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Networks on the edge of chaos: Global feedback control of turbulence in oscillator networks
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Random networks of coupled phase oscillators with phase shifts in the interaction functions are considered.
In such systems, extensive chaos (turbulence) is observed in a wide range of parameters. We show that, by
introducing global feedback, the turbulence can be suppressed and a transition to synchronous oscillations can
be induced. Our attention is focused on the transition scenario and the properties of patterns, including
intermittent turbulence, which are found at the edge of chaos. The emerging coherent patterns represent various
self-organized active (sub)networks whose size and behavior can be controlled.
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I. INTRODUCTION

Network-organized nonlinear systems are ubiquitous in
nature and in the human world [1]. They may well be even
more important with respect to applications than continuous
nonlinear media, such as reaction-diffusion systems, which
have been extensively studied. Understanding principal
modes of self-organization in network-organized systems
and finding ways of controlling them is a major scientific
challenge. While studies on network dynamics are rapidly
progressing (see Refs. [2,3]), only some of its aspects have
been so far mainly considered. Studies are often focused on
linear stability of synchronous oscillations in such systems
and its dependence on the network architecture. Comparing
this to studies of nonequilibrium pattern formation in nonlin-
ear continuous reaction-diffusion models [4—7], one can no-
tice that other kinds of coherent dynamical patterns, beyond
of uniform oscillations, are possible too. What would be the
analogs of traveling or standing waves, Turing patterns, or
high-dimensional chaos (turbulence) for the network-
organized dynamical systems? What are the bifurcations cor-
responding to transitions between different coherent patterns
in the networks? How would the emergence and properties
of self-organized coherent patterns or turbulence in dynami-
cal network systems be controlled? Many of such questions
are awaiting their analysis.

Our study is motivated by previous investigations on con-
tinuous nonequilibrium media. Diffusive coupling between
periodic oscillators on a lattice or in a continuous medium
can destabilize uniform oscillations and lead to diffusion-
induced extensive chaos, known as chemical turbulence
[5,8]. In experimental and theoretical investigations [9—13],
it has been shown that this kind of turbulence can be con-
trolled by introducing global feedback. Such feedback can
not only induce uniform oscillations, but also produce vari-
ous coherent dynamical patterns, observed at the edge of
chaos within the transition region.

Here we consider the network analog of the problem stud-
ied in Ref. [11]. We take a network system where individual
elements, occupying the nodes of a network, are periodic
phase oscillators. We introduce interactions between the os-
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cillators, which depend only on the differences in the phase
states of the network neighbors and thus correspond to the
diffusive coupling in continuous media. We show, by direct
computation of Lyapunov exponents and embedding dimen-
sions, that such interactions are sufficient to break down uni-
form oscillations and to establish high-dimensional chaos
(network turbulence). We introduce global feedback and
demonstrate that, through its action, not only synchronization
can be restored, but also various, complexly organized dy-
namical regimes can be achieved. Then, we systematically
study coherent structures and intermittent turbulence in the
transition from developed network turbulence to synchro-
nous oscillations under the variation of the global feedback
intensity.

Our analysis reveals that the transition can be divided into
two distinct stages. In the first stage, groups of elements
become active, that they repeatedly perform excursions from
the common synchronous state. These groups are organized
into (sub)networks whose collective dynamics depends on
the size of a (sub)network and its architecture. As the feed-
back intensity is decreased, the fraction of active elements
grows. The networks formed by these elements increase in
size and become more numerous. When a certain feedback
intensity is reached, such networks merge in a percolation
transition, so that a large connected network of active ele-
ments is formed. Even before this transition, network dy-
namics becomes chaotic, as signalled by positive values of
the maximal Lyapunov exponent.

In the next stage, changes in the internal organization of
the dynamical system are best monitored by looking at the
global Kuramoto order parameter which specifies the ob-
served degree of synchronization. We find that, as the feed-
back intensity is further decreased, this order parameter rap-
idly decreases and becomes very small below a certain finite
threshold. Because this global parameter determines the
magnitude of the global feedback signal in the system, its
vanishing indicates the failure of the global feedback to en-
train the system. Our calculations show that the maximal
Lyapunov exponents and the Kaplan-Yorke embedding di-
mension of the system strongly increase as the feedback
breakdown transition is approached.

After this transition has taken place, all system elements
still receive relatively strong signals from their network
neighbors and they do not become effectively independent.
Analyzing the internal organization of the system in this tur-
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bulent state, we find that it is characterized by repeated syn-
chronization bursts that involve only small groups of net-
work elements. Remarkably, each next burst appears to be
produced by a different group of network elements.

The considered model is formulated in the next section.
The chaos transition scenario is outlined in Sec. III. This is
followed by a more detailed numerical analysis of the system
behavior at two characteristic stages in the subsequent two
sections. The paper ends with conclusions and discussion of
obtained results.

II. THE MODEL
We consider a dynamical system representing a network

of N identical phase oscillators with phase-shifted pairwise
interactions. It is described by a set of differential equations

N

. 1

=w+— 2 Tjsin(¢; — ¢+ 27A;)). (1)
PN 1 ji

Because all oscillators are identical, the common natural fre-
quency can be assumed equal to zero (w=0), which corre-
sponds to the use of a corotating reference frame. T is the
adjacency matrix of the interaction network and p is its av-
erage connectivity (7 ;), so that pN is the mean degree of a
node. The adjacency matrix is not symmetric and therefore
directed interactions are present in the system. Interactions
between the elements are characterized by random phase
shifts 277Aij. Since directed interactions are considered, the
phase shifts are generally different in two directions i — j and
j—1i. Note that in the globally coupled case (7;;=1 for any i
and j) and for phase shifts taking only one of two values
A;;=0or A;;=1/2, the considered model becomes reduced to
that previously studied by Daido [14]. However, in contrast
to the Daido model, our system is not variational and there-
fore its dynamical properties are significantly different. Note
also that the model (1) can be derived in the weak interaction
limit from the model of coupled phase oscillators with time
delays (see Ref. [15]); however, we do not perform such a
reduction in this paper and take Eq. (1) as the starting point
of our analysis.

The matrix of phase shifts is chosen as A;;=q;;6, where a;;
are random numbers independently drawn from the interval
[0, 1] for any pair (i,j). The parameter S specifies the char-
acteristic magnitude of the phase shifts in the model. Our
numerical investigations show that, for sufficiently large val-
ues of &, network dynamics is chaotic and has a large em-
bedding dimension, so that high-dimensional chaos (turbu-
lence) is observed in the system. In the numerical
simulations that follow, the value 6=0.4 is chosen, a value
high enough to induce chaotic dynamics.

To control the behavior of the network, global feedback is
used in our investigations. Generally, global feedback control
means that information about the states of all elements in a
system is gathered and used to generate a common (global)
control signal which is applied back to all elements [13]. For
our study, the global signal shall be chosen as
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Thus, it coincides with the Kuramoto order parameter [8]
used to measure the degree of synchronization in a system of
oscillators. We assume that the global signal is applied as an
external force to all oscillators in the network
L
(.ﬁi = — E le SIH(¢1 - ¢i + 2'7TAl]) + ﬁ,(Ze_mSi - C.C.),
PN i1 ji 2i
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where u is the parameter that specifies feedback intensity.

Introducing the magnitude R and the phase ® of the glo-
bal signal as Z=R exp(i®), we arrive at the final set of equa-
tions that describe the considered model

N
. 1
bi=— > T sin(; = i+ 27A;j) + pR sin(® - ¢).
PN joi j#i
4)

In our investigations, we will perform numerical simulations
of systems composed of N=1000 identical oscillators. As a
pattern of interactions 7, standard networks of the Erdos-
Renyi type will be used. In such networks, (directed) links
connecting two elements (i — j) are chosen independently at
random with some probability p. Explicitly, the elements of
matrix T are

1 with probability p,
ij= { (5)

0 with probability 1 — p,

where the first condition excludes loop edges. Therefore, in
the limit of large networks the mean degree of a node is
(ky=pN. For our simulations, we have set p=0.006, having
checked that, despite the low connectivity, the considered
networks are still fully connected, so that each node can be
reached from any other node in the network.

III. LYAPUNOV EXPONENTS AND KAPLAN-YORKE
DIMENSION

To characterize chaotic dynamics, two measures have
been chosen in our investigations. The first of them is the
maximal Lyapunov exponent that measures the rate of the
exponential divergence of the trajectories. The second is the
Kaplan-Yorke embedding dimension, which tells what is the
minimal number of independent variables generally needed
to describe the chaotic attractor [16].

Lyapunov exponents are a set of numbers \; that charac-
terize the average rate of local divergence (or convergence)
of close trajectories within an attractor. In particular, the
maximal Lyapunov exponent A, is the largest of these num-
bers and it indicates whether neighboring trajectories sepa-
rate or converge in time. For the calculation of the full spec-
trum of Lyapunov exponents, we shall follow the method
developed by Benettin et al. [17] and Shimada and Na-
gashima [18] (see also Ref. [19]).

The maximal Lyapunov exponent can be computed by
tracking the evolution of small perturbations to an orbit be-
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FIG. 1. (Color online) Dependence of the maximal Lyapunov
exponent on the control parameter u.

longing to the attractor. For this, it is convenient to use the
linearized form of the evolution equations. This amounts to

observing the evolution of a perturbation vector g, that obeys

2,0 = D)4, ©

where J is the Jacobian matrix of the system. Independently
of the initial condition ¢,(0), this vector tends to adopt the
direction of maximal elongation (or minimal compression) in
phase space. The average rate of growth of the module of
q,(z) over the attractor yields the maximal Lyapunov expo-
nent.

The remaining Lyapunov exponents can be calculated by
restricting the possible directions of perturbations. For ex-
ample, \, measures the rate of growth of a perturbation ¢, in
a direction orthogonal to ¢,. Generally, \; represents the av-
erage growth rate of a perturbation vector ¢; which belongs
to the subspace orthogonal to vectors ¢, ...,q;_;. It is clear
then that the Lyapunov exponents calculated in this way sat-
isfy the condition N; >N,> -+ >Ny > Ny

In numerical implementations, several precautions need to
be taken [20]. In our case, in particular, we know that the
system is invariant under rigid translations, that is, under
transformations of the variables ¢; — ¢;+C for all i. This
means that perturbations along the direction ¢,=(1,...,1)
will remain unchanged, resulting in an exponent equal to 0.
These perturbations provide no information on the dynamics
of the system, and we therefore force g, to be orthogonal to
the vector (1,...,1) in every time step, letting it evolve freely
in all other directions. This means that the Lyapunov spec-
trum of our system will be defined by N—1 exponents, ex-
cluding the zero exponent that is always present.

In this way, the entire spectrum of Lyapunov exponents
can be calculated. An important quantity to derive from the
spectrum is the dimensionality of the attractor. This is calcu-
lated using the Kaplan-Yorke definition [21] which reads

sEN
D=k+ 5=, (7)
|)\k+1
where k is such that =X \;=0 but =¥ /\;<0. The dimension
is in general a noninteger number. This means that the small-
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FIG. 2. (Color online) Dependence of the Kaplan-Yorke embed-
ding dimension on the control parameter .

est integer larger than or equal to D is the number of inde-
pendent variables that would be necessary to describe the
dynamics within the attractor.

The maximal Lyapunov exponent and the Kaplan-Yorke
dimension are shown as functions of the control parameter
in Figs. 1 and 2, respectively. Additionally, four histograms
of the distributions of all N—1 Lyapunov exponents are
shown in Fig. 3 for different values of . In Fig. 1, we can
immediately see that the maximal Lyapunov exponent is
positive in the absence of global feedback, that is, at u=0.
This implies that the behavior is chaotic, as anticipated in the
previous section. Furthermore, the embedding dimension of
this chaotic attractor is high (D=137.2 at ©=0) and compa-
rable to the dimension (size) of the system N=1000. Thus,
our system can be considered as exhibiting network turbu-
lence in absence of the feedback.

In contrast, for large values of u we can see that \; is
negative, indicating the presence of a stable fixed-point at-
tractor. The dimension is accordingly D=0. This corresponds
to a state of synchronization, induced by the global

80 ‘ —

0
Lyapunov exponents

FIG. 3. (Color online) Histograms of Lyapunov exponents for
different values of the control parameter u.
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feedback.! The distribution of Lyapunov exponents at
m=1.0 is approximately symmetric and roughly centered at
-1.3 [Fig. 3(a)].

When the intensity of the global feedback is decreased,
the synchronous stationary state becomes unstable at wu;
~0.92 and we get \;=0 (Fig. 1). The maximal Lyapunov
exponent remains equal to zero in an interval of u below this
transition, so that limit-cycle oscillations take place there. It
is interesting that the Kaplan-Yorke dimension of the attrac-
tor grows below w=pu;, even though chaos is absent. This
indicates that the system has several zero Lyapunov expo-
nents, including \; [indeed, if k zero Lyapunov exponents
are present, D=k according to Eq. (7)]. The presence of de-
generate zero Lyapunov exponents is directly demonstrated
by Fig. 3(b), where a clear peak is present at 0.

The attractor becomes chaotic at u,=~0.77, where \; first
becomes positive. Both the value of the maximal Lyapunov
exponent and the dimension of the attractor grow monoto-
nously when decreasing the intensity of the global feedback.
Thus, the behavior becomes more complex as chaos devel-
ops. The dimension reaches high values, up to D=244.8,
significantly higher than that in the absence of global feed-
back. As seen in Fig. 3(c), a large number of Lyapunov ex-
ponents are then positive (approximately 10% of them) and
the distribution is now clearly asymmetric.

An abrupt drop occurs in both the maximal Lyapunov
exponent and the Kaplan-Yorke dimension at about
m3=0.26, indicating a drastic change in the properties of the
attractor. The distribution of Lyapunov exponents becomes
more narrow and the fraction of positive exponents is ap-
proximately 6%. Remarkably, further changes in u below
this critical value seem to have no effect on the behavior of
the system. This suggests that the sudden drop is associated
with the breakdown of the global feedback.

The results displayed in these figures indicate that there
are several interesting aspects of the transition from synchro-
nization to chaos. In the following we study this transition
using different statistical tools to better describe and under-
stand the complex behavior observed in networks at the edge
of chaos.

IV. VELOCITY DISTRIBUTIONS AND ACTIVE
ELEMENTS

The global feedback in the considered system tends to
impose synchronization. If only global interactions corre-
sponding to this feedback are present, the system undergoes
complete synchronization, with all phases becoming identi-
cal, ¢;=®=const. In the presence of network interactions,
this state is no longer possible because of the phase shifts in
the interactions between individual oscillators, which bring
the system to a state of frustration [14]. Instead, a state
of frequency synchronization can be reached where

(ﬁ:Q:const. If this state is stable, all deviations from it are

"The synchronous state is invariant with respect to uniform shifts
of all phases. This is reflected in the presence of the additional
trivial zero Lyapnov exponent, which is discarded.
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FIG. 4. (Color online) Mean time-averaged velocity of the net-
work (dots) as function of the feedback intensity . Thin lines show
the maximum and minimum velocity values.

damped, except for a perturbation representing a uniform
shift of all phases. Thus, it will be characterized by negative
Lyapunov exponents (the trivial zero Lyapunov exponent
corresponding to uniform phase shifts is discarded).

As follows from Figs. 1 and 3(a), frequency synchroniza-
tion takes place in the considered system if global feedback
is strong enough, i.e., if u> u,. For weaker feedbacks, this
state is destroyed and internal dynamics develops in the sys-
tem. To monitor the gradual destruction of frequency syn-
chronization, it is natural to observe the behavior of the ve-

locities ¢; of network elements. Below we consider long-
time average velocities v;, defined as

1 (A 1
Vl_ AT 0 ¢z(t)dt_ AT[¢[(AT) ¢1(0)]7 (8)
where the time interval AT is large.

The mean, maximum and minimum values of all veloci-
ties v; at different feedback intensities u have been computed
(Fig. 4). We see that for p> u; the maximum and minimum
velocities coincide, so that all velocities are equal and the
system is in the state of velocity synchronization. At
<3, the mean velocity is close to zero (v;)=0 and dis-
persion of velocities is small. Inside the transition region
M > u> s, the velocities of individual oscillators are
spread broadly.

To characterize the behavior of the system in the transi-
tion region, distributions of velocities at three different val-
ues of the feedback intensity u have been determined (Fig.
5). We see that, while the overall spread in the velocities is
large, the majority of the oscillators possess the same long-
term average velocity, and only a small fraction of them have
velocities that are different.

In the reference frame that rotates with the velocity of the
distribution peak, one would see that most of the oscillators
remain still or at most vibrate around a fixed point, so that
their time-averaged velocities are all zero. Therefore, these
elements can be described as forming a synchronous conden-
sate . In contrast, the oscillators outside of this group per-
form repeated phase rotations around the condensate and can
be described as active elements.
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FIG. 5. Distributions of time-averaged velocities of all network
elements for three selected values of feedback intensity wu.

This classification is further clarified if we look at the

instantaneous time-dependent velocities ¢,(¢) of the elements
(Fig. 6). The elements belonging to the synchronous conden-
sate exhibit only weak temporary deviations from the com-
mon velocity. In contrast to this, active elements are charac-
terized by repeated velocity pulses. Each of these pulses
correspond to a full phase rotation, i.e. to a phase slip with
respect to the condensate. Their behavior is reminiscent of
spiking in neural models.

Note that the evolution equation (3) of the considered
model can also be written in the form

. 1 i
di= -+ p2)ehi-cel, ©)

where the local signal z; acting on an element i is introduced
as

N
1
= — E T et(¢j+27TA) (]0)
pN/ 1,j#i

In contrast to the global signal Z, local signals are generated
only by network neighbors of a given element. Moreover,
they depend on the phase shifts A;; that characterize connec-
tions between the chosen element and its neighbors.

If we further introduce relative phases of elements as
,=¢p;—D, where the global phase is defined by
Z=R exp(i®), the evolution equations become

'1=0.877

=]
[
T T

FIG. 6. (Color online) Instantaneous velocities of several ran-
domly chosen elements ©=0.87.

PHYSICAL REVIEW E 79, 026219 (2009)

. 1 .
1/;[=—Q+;[(Z[+MR)e"‘/"'—C.C~], (11)
i
where
1 N
Z[_ . E T ez(¢]+2ﬂ'Aij) (12)
pN] 1.j#i

and Q=® is the global velocity. Finally, we can write them
in the form

== Q+ uR;sin(V; - ) (13)

with R; exp(i¥V,)=R+u'Z.

In the synchronous state ;=0 and, therefore, relative
phases of all oscillators are determined by a set of algebraic
equations

sin(W; — ¢;) = ,U«% (14)

l

A solution to these equations exists only if wR; =) for all
nodes i. This is always the case if the global feedback is
strong (uw— ) and contributions from the local signals are
negligible. As the global feedback gets weaker, the ratio
Q/ uR; increases and, eventually, becomes larger than unity
for some of the oscillators. These oscillators can no longer be
entrained by the condensate and start to orbit around it, gen-
erating phase slips. They form the subset of active elements.
When orbiting elements have appeared, they act back on the
elements in the condensate and force them to undergo small
temporal deviations from the synchronous state. This behav-
ior can be seen in Fig. 6.

The above analogy with spiking neurons is not far
fetched. The transition to orbiting, described by Eq. (13),
represents the saddle-node bifurcation on the invariant cycle
which is characteristic to type-I neuron models [22,23]. En-
trained elements are effectively excitable and can make a
rotation (i.e., generate a spike) when a strong perturbation
arrives. Individual orbiting elements are oscillatory (in the
reference frame fixed by the condensate) and perform spon-
taneous rotations.

Thus, the system can be understood to be composed of
oscillatory elements and excitable elements with different
thresholds: some active elements are in a suprathreshold
state, repeatedly generating spikes, whereas some elements
are in a subthreshold regime, susceptible to excitations.
Threshold values for each element depend not only on the
local topology of the network, but also on the phase shifts in
the interactions of this element with its network neighbors.

Spontaneous spiking is periodic for u, <u<<pu;, as evi-
denced by the fact that the maximal Lyapunov exponent is
zero (A;=0) inside this interval. Actually, as seen in Fig.
3(b), several Lyapunov exponents can be zero inside this
interval, indicating that many oscillators are orbiting inde-
pendently. For the lower feedback intensities, the collective
dynamics of the system becomes chaotic.
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FIG. 7. (Color online) The sequence of active subnetworks ob-
served under gradual decrease of the feedback intensity u.

V. ACTIVE SUBNETWORKS

When velocity synchronization breaks down and nonen-
trained active elements first appear, only a few of them are
present. The number of active elements should however in-
crease as the feedback intensity is further decreased. Some of
them would have other active elements as their neighbors
and, thus, active subnetworks would be formed. In this sec-
tion we identify such subnetworks in the system and inves-
tigate how their properties depend on the feedback intensity.

To construct active subnetworks, we fix the global feed-
back intensity and let the system evolve. Analyzing its dy-
namics after a transient, the set of elements which become
active is determined. The active elements occupy certain net-
work nodes. Next we retain only these nodes and network
connections between them, ignoring elements belonging to
the synchronous condensate and their connections. In this
way, the subnetworks of active elements are obtained.

Figure 7 shows the active subnetwork for several intensi-
ties w of the global feedback. We see that initially the active
subnetworks consist of a small number of isolated elements
(#=0.9 and ©=0.8). As new active elements emerge at low
feedback intensities, small network fragments with two,
three, and four elements are formed (u=0.75 and 0.7). The
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FIG. 8. (Color online) Dependence of the number of active el-
ements (line) and the size of the largest connected active subnet-
work (dots) on the feedback intensity u.
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FIG. 9. The largest diameter (dots) of active subnetworks as
function of the feedback intensity u.

connected network components increase in size (u=0.65 and
0.6) and finally a large connected component develops (u
=0.55).

In Fig. 8, the total number of active elements and the size
of the largest connected component are shown depending on
the control parameter ,u.2 Within a range of the control pa-
rameter, the size of the largest connected component is well
below the number of active elements, implying that there are
many disconnected network fragments present. For
n<<0.53, both curves become almost coincident, indicating
that most of the active elements belong to a single giant
connected component. A subnetwork is viewed as a con-
nected component if any of its elements is linked to at least
one other element in the subnetwork, neglecting interaction
directions.’

Decreasing the intensity of the global feedback increases
the size and complexity of subnetworks of active elements.
Recalling the curve for the maximal Lyapunov exponent in
Fig. 1, we notice that it becomes positive and chaos emerges
already for ©<<0.77, before active subnetworks merge into a
giant component. Thus, the dynamics of relatively small sub-
networks can already be chaotic.

An important structural property of any network is its
diameter, defined as the longest of the shortest paths connect-
ing pairs of elements. For networks with directed connec-
tions, each link in a path should be traversed along its pre-
scribed direction. If there are several disconnected
fragments, their diameters can be independently computed.
In Fig. 9, the longest diameter is displayed as a function of
the global feedback intensity. The diameters of active sub-
networks can be compared with the the diameter of the full
network, which is equal to 8 in the case considered.

“Since the distinction between active elements and element con-
forming a synchronous condensate requires the clear existence of
the latter, the classification might not be well defined when the
majority of the elements are active. However, we have seen in Fig.
5 that a pronounced peak for the velocity of the condensate persists
even when more than half of the elements have become active.
Therefore, the values presented in Fig. 8 are valid for the very large
portion of the range.

*Note that this condition is weaker than the one used for matrix 7.
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FIG. 10. Space-time diagram showing the dynamical activity
pattern in the chain of 29 elements belonging to the active
subnetwork.

As the feedback intensity is decreased, the largest diam-
eter grows, starting from zero when only individual nodes
are active. It reaches a maximum at
©1=0.49 and then decreases. It is remarkable that, at its peak,
the largest diameter of subnetworks is equal to 29, which is
much higher than that of the underlying network structure.
After passing the maximum, the diameter takes the values
close to 8, the same as in the underlying structure.

Generally, active subnetworks are characterized by the
presence of long paths and their diameters are significantly
larger than those of the comparable random networks. For
example, the subnetwork of diameter 29 has 293 nodes and
its mean degree is 3.37. Standard directed random networks
of this size and the same mean degree would have the diam-
eter of about 23.

Active subnetworks are dynamical structures. Their ele-
ments perform repeated phase rotations with respect to the
main condensate. Some of these elements are oscillatory and
play the role of pacemakes. Other elements in a subnetwork
are effectively excitable and their phase rotations are trig-
gered by perturbations arriving at them from their neighbors.
Thus, wave propagation takes place inside active subnet-
works.

This kind of wave progagation is illustrated in Fig. 10.
Here, we have taken the feedback intensity u=0.49 yielding
the subnetwork with the largest diameter of 29 and have
chosen the chain of nodes in the path corresponding to this
diameter. The raster plot in Fig. 10 shows the dynamical
activity along this chain. The absolute value of the velocities
of the elements in the chain with respect to the synchronous
condensate are displayed in gray scale, with the dark color
corresponding to higher values. Repeated wave propagation
along chain fragments is apparent. It can be also noticed that
the entire activity pattern is irregular.

The elements forming an active subnetwork are strongly
heterogeneous in terms of their intrinsic dynamics. The het-
erogeneity is caused by the fact that each element receives
signals through its connections from a different number of
elements—some of them active and others in the
condensate—and these connections are characterized by dif-
ferent phase shifts.

The dynamics of an active element is described by Eq.
(11). Separating in this equation the terms which correspond
to the interactions of the chosen element with the condensate
from those representing interactions with other active ele-
ments in the subnetwork, we can write it as
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==+ (@ +Z+pReMimce] (15)
l

where Z; and Z! are local signals received by the considered
element from its neighbors belonging to the condensate and
to the active subnetwork, respectively. Introducing R{ and W{
as r{ exp(iW¢)=uR+Z; and taking into account the definition
(12) of local signals, the evolution equation for elements in
an active subnetwork is

N
e 1 .
1701- = — Q + rf Sln(\:[,i - l,[/l) + [7\/21 O'jTl] Sln(l/fj - l,[/i'f' 27TAU)
j=

(16)

Here, vector o; defines what elements belong to the consid-
ered active subnetwork, i.e., 0'j=1 if the element i is in the
subnetwork and o;=0 otherwise. The second term in Eq.

(16) describes intéraction with the condensate and global
feedback in the system. When the fraction of active elements
in a network is relatively small, the global feedback is domi-
nated by condensate elements.

Therefore, the condensate acts as external forcing on ac-
tive elements. However, the magnitude r{ of such forcing is
different for different active elements, which explains the
heterogeneity of emerging active networks. Those elements
i, which have r{<(), are oscillatory and play the role of
pacemakers. Their intrinsic oscillation frequencies are differ-
ent and determined by the difference )—r{. On the other
hand, the elements with r{>() are excitable and their exci-
tation thresholds are h;=r{—(). For excitable elements in an
active subnetwork, excitation thresholds are small enough, so
that the excitation coming either directly from pacemakers or
from the neighboring excitable elements is sufficient to trig-
ger their phase rotation. For the element at the end of a wave
propagation chain, all further network neighbors have thresh-
olds so high that the excitation cannot be further transmitted.

Thus, inside an interval of feedback intensities preceding
the final feedback breakdown, the considered system can
generate a variety of dynamical networks whose sizes and
dynamical properties can be controlled by the feedback in-
tensity. These networks are effectively built from oscillatory
and excitable elements. They are strongly heterogenous in
terms of the oscillation frequencies and excitation thresholds
of their elements.

As the feedback intensity u is decreased, the number of
active, nonentrained elements grows and they begin to domi-
nate the dynamics of the system. In the next section we con-
sider the behavior corresponding to the final loss of coher-
ence in the transition.

VI. BREAKDOWN OF GLOBAL FEEDBACK

Calculations of the maximal Lyapunov exponent and the
embedding dimensions (Figs. 1 and 2) have indicated the
presence of a singularity at about u;=0.26. Below this point,
both properties cease to depend on the feedback strength,
thus suggesting feedback breakdown. Our investigations in
Sec. IV have shown (Fig. 4) that this breakdown is also
accompanied by a significant change in the distribution of
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FIG. 11. (Color online) Time-averaged magnitude of the global
signal (solid line) and mean time-averaged magnitude of local sig-
nals (dash line) as functions of the feedback intensity wu.

average velocities. As the critical point u=pu5 is approached,
the mean time-averaged velocity of the network sharply de-
creases. The dispersion of time-averaged velocities, i.e., the
difference between the largest and the smallest average ve-
locities observed, becomes large in the region preceding the
transition. After the transition, both the mean velocity and its
dispersion remain small and do not depend on . Below in
this section we provide further analysis of the feedback
breakdown transition and dynamical properties of the net-
work in its vicinity.

In Fig. 11, the computed dependence of the time-averaged
global signal intensity W=(|Z(¢)|) is shown. We see that it
drops down to (almost) zero at the critical point and remains
small below it. This provides direct evidence of the feedback
breakdown. The global signal Z=(1/N)=Y, exp(i¢;) coin-
cides with the Kuramoto order parameter of the considered
oscillator population. Its vanishing indicates therefore the
loss of synchronization at w=u;. However, the observed
phenomenon is essentially different from the Kuramoto de-
synchronization transition in globally coupled systems [5].

In oscillator populations with global, all-to-all coupling,
vanishing of the Kuramoto order parameter leads to the loss
of interactions between elements. They become almost inde-
pendent, with the rest interactions inversely proportional to
the size N of the population and vanishing in the limit
N— oo, This is not, however, the case in the considered net-
work system.

The dashed line in Fig. 11 shows the computed depen-
dence of the mean time-averaged local signal intensity w on
the feedback strength w, defined as

N
w= Sz 0, (17)
=1

where z;(¢) is given by Eq. (10). We see that, while the mean
local signal decreases together with the global signal as the
critical point =5 is approached, it does not vanish at this
point. Below u=pus, the mean local signal remains strong
and does not depend on the feedback intensity.

Thus, local interactions do not disappear after the feed-
back breakdown transition in the considered network system.
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FIG. 12. Time-dependent spectral densities of the global signal
at different feedback intensities w. The absolute magnitude of the
signal is much larger at ©=0.266, than in other plots shown.

Instead of full desynchronization—characteristic for globally
coupled populations—the feedback breakdown leads the sys-
tem to the highly dimensional chaotic state of network tur-
bulence. Previously, analogous global feedback transitions
have been investigated by Kawamura and Kuramoto [24] for
continuous active media described by the complex Ginzburg-
Landau equation. It is remarkable that, as seen in Figs. 1 and
2, the maximal Lyapunov exponent and the embedding di-
mension increase as the critical point w=pu5 is approached
and abruptly drop below it.

To investigate this transition, we characterize the system
in terms of time-dependent power spectra, broadly employed
in the statistical analysis of the brain EEG data (see, e.g.,
Ref. [25]). First, the autocorrelation function S(7,7) of the
global signal is calculated within a sliding time window of
width 7,

t+T
S(r,1) = le Z(t"Z*(t' + ndt’, (18)

After that, the time-dependent spectral density S(w,?) of the
global signal is determined by the Fourier transform

S(w,t) =

1 (T
_ S -t —ind
Tf (7,1)e T

0

In our investigations we use a sliding time window of
width 7=110. In the plots showing the temporal evolution of
the spectral density, a gray scale representation with the dark
regions corresponding to the higher density is employed.

Figure 12 shows time dependent spectral densities for
several selected values of the feedback intensity, both above
and below the feedback breakdown. Above the transition
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FIG. 13. Time-dependent spectral density of a single oscillator
above the feedback breakdown transition (u=0.266).

(u=0.266), a peak is persistently present in the spectral den-
sity of the global signal. The position of this peak corre-
sponds to the frequency of coherent collective oscillations.
At the critical point («=0.265), such persistent peak is ab-
sent. Instead, the system still exhibits irregular synchroniza-
tion bursts seen as temporary maxima in the spectral density
at the frequency of collective oscillations. This intermittent
behavior is retained below the transition (w=0.24,0.2).
However, as the feedback intensity is gradually decreased,
synchronization bursts become more rare and the character-
istic duration of a burst decreases. Finally, in absence of the
feedback (u=0), spontaneous synchronization bursts have
not been found.

It is interesting to compare spectral properties of the glo-
bal signal with the respective dynamical properties of a
single oscillator. The time-dependent power spectrum of an
oscillator i is defined as

1 (7 .
wwﬁ=‘—f‘ﬂﬁﬂ€mﬂf, (19)
TJy
where
1 =+T ) , ,
si(m,0) = ;j LA )=+ gy (20)
t

Figure 13 shows the typical time-dependent power spec-
trum of an arbitrarily chosen element above the breakdown
transition (u=0.265). The spectral peak, observed in the
spectral density of the global signal, is also visible in the
spectrum of a single oscillator above the transition. This
should indeed be expected if we take into account that all
oscillators effectively experience external forcing generated
by the global feedback, and their spectra therefore reflect the
presence of such forcing.

Below the transition, the global signal becomes weak and
does not exhibit strong influence on a typical individual os-
cillator. A detailed examination reveals however that some
oscillators still (temporarily) possess a small maximum in
their spectral density at the level of collective oscillations.
Such oscillator groups may generate synchronization bursts
visible in the spectral density of the global signal.

To test the conjecture that only some oscillator groups are
responsible for synchronization bursts in the intermittent re-
gime and that these groups are different in each next burst, a
special investigation has been performed. We have chosen
two different bursts at time positions and and calculated
spectral densities s;(w,#;) and s;(w,t,) of all network ele-
ments individually. Then, we have compared the computed
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FIG. 14. (Color online) Time-dependent spectrum plot of
(above) the global signal and (below) collective signals of two spe-
cially selected groups of oscillators. u=0.265.

spectral densities and selected groups of 50 oscillators at two
times, whose spectra were closest to that of the global signal.
To quantify the similarity between two spectral densities, we
use the overlap

()= Jsi{w,0)S(w,1)dw
W= T (0.0)dwfS(w.ndo’

(21)

After each oscillator group I' of 50 elements has been se-
lected, we have generated its summary signal

1 .
Zp(t) = - 2 e
iel

and determined its time-dependent spectral density Syp(w,?).

Figure 14 shows time-dependent spectral densities of the
summary signals generated by two groups I'; and T',, which
have been chosen as those mostly contributing to the spectral
density of the global signal at ;=822 and #,=1384, respec-
tively. For comparison, we also show in this figure the spec-
tral density of the global signal within the considered time
interval. Examining the figure, we see that, although traces
of the spectrum of the global signal are visible in both partial
summary spectra, the group of elements with the closest in-
dividual similarity to the global signal at a certain burst is
already well collectively reproducing the global signal in the
respective time interval. Thus, it seems plausible that only a
subset of all network elements is strongly involved in the
generation of a synchronization burst. Note that in the above
analysis we have not attempted to identify all the elements in
the respective groups and only demonstrated choosing a sub-
set of 50 nearest elements is sufficient.

Analyzing composition of the two groups, corresponding
to synchronization bursts at =822 and 7,=1384, we find
that they have only two common elements. Thus, the subset
of partially synchronized elements is indeed different in dif-
ferent bursts in the intermittent turbulence regime. The ele-
ments of a group represent nodes in the considered network
and there are links connecting them. Essentially, each group
defines a certain subnetwork which temporally undergoes
partial synchronization. Therefore, chaotic intermittency in
the considered system can be understood as generating an
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irregular sequence of synchronization events imposing par-
tial synchronization on different subnetworks. A synchro-
nized subnetwork emerges, persists for some time, dissolves
and, after a pause, is replaced by a different synchronized
subnetwork.

VII. DISCUSSION AND CONCLUSIONS

We have chosen a network model of coupled phase oscil-
lators which exhibits highly dimensional chaos (network tur-
bulence) and have shown how this chaos can be controlled
and synchronization induced by introducing a global feed-
back. Our attention has been focused on the properties of
dynamical patterns and intermittent turbulence characteristic
for the transition region. An important property of the con-
sidered model was that individual elements were not chaotic
and chaos emerged as a result of coupling between them.

Previously, investigations on global-feedback control of
turbulence have been performed for continuous oscillatory
media, in the general model of the complex Ginzburg-
Landau equation [9,10] and in experimental and theoretical
studies of the catalytic CO oxidation reaction [11,12]. Action
of global feedbacks on chaotic oscillatory systems with non-
local coupling between elements has also been considered
[26]. In all these systems, the individual oscillators were not
chaotic and highly dimensional chaos (chemical turbulence)
emerged as a result of diffusive coupling between them.
These investigations have revealed that the behavior of os-
cillatory reaction-diffusion media on the edge of chaos is
characterized by spontaneous appearance of various coherent
activity patterns (see also the review [13]).

Specifically, propagating phase defects (kinks) spontane-
ously develop as the feedback intensity is decreased and cas-
cades of reproducing kinks are observed. In a traveling kink,
the phase undergoes a full 27 rotation, or a slip [9,13]. Re-
peatedly appearing kink cascades destroy synchronous oscil-
lations in the system and establish the state of intermittent
turbulence.

Our work shows that in networks, the role of emerging
coherent structures is played by active subnetworks. Some of
the elements, forming such networks, spontaneously undergo
repeated phase slips. Other elements produce phase slips in
response to the excitation coming from their network neigh-
bors. As result, traveling waves of phase slips repeatedly
develop and propagate over a subnetwork, spreading from
several emergent pacemaker centers. These traveling waves
correspond to the cascades of kinks in continuous media.

While each next cascade in the continuous case is typi-
cally originating at a different spatial location and involves a
different set of the elements of a medium, active networks
are permanent in the considered network model. Although
the patterns of wave activity in a subnetwork may be quite
complex and chaotic, the subnetwork itself remains fixed.

This difference is due to the fact that the considered os-
cillator networks are strongly heterogeneous, with the het-
erogeneity imposed both by the structure of the network of
connections and the phase shifts in interactions between in-
dividual elements. As a result of such heterogeneity, some
elements become easily excitable and others turn into pace-
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makers. Together, such connected elements form permanent
active subnetworks.

When wave patterns in active subnetworks are observed,
the resting elements, representing the majority of a network,
are in a synchronous state and form the condensate. As the
feedback intensity is decreased, the number of active subnet-
works increases and each network typically grows in size. In
a percolation transition, individual subnetworks merge to
form a giant active component, already comprising a sub-
stantial fraction of all network elements.

Starting from this point, distinguishing between active el-
ements and the condensate becomes difficult. The system
shows developed chaos and its embedding dimension is
comparable to the total network size. Nonetheless, some in-
trinsic coherence is still present in its dynamics, as revealed
by the persistence of the relatively strong Kuramoto order
parameter characterizing synchronization.

As the feedback intensity is further decreased and ap-
proaches the critical point, the Kuramoto order parameter
(almost) vanishes, indicating the loss of persistent synchro-
nization. Since this order parameter yields at the same time
the magnitude of the global signal, we conclude that break-
down of the feedback control takes place. Analogous
feedback-breakdown transitions have previously been stud-
ied for continuous oscillatory media under the global feed-
back control [24]. In contrast to the global signal, local sig-
nals corresponding to network interactions do not vanish
after the transition. Therefore, it is different from the desyn-
chronization transition in globally coupled systems where,
after the transition, interactions between elements almost
vanish and the oscillators become effectively independent.

The time-dependent spectral analysis of the global signal
has shown that, after its breakdown, the feedback is able to
induce sporadic bursts of synchronization in the system. This
behavior is reminiscent of what has previously been seen in
the oscillatory systems comprising global and nonlocal cou-
pling [26]. Our analysis suggest that different groups of ele-
ments are responsible for each next synchronization burst.
Taking into account their connections, this means that differ-
ent subnetworks of the entire network spontaneously exhibit
(partial) synchronization. Each synchronization episode in-
volves a different subnetwork and such episodes are alternat-
ing with complex asynchronous states.

This looks similar to the behavior characteristic for devel-
oped hydrodynamic turbulence, where different coherent
structures are built and replace one another in an irregular
sequence. In networks, spatial ordering is absent and there-
fore spatiotemporal patterns cannot obviously develop. In-
stead, coherent structures represent various dynamical sub-
networks which get accentuated. The simplest form of
coherence is partial synchronization, but other, more compli-
cated kinds of coherent dynamics in the emerging networks
are also possible.

The emphasis in this study has been on control of high-
dimensional network chaos, rather than on detailed investi-
gations of network systems showing such kind of turbulence.
We wanted to demonstrate that, by applying global feedback
and adjusting its intensity, one can readily control the net-
work dynamics. Therefore, we have chosen a particular
model network, fixed its properties and then varied only the
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feedback parameters in our investigations. We have, how-
ever, checked that analogous results hold as well for other
network realizations with various sizes.

While our investigations have been performed for a par-
ticular model, we conjecture that their results should be gen-
eral and similar behavior will be found in other network-
organized systems of various origins. Indeed, it can be
shown [27] that the considered model is closely related to the
generic phase network model obtained by phase reduction of
amplitude oscillator dynamics on networks in the vicinity of
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the supercritical Hopf bifurcation. The instability leading to
the network turbulence in the model is the analog of the
Benjamin-Feir instability of uniform oscillations in the com-
plex Ginzburg-Landau equation.
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