(r) ~Ra%®%].
The observed Ra dependence has two important implica-
tions. First, the volume average ratio {(€/(r))y/(€,(r))y will
be a decreasing function of Ra, a trend which agrees with the
recent numerical results [30,31] but is opposite to that given
by the first scenario of the GL theory [7,10]. Second, the
measurements clearly reveal two competing effects of turbu-
lence. On the one hand, temperature fluctuations are de-
stroyed in the bulk region and their contributions to ey(r)
decrease with increasing Ra. On the other hand, the tempera-
ture gradient (and hence the thermal dissipation) is enhanced
near the conducting plates, because of the thinning of the
boundary layers with increasing Ra. These two competing
effects thus suggest that thermal plumes and the boundary
layers are two different dynamic structures and cannot be
treated equally, as suggested by the second scenario of the
GL theory [7,10].

Using the simple boundary layer scaling [7,10], one finds
that €,,(r)=(H/26)?, which is an upper bound for €,(r)
without taking fluctuations into account. Therefore, we have
(€,(r))y=(H/26)*(26/H) =Nu, indicating that the bound-
ary layers account for all the contributions to Nu. The dashed
line in Fig. 10(b) shows the measured (H/268)*>=5.54
X 1072 Ra%7 [26], which has a larger amplitude but smaller
exponent when compared with the measured ¢,,(r). The two
curves intersect at Ra,=1.68 X 10'!, above which one ex-
pects that ey(r) will be dominated by the boundary layer
contributions. In fact, the recent heat transport measurements
[14-19] have shown that Nu~Ra'® for Ra=Ra,, which is a
classical scaling based on a simple boundary-layer argument
[6,7]. The measured Ra dependence of €/(r) and ¢,(r) thus
provides a microscopic explanation to the crossover to the
boundary-layer dominant state at Ra=Ra,.
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The above boundary-layer scaling arguments, however,
neglect fluctuations of the thermal boundary layer due to the
detachment of thermal plumes, which can cause a (momen-
tary) increase of the boundary layer thickness (mostly oc-
curred in the corner region of the convection cell [26,27]),
resulting in a slight decrease of the thermal dissipation inside
the boundary layers. The detached thermal plumes are then
transported to and dissipated in the bulk region by the large-
scale flow. As an estimate, we calculate the spatially aver-
aged dissipation

(edr))y = J €/r)dr = J Lef(x)ed2)/ €(0) ]2 mxdxd?z.
1%
3)

In obtaining the last equality, we have assumed that e(r) is
axially symmetric. Using the measured profiles of €/(x) and
€/(z), we find (eAr)),~8.1 at Ra=2.7x 10°. This accounts
for ~9.7% of the measured Nu at this value of Ra [26].
Because €/(r) decreases with increasing Ra, the onset of the
Nu~Ra'” scaling at Ra=Ra, may be viewed as a manifes-
tation of diminishing contribution of €{r) to the total dissi-
pation rate.

D. Fluctuations of the local thermal dissipation rate

Large thermal fluctuations in turbulent convection are
generated primarily by the thermal plumes emitted from the
upper and lower thermal boundary layers. The role of ther-
mal plumes played in terms of their spatial distribution, in-
teractions with the mean flow, their signature in temperature
time series data, and their effect on the local convective heat
flux has been studied extensively in recent years
[20,24,27,29,32,33]. The recent temperature, velocity and
flow visualization measurements [27,32,34,35] showed that
the spatial distribution of thermal plumes in a closed cell is
neither homogeneous nor isotropic. The thermal plumes or-
ganize themselves in such a way that warm plumes accumu-
late on one side of the cell and cold plumes concentrate on
the opposite side of the cell. The spatially separated warm
and cold plumes exert buoyancy forces on the fluid and drive
the vertical flow near the sidewall. The central core region is
“sheared” by the rising and falling plumes, resulting in a
large-scale circulation (LSC) across the cell height. This
large-scale circulation provides a fast channel along the cell
periphery for the transport of heat [22,29].

With this understanding of plume dynamics, we discuss in
this section the statistical properties of the instantaneous
thermal dissipation rate €(r,?) at the three representative
locations in the convection cell. As indicated in Fig. 1(b), the
three locations are all in the circulation plane of the LSC.
Because the behavior of the dissipation fluctuations in the
I'=0.5 cell is similar to that in the I'=1 cell, we focus our
attention hereinafter to the measurements in the I'=1 cell.

1. At the cell center

Figure 11 shows the time series data for the local tempera-
ture fluctuation 87(¢), z component of the temperature gradi-
ent (dT/dz)(), two components of the thermal dissipation
rate é;(t) and e;(t), and the total dissipation date e(t) (top to
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FIG. 11. Time series measurements of the local temperature
fluctuation &7T(¢), z component of the temperature gradient
(dT/dz)(t), two components of the thermal dissipation rate e)f‘-(t) and
6}(t), and the total dissipation date €/(r) (top to bottom curves). All
the measurements are made at the center of the I'=1 cell with
Ra=3.9X 10°.

bottom curves). In the central region of the cell, the warm
and cold plumes are mixed up by the convective flow. Nev-
ertheless, there are still large thermal plumes remaining in
the region, producing temperature spikes of irregular sharp
and variable heights. These temperature fluctuations are sym-
metric relative to the mean fluid temperature 7). The mea-
sured temperature histogram H(ST) has a simple (symmetric)
exponential form [see Fig. 3(a)], which was also observed
previously in other convection experiments [11,24]. The
measured local temperate derivative (d7/dz)(¢) also shows
spikes of irregular sharp and variable heights. A key signa-
ture of the plume-generated temperature fluctuations is their
strong correlation with the resulting fluctuations in the tem-
perature derivatives and the thermal dissipation rate. This is
clearly shown in Fig. 11. It is seen that both the warm and
cold plumes generate sharp spikes in (dT/dz)(1).

Figure 12 shows the measured histograms H(dT/dx)/H,
(diamonds), H(dT/dy)/H, (circles), and H(dT/dz)/H, (tri-
angles) for the three components of the temperature gradient
vector at the cell center. To display the three histograms in
the same graph, we normalize the histograms by their maxi-
mum value H, and the gradient variables dT/dx; (x;
=x,y,z) are normalized by their standard deviation o, T he
mean value of the temperature gradient at the cell center is
zero, and fluctuations of the two horizontal components are
symmetric relative to the zero mean. Over an amplitude
range of almost 5 decades, the measured H(dT/dx)/H, and
H(dT/dy)/H, overlap very well and can be fit to a stretched
exponential function,

H(dT/dx;) = Hye @40/, )

with ¢=2.25 and d=0.64 (solid curve). The measured
H(dT/dz)/H, has approximately the same shape as
H(dT/dx)/H, and H(dT/dy)/H,, but a careful examination
reveals that H(dT/dz)/H, is slightly asymmetric in the tail
part of the distribution [when H(dT/dz)/Hy<1073].
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FIG. 12. Measured histograms H(dT/dx)/H, (diamonds),
H(dT/dy)/H, (circles), and H(dT/dz)/H, (triangles) for the three
components of the temperature gradient at the cell center with Ra
=3.96x10°. The solid curve shows the fitted function,
H(dT/dx;)/ Hy=exp{—c[(dT/dx;)/ 0,]%} (x;=x,y), to the diamonds
and circles with ¢=2.25 and d=0.64.

Figure 13(a) shows the measured histograms H(ey) of the
local dissipation rate € at the cell center. The histograms
obtained at different values of Ra can all be brought into
coincidence, once H (ef) is normalized by its maximum value
H, and € is scaled by its rms value o. Plots of H(e/)/H vs

H(Ing, )/H
=

(Ing - w)/o,

FIG. 13. (a) Measured histograms H(e;)/H, as a function of
€/ .. The measurements are made at the cell center with three
values of Ra: 1.7x10° (diamonds), 3.9 X 10° (circles), and 8.2
X 10° (triangles). The solid line shows the fitted function,
H(ep)/Hy=exp[—c(e/ o)), with ¢=3.9 and d=0.35. (b) Histo-
grams H[In(e)]/Hy as a function of the reduced variable, k
=[In(¢y) -]/ oy, using the same data in (a). The solid line shows
a Gaussian fit, H(k)/Hy=exp[—(k—u')?/20,2], with u'=0.1 and
] =0.92.

PHYSICAL REVIEW E 79, 026306 (2009)

€/ o remain unchanged in the Ra range studied and only o,
changes with Ra. The histograms have a universal form,
which can be described by a stretched exponential function,
H(ep)/ Hy=exp[—c(e// a)?], over an amplitude range of al-
most six decades. The solid curve shows the fit with ¢=3.9
and d=0.35. By carefully examining the time series data
shown in Fig. 11, we find that the sharp rise of the measured
H(ep)/H, for small values of €/0, are caused mainly by
those small fluctuations near the baseline.

To display the probability density function of these small-
amplitude fluctuations more clearly, we show, in Fig. 13(b),
the histograms H[In(e/)] of In(e;) using the same data in Fig.
13(a). In the plot a reduced variable, k=[In(e;)—u]/ oy, is
used for the horizontal axis. Here u is the mean value of
ln(ef) and oy is its standard deviation; both are the averaged
values over the entire data set. It is found that the values of u
and o, change with Ra, but plots of H[In(e;)]/H, vs k re-
main unchanged in the Ra range studied. Two important fea-
tures are observed from Fig. 13(b). (i) The measured
H[In(e/)] for different values of Ra obeys the same statistics.
(ii) The statistics of In(e;) are non-Gaussian, which is shown
by the visible asymmetry of the measured H[In(e)] for large
values of |k| (=1.5). While the whole curve is non-Gaussian,
part of the measured H[In(e;)] with k=-1.5 can be fit to a
Gaussian function, H(k)/Hy=exp[—(k—u')?/207]%], with '
=0.1 and 07=0.92 (solid line). Because of the asymmetry of
the measured H[In(ey)] for k=-1.5, the fitted values of u'
and o] show small deviations from the expected values of
#'=0 and o] =1 for a perfectly Gaussian distribution.

The Gaussian statistics for In(e/) indicates a log-normal
distribution for €, which describes well the large dissipation
fluctuations with [In(e/) - u]/ 0y =—1.5. Log-normal distribu-
tions have been used to describe the intermittent nature of
viscous dissipation fluctuations [1,36]. In fact, the cascade
picture for the viscous dissipation field with rare localized
regions of strong and/or weak energy dissipations may also
apply to the thermal dissipation field in turbulent convection.
Such localized regions are naturally identified as thermal
plumes in turbulent convection, as evidenced by our finding
that ef(r) is dominated by contributions from the plumes. It
was also shown recently [37] that both the size and the “heat
content” of the thermal plumes exhibit log-normal distribu-
tions. Log-Poisson distributions were also proposed to de-
scribe the intermittency of fluctuations of the viscous dissi-
pation [38,39]. It is known that log-Poisson becomes similar
to log-normal when its mean value is large. For small mean
values, log-Poisson is asymmetric with a long tail for large
fluctuations. Such a long tail distribution, however, is oppo-
site to that shown in Fig. 13(b).

2. Near the sidewall

Figure 14 shows the time series data for the local tem-
perature fluctuation 5T(z), temperature derivative (d7/dz)(1),
two components of the thermal dissipation rate €(r) and
e}(t), and the total dissipation date /) (top to bottom
curves). The measurements are made at position 2 shown in
Fig. 1(b), which is in the mid-plane of the cell and at 1.5 cm
away from the sidewall. This is the position at which the
measured ef(x) reaches maximum (see Fig. 5). Compared to
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FIG. 14. Time series measurements of the local temperature
fluctuation S8T(z), temperature derivative (dT/dz)(z), two compo-
nents of the thermal dissipation rate e}‘(t) and e}(t), and the total
dissipation date €/(7) (top to bottom curves). All the measurements
are made near the sidewall of the I'=1 cell at Ra=3.9 X 10°.

Fig. 11 (at the cell center), one finds more large temperature
fluctuations near the sidewall, which are highly skewed to-
ward one direction. These large upward going spikes are as-
sociated with the rising warm plumes in the region. It is seen
that the thermal plumes do not arrive randomly, rather, they
arrive in groups with a well-defined frequency [34,35]. The
plume-generated temperature fluctuations give rise to large
fluctuations in the temperature derivative and thermal dissi-
pation rate, which are clearly shown in Fig. 14.

Figure 15 shows the normalized histograms H(dT/dx)/H,
(diamonds), H(dT/dy)/H, (circles), and H(dT/dz)/H, (tri-
angles) for the three components of the temperature gradient
vector near the sidewall. Similar to the situation at the cell
center, fluctuations of the two horizontal components are
largely symmetric relative to the zero mean, and their histo-
grams overlap well over an amplitude range of more than 5
decades. The functional form of the measured H(dT/dx)/H,,
[and H(dT/dy)/H,), however, is different from that at the
cell center with a sharp cusp near the origin. The measured

H(dT/dx)H,

(dTldx)lo,

FIG. 15. Measured histograms H(dT/dx)/H, (diamonds),
H(dT/dy)/Hy (circles), and H(dT/dz)/H, (triangles) for the three
components of the temperature gradient vector near the sidewall at
Ra=3.96 X 10°.

PHYSICAL REVIEW E 79, 026306 (2009)
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FIG. 16. (a) Measured histograms H(e/)/H, as a function of
€/ 0. The measurements are made near the sidewall with three
values of Ra: 1.7X10° (diamonds), 3.9 X 10° (circles), and 8.2
X 10 (triangles). The solid line shows the fitted function,
H(ep)/ Hy=exp[—c(e/ o)?], with ¢=3.32 and d=0.44. (b) Histo-
grams H[In(e)]/H, as a function of the reduced variable, k
=[In(¢;) - p]/ 0y, using the same data in (a).

H(dT/dz)/Hy near the sidewall shows a higher degree of
asymmetry compared with that at the cell center (see Fig. 12)
and is strongly skewed toward negative derivatives. The
negative skewness is caused by the fact that there are many
warm plumes in the region (see Fig. 14) and they lose heat
while moving upward toward the top plate.

Figure 16(a) shows the normalized histograms H(ey)/H,
as a function of €,/ o near the sidewall. Similar to Fig. 13 (at
the cell center), the measured histograms for different values
of Ra can all be brought into coincidence, once H(ef) is
normalized by its maximum value H, and €; is scaled by its
rms value o,. The shape of the normalized histogram can be
well described by a stretched exponential function,
H(e;)/ Hy=exp[—c(e;/ o.)?], over an amplitude range of al-
most 6 decades. The solid curve in Fig. 16(a) shows a fit with
¢=3.32 and d=0.44. The obtained value of d near the side-
wall is larger than that at the cell center. As mentioned ear-
lier, there are more thermal plumes near the sidewall, which
increases the rms value of € and thus reduces the value of
the normalized variable €/ .

Figure 16(b) shows the normalized histograms
H[In(e/)]/H, of In(e;) as a function of the reduced variable,
k=[In(e;) - u]/ oy, using the same data shown in Fig. 16(a).
Compared to Fig. 13(b) (at the cell center), the measured
H[In(e)]/H, near the sidewall shows a higher degree of
asymmetry and is strongly skewed toward negative fluctua-
tions. It has an exponential tail for large negative fluctuations
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FIG. 17. (Color online) Measured temperature histograms
H(ST)/ Hy as a function of 8T/ o along the central axis (the z axis)
of the I'=1 cell. The measurements are made at Ra=1.7 X 10° with
four different values of z: 0.28 (solid line), 1.08 (dashed line), 108
(dashed-dotted-dotted line), and 10?8 (dashed-dotted line). Here &
(=1.0 mm) is the boundary layer thickness at Ra=1.7 X 10°.

in the range [In(e;)—u]/ oy =-2. (This corresponds to very
small fluctuations in €,.) We believe that the large deviations
from the log-normal distribution are caused by the strong
anisotropic flow generated by the thermal plumes near the
sidewall. Because the plume-concentrated sidewall region
has different statistical properties compared with the cell
center, the statistical analysis of temperature fluctuations and
their derivatives in the two regions should be carried out
separately, instead of combining the two together [40].

3. Near the lower conducting plate

The fact that warm plumes are emitted from the thin ther-
mal boundary layer near the bottom conducting plate makes
this region particularly interesting for the study of changes of
the statistical property of temperature fluctuations and their
derivatives with the measuring position z. Figure 17 shows
the measured temperature histograms H(8T)/H,, as a func-
tion of OT/o; along the central axis of the cell with five
different values of z. Deep inside the thermal boundary layer
(z=0.26), temperature fluctuations are symmetric and the
measured H(ST)/H, (solid line) is close to a Gaussian dis-
tribution. Because the bulk fluid temperature 7T}, is used as a
reference temperature, the peak value of the measured
H(8T)/H, is shifted to the right-hand side with a mean value
equal to the difference between the local mean and 7). As z
is moved across the boundary layer thickness and to the re-
gion 6=z=<1065, the measured H(ST)/H, (dashed and
dashed-dotted-dotted lines) becomes more and more asym-
metric. When z is further moved to the central region, the
degree of asymmetry of the measured H(ST)/H,, reduces. At
the cell center (z=10068), H(5T)/H, becomes symmetric
again and has a simple exponential form (dashed-dotted
lines). This change of skewness for temperature fluctuations
at different values of z was also observed in recent numerical
[40] and experimental [41] studies.

Figure 18(a) shows how the measured histograms
H(dT/dy) of the horizontal temperature derivative, dT/dy,
change with the measuring position z. In the plot H(dT/dy)
is normalized by its maximum value H, and d7T/dy is scaled
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FIG. 18. (Color online) (a) Measured histograms H(dT/dy)/H,
as a function of (dT/dy)/ o along the central axis (the z axis) of the
I'=1 cell. (b) Measured histograms H(dT/dz)/H, as a function of
(dT/dz)/ o, along the z axis. The measurements in (a) and (b) are
made at Ra=1.7 X 10° with four different values of z: 0.28 (solid
line), 1.06 (dashed line), 105 (dashed-dotted-dotted line), and 10?8
(dashed-dotted line). Here & (=1.0 mm) is the boundary layer
thickness at Ra=1.7 X 10°.
by its rms value o,. Unlike the local temperature, fluctua-
tions of the horizontal temperature derivative are symmetric
and have a zero mean for all values of z. The shape of
H(dT/dy) changes with z with a long tail developed for large
fluctuations of d7/dy when z is moved away from the
boundary layer. If a stretched exponential function,
H(dT/dy)/ Hy=exp{—c[(dT/dy)/ o ]%, is used to describe
the functional form, we find the value of the exponent d
decreases with increasing z from a value close to 2 (Gauss-
ian) for z=0.26 to a value smaller than 1 for z=1006 (cell
center). It is also found that the histograms H(dT/dx) for the
other horizontal temperature derivative, d7/dx, measured at
different values of z, have the same shape as that of
H(dT/dy) (see, e.g., Fig. 15), indicating that fluctuations of
the temperature derivatives are isotropic in the horizontal
plane perpendicular to the gravity.

Figure 18(b) shows the measured histograms
H(dT/dz)/ H, of the vertical temperature derivative, dT/dz,
as a function of (dT/dz)/o, for five different values of z.
Here o is the rms value of d7/dz. In contrast to the hori-
zontal temperature derivatives, fluctuations of the vertical
temperature derivative are asymmetric in the region 6=z
=106 and have a nonzero mean whose absolute value de-
creases with increasing z. As mentioned earlier, the measured
dT/dz has a negative mean value, because the rising warm
plumes near the lower conducting plate lose heat while mov-
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FIG. 19. (Color online) (a) Measured histograms H(e/)/H as a
function of €/ o, along the z axis of the I'=1 cell. The measure-
ments are made at Ra=1.7x 10° with four different values of z:
0.26 (solid line), 1.06 (dashed line), 106 (dashed-dotted-dotted
line), and 10?6 (dashed-dotted line). (b) Histograms H[In(ep)]/Hy
as a function of the reduced variable, ln(ef)/ 0, using the same data
in (a).

ing upward. At the cell center (z=1006), H(dT/dz)/ Hy be-
comes approximately symmetric and has a shape similar to
that for the horizontal temperature derivatives (see Fig. 12).

The evolution of the measured histograms H(e/)/H, for
the local thermal dissipation rate €, along the z axis is shown
in Fig. 19(a). In the plot H(e/) is normalized by its maximum
value Hj and € is scaled by its rms value .. As z is moved
away from the boundary layer to the cell center, the mea-
sured H(es)/H, develops a long tail for large fluctuations of
€, This long tail has a stretched exponential-like shape and
becomes more extended with increasing z. Similar behavior
is also observed in the measured H(e/)/H, with increasing
Ra (at a fixed value of z) (not shown). The extended long tail
in the measured H(es)/H, indicates an increasing degree of
small-scale intermittency of the thermal dissipation field
[40].

Figure 19(b) shows how the histogram H[In(ey)]/H, of
In(ey) changes with the measuring position z. In the plot a
reduced variable, In(e/)/ 0y, is used for the horizontal axis
with o, being the rms value of In(e/). Similar to Fig. 16(b)
(near the sidewall), the measured H[In(e;)]/H, in the plume-
concentrated region (z=108) shows a higher degree of
asymmetry. It has an exponential-like tail for large negative
fluctuations. As z is moved toward the cell center, the flow
field becomes more isotropic and the resulting H[ln(ef)]/ H,
is more symmetric, having a shape close to a log-normal
distribution for €, (see Fig. 13).

PHYSICAL REVIEW E 79, 026306 (2009)

FIG. 20. (Color online) Measured skewness of the local tem-
perature fluctuation 87(z) (squares), horizontal temperature deriva-
tive (dT/dy)(t) (circles), vertical temperature derivative (dT/dz)(r)
(triangles), and logarithmic dissipation rate In(€/)(#) (diamonds) as a
function of the normalized distance z/ & along the central axis of the
I'=1 cell. All the measurements are made at Ra=6.0 X 10°.

To quantitatively characterize the change of symmetry of
the measured distribution functions, we calculate the skew-
ness of a fluctuating variable 6;, defined as

(6
FW,

where 6, denotes 6T, dT/dy, dT/dz, or In(€;). For symmetric
distributions (in isotropic flows), one has S;=0. Figure 20
shows the measured skewness S; of the local temperature
fluctuation ST (squares), horizontal temperature derivative
dT/dy (circles), vertical temperature derivative d7T/dz (tri-
angles), and logarithmic dissipation rate In(e;) (diamonds) as
a function of the normalized distance z/ & along the z axis. It
is seen that the flow field along the z axis can be divided into
three distinctive regions. (i) In the central core region (z
=600), the flow field is nearly isotropic and all the distribu-
tion functions are symmetric with skewness S; close to zero.
(ii) Inside the thermal boundary layer (z=< &), the local tem-
perature fluctuation 67 and the horizontal temperature de-
rivative dT/dy are not affected by the vertical mean tempera-
ture gradient across the boundary layer. Therefore, their
distribution functions are symmetric with S;=0. Fluctuations
of the vertical temperature derivative d7/dz and the resulting
ln(ef), however, are coupled to the vertical mean temperature
gradient in the region, giving rise to a small value of skew-
ness for each case with opposite signs. (iii) In the plume-
dominated mixing zone (8=<z=<600), the flow field is highly
anisotropic and all the distribution functions are asymmetric
with a peak value of S; located at z~ 1048. Similar changes in
skewness were also found in a recent numerical study [40].

S (5)

IV. SUMMARY

We have systematically studied the thermal dissipation
field and its statistical properties in turbulent Rayleigh-
Bénard convection. A local temperature gradient probe con-
sisting of four identical thermistors is made to measure the
normalized thermal dissipation rate €y(r,z) in two convec-
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tion cells filled with water. The aspect ratio of the two up-
right cylindrical cells used is I'=1 and I'=0.5, respectively.
The measurements were conducted at a fixed Prandtl number
(Pr=5.5) and over varying Rayleigh numbers (8.9 108
<Ra=<9.3x10%) and spatial positions r across the entire
convection cell. From the spatial measurements of the time-
averaged thermal dissipation rate, ey(r)=(ey(r,?)), we ob-
tain the following physical picture about the thermal dissipa-
tion field in turbulent convection.

First, the measured €y(r) can be decomposed into two
contributions, ey(r)=e€r)+¢,(r), with €,(r) resulting from
the mean temperature gradient and €/(r) coming from the
fluctuations. In the bulk region outside the thermal boundary
layers, ef(r) is the dominant contribution to €y(r). It is gen-
erated by the detached thermal plumes and occupies mainly
in the plume-dominated region near the sidewall and near the
boundary layers (z/ 8> 1). In the central region of the cell,
the measured ef(r) has a minimal value because of the small
number of thermal plumes present in the region. Inside the
thermal boundary layers (z/8=<1), €,(r) is the dominant
contribution to ey(r). It comes from the mean temperature
gradient in the direction perpendicular to the conducting sur-
faces. This spatial decomposition of ey(r)=€/r)+e,(r) is
consistent with the first scenario of the GL theory [7].

Second, while the spatial decomposition, ey(r)=er)
+€,,(r), is consistent with the first scenario of the GL theory
[7], the measured Ra dependence of €/(r) and ¢,,(r) does not
agree with this scenario. It is found that €/(r) throughout the
bulk region scales as Ra™33, whereas ¢,,(r) inside the ther-
mal boundary layers scales with Ra differently [e,,(r)
~Ra’%%]. The measurements clearly reveal two competing
effects of turbulence. On the one hand, temperature fluctua-
tions are destroyed in the bulk region and their contribution
to ey(r) decreases with increasing Ra. On the other hand, the
temperature gradient (and hence the thermal dissipation) is
enhanced near the upper and lower conducting plates, be-
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cause of the thinning of the boundary layers with increasing
Ra. With these two competing effects, we conclude that the
thermal plumes and boundary layers are two different kinds
of dynamic structures and cannot be treated equally, as was
suggested by the second scenario of the GL theory [7,10].

Finally, we studied the statistical properties of the tem-
perature derivatives (dT/dx;)(t) (x;=x,y,z) and the resulting
dissipation rate €/(r,) at three representative locations in the
convection cell: At the center, near the sidewall and near the
lower conducting plate. We measured the probability density
functions (histograms) of (dT/dx;)(¢) and €(r,t) with vary-
ing Ra. It is found that the measured histograms are invariant
with Ra, once the statistical variables concerned are normal-
ized by their rms values. The histogram of the local thermal
dissipation rate is characterized both in terms of € and
In(ey). By carefully examining the evolution of the measured
histograms of 8T, dT/dy, dT/dz, and In(€/), we find three
different statistical behaviors along the central axis of the
cell (the z axis). (i) In the central core region (z=608), the
flow field is nearly isotropic and all the histograms are sym-
metric with skewness S; close to zero. (ii) Inside the thermal
boundary layer (z=< &), the measured histograms of 6T and
dT/dy are not affected by the vertical mean temperature gra-
dient across the boundary layer and remain symmetric with
S;=0. However, fluctuations of d7/dz and the resulting
In(ey) are coupled to the vertical mean temperature gradient
in the region. (iii) In the plume-dominated mixing zone (&
=<z=600), the flow field is highly anisotropic and all the
measured histograms are asymmetric with a peak value of S;
located at z~106.
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