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We study a chaotic ratchet system under the influence of a thermal environment. By direct integration of the
Lindblad equation we are able to analyze its behavior for a wide range of couplings with the environment, and
for different finite temperatures. We observe that the enhancement of the classical and quantum currents due to
temperature depend strongly on the specific properties of the system. This makes it difficult to extract universal
behaviors. We have also found that there is an analogy between the effects of the classical thermal noise and
those of the finite � size. These results open many possibilities for their testing and implementation in kicked
Bose-Einstein condensates and cold atoms experiments.
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I. INTRODUCTION

The first theoretical constructions related with directed
transport �transport phenomena in spatially periodic systems
that are out of thermal equilibrium� were formulated in an
early work by Feynman �1�. This opened a field whose rel-
evance and activity has been increasing since then. The mo-
tivation is twofold, in the first place several fundamental
questions have originated from these ideas and have been
only partially answered �2�. In our opinion, some of the most
important ones are related to the possibility of having a net
transport that is compatible with the second law of thermo-
dynamics or the Liouville theorem for Hamiltonian cases.
The answers were formulated in the shape of necessary con-
ditions on symmetries and sum rules �3,4�. Nowadays, the
question of how quantum mechanical effects translate into
these or other conditions seems also very interesting �5�. As
a consequence of this �and several other investigations�, the
subject grew into a major new field of statistical physics. On
the other hand, the wealth of possible applications has deter-
mined the emergence of a very broad area of research.
Ratchets, generically defined as periodic systems having a
dissipative dynamics associated with thermal noise and un-
biased perturbations �driving them out of equilibrium�, can
be used to model a wide range of different phenomena. In
order to give just a few examples we can mention molecular
motors in biology �6�, nanodevices �rectifiers, pumps, par-
ticle separators, molecular switches, and transistors� �7�, and
coupled Josephson junctions �8�. On the other hand, there is
a great interest in the theoretical description and experimen-
tal implementations of cold atoms subjected to time-
dependent standing waves of light. They play a central role
in many studies of the quantum dynamics of nonlinear sys-
tems �dynamical localization, decoherence, quantum reso-
nance, etc.� �9�. In particular, the so-called optical ratchets,
i.e., directed transport of laser cooled atoms, have been suc-
cessfully implemented in this sort of experiment �10�.

The appearance of a net current can be classically ex-
plained by the necessary condition of breaking all spatiotem-
poral symmetries leading to momentum inversion �3�. This,
along with Curie’s principle �which essentially says that if
symmetries do not forbid a given phenomenon, then it will
manifest itself� indicates that transport should be present. As

an example of this situation we can mention Hamiltonian
systems �with necessarily mixed phase spaces� where a cha-
otic layer should be asymmetric �4�. In the more general
dissipative case, chaotic attractors having this property are
necessary �11�. It is usual that the same principle translates
almost directly into the quantum domain �12�, and very simi-
lar behaviors arise. But sometimes quantum mechanics intro-
duces new effects �13� and the results depart from the clas-
sical ones. For example, the efficiency of a forced thermal
quantum ratchet has been calculated in �14�. In that work the
authors find that the quantum current is higher in comparison
with the classical one at the lowest values of the temperature.
As this parameter increases the discrepancies diminish and
finally they become negligibly small.

Recently, a quantum chaotic dissipative ratchet has been
introduced in �15�. In this example directed transport appears
for particles under the influence of a pulsed asymmetric po-
tential in the presence of a dissipative environment at zero
temperature. The asymmetry of the quantum strange attractor
is at the origin of the quantum current, in close analogy with
what happens at the classical level. Indeed, this work pro-
vides with the parameters needed for a possible implementa-
tion using cold atoms in an optical lattice. For a somewhat
similar dynamics, the case of weak coupling and low tem-
perature has been studied in �16�. In the present work we
extend the study of �15� for a wide range of couplings with
the environment and different temperature values. We have
verified that there is a strong dependence of the current be-
havior on the coupling strength. If we compare this with the
results found in �14�, for instance, we could not find a ge-
neric enhancement of the quantum current for finite tempera-
tures. Instead of that, we could identify a close quantum-to-
classical correspondence when considering thermal effects
only at the classical level. In fact, we have found that the
finite � effects on the quantum current are analogous to the
influence of the classical thermal fluctuations on the classical
transport.

In the following we describe the organization of this pa-
per. In Sec. II we present our model for the system and for
the environment, explaining the methods we have used to
investigate the current behavior. In Sec. III we show the re-
sults where the roles of �, the coupling strength and the
temperature are analyzed in detail. Finally, in Sec. IV we
summarize and point out our conclusions.
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II. SYSTEM AND ENVIRONMENT

In this section we describe the approach used to model the
system and the environment. We study the motion of a par-
ticle in a periodic kicked asymmetric potential given by

V�x,t� = k�cos x + a/2 cos�2x + ��� �
m=−�

+�

��t − m�� , �1�

where � is the kicking period, k is the strength of the kick,
and a and � are parameters that allow us to introduce a
spatial asymmetry �15�. The effects of the environment are
taken into account by means of a velocity-dependent damp-
ing and thermal fluctuations. At the classical level, these in-
gredients are incorporated in the following map:

n̄ = �n + k�sin x + a sin�2x + ��� + � ,

x̄ = x + �n̄ . �2�

In these expressions, n is the momentum variable conjugated
to x and � is the dissipation parameter, with 0	�	1. The
thermal noise � is related to �, according to ��2�=2�1
−��kBT, where kB is the Boltzmann constant and T is the
temperature, making the formulation consistent with the
fluctuation-dissipation relationship. By performing the

change of variables �n→p, �k→K, and ��→ �̃ �where ��̃2�
=2�1−��kBT̃ and T̃=�2T�, we can eliminate the period from
the classical expressions, and define the new map

p̄ = �p + K�sin x + a sin�2x + ��� + �̃ ,

x̄ = x + p̄ . �3�

In the quantum version of the model the system Hamil-
tonian is given by

ĤS = n̂2/2 + V�x̂,t� , �4�

where the quantization has been performed in such a way
�17� that x→ x̂, n→ n̂=−i�d /dx� and �=1. This amounts to
saying that, being �x̂ , p̂�= i�, there is an effective Planck con-
stant given by �eff=�. Then, the classical limit corresponds to
�eff→0, while keeping K=�effk constant.

In order to incorporate dissipation and thermalization to
the quantum map we consider the coupling of the system to
a bath of noninteracting oscillators in thermal equilibrium.
The degrees of freedom of the bath are eliminated introduc-
ing the usual weak coupling, Markov and rotating wave ap-
proximations �18�. This leads to a Lindblad equation in ac-
tion representation for the density matrix of the system 
,


̂ = − i�ĤS, 
̂� + g�nth
+ ��n,T�nth

+ ��n�,T�	�L̂n, 
̂L̂n�
† �

+ �L̂n
̂,L̂n�
† �
 + g�nth

− ��n,T�nth
− ��n�,T�	�L̂n

†, 
̂L̂n��

+ �L̂n
†
̂,L̂n��
 , �5�

where the frequencies �n=n+1 /2 are the energy differences
between two neighboring levels of the rotator. The popula-
tion densities of the bath found in Eq. �5� are given by

nth
− ��,T� =

1

exp���/kBT� − 1
,

nth
+ ��,T� = nth

− ��,T� + 1. �6�

The system operators L̂n=��l�+1��n��n+1�+ �−n��−n−1�� de-
scribe transitions towards the ground state of the free rotator.
Requiring quantum to classical correspondence at short times
we fix the coupling constant g=−ln�1−��. For T=0 we re-
cover the master equation used in �15� for the pure dissipa-
tive case. For finite temperature, the last term in Eq. �5�
describes the thermal excitation of the rotator through ab-
sorption of heat bath energy. Finally, Eq. �5� will be inte-
grated numerically without further approximations.

III. RESULTS

Since we are interested in chaotic transport, throughout
the following calculations we will use the set of parameters
given by K=0.7, �=
 /2, and a=0.7. In the Hamiltonian
limit, this case shows no visible stability islands in phase
space. We have first studied some classical aspects of our
system at zero temperature, beginning with the bifurcation
diagrams in terms of p as a function of the parameter �
� �0,1� �see Fig. 1�a��. These diagrams show the projections
of phase space on the p axis for all the possible values of
dissipation. This allows us to determine which � correspond
to chaotic �gray and black regions� or regular behavior �thin
lines�. It should be mentioned that the chaotic attractors set
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FIG. 1. Bifurcation diagrams in terms of p, as a function of the
parameter �. We show the last 5�103 classical p values corre-
sponding to 5�103 random initial conditions taken in the interval
�x� �0,
� , p� �−
 ,
��, and after 1.4�105 steps of the map. In
panel �a� T=0 �on top, the asymptotic current J� as a function of �
for the indicated irregular window can be seen�, while in �b� T
=0.05.
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in very fast for small �. But this is not the case for larger
values where the transient times can be very long. For this
reason, we have calculated these diagrams with the last 5
�103 iterations of the map, after the first 1.4�105 have been
discarded. We have randomly taken 5�103 initial conditions
inside the unit cell �x� �0,
� , p� �−
 ,
��. Several regular
and chaotic windows alternate. The former are characterized
by simple attractors �stable fixed points of the dissipative
map� and the latter are dominated by chaotic attracting sets.
The width in p of these sets grows as dissipation weakens
��→1�.

The main quantity characterizing transport is the current
J�t�= �pt�, where �¯� stands for the average taken on the
initial conditions, and pt is the moment after the tth iteration
of the map. Since bifurcations that change the shape of
strange attractors also play a role in determining the values
of the asymptotic current we restrict our analysis to the cha-
otic window approximately located at �� �0.68,0.78� indi-
cated by an arrow. The inset of Fig. 1�a� displays the
asymptotic current J�=limt→� J�t� as a function of � �circles
stand for T=0�. At this � range, 100 kicks are enough to
reach the stationary behavior, independently of the initial dis-
tributions. As pointed out in �15�, dissipation induces an
asymmetry of the strange attractor which is responsible for
the directed transport. On the other hand, this dissipation
mechanism contracts phase space and makes the higher en-
ergies inaccessible for the system. The final value of �p�
results from the interplay between both effects. In fact, in-
creasing dissipation does not increase the transport and the
largest values of �p� are obtained for the lowest values of
dissipation, i.e., ��0.9 �for example, J�=5.78 for �=0.97�.
The minimum current in this window is reached for an inter-
mediate value of dissipation ��=0.74�.

We then consider the case of finite temperature. The bi-
furcation diagram corresponding to T=0.05 is shown in Fig.
1�b�. It is clear that the effect of temperature consists of
smoothing the finer structure of the chaotic attractors that is
present for the smallest values of �. Even for this extremely
low value of T the detailed features have almost completely
disappeared, with the exception of the black lines corre-
sponding to the highest values of the density distributions.
The other very interesting effect is that temperature erases
the regular windows allowing for a continuously chaotic be-
havior. This could be of much relevance in obtaining large
ratchet currents without the need for an extremely fine-tuned,
weak dissipation �19� �this will be addressed in future studies
�20��. As shown in the inset, low temperatures �diamonds
correspond to T=0.05� lead to a noticeable enhancement of
the asymptotic current J� �around 30% for �=0.74�.

We now turn to compare the classical and quantum be-
haviors. First, we analyze the currents �which in the quantum
case is given by J�t�=tr�
̂p̂��. In Fig. 2 we display J� as a
function of T, for three different values of � and �eff. At the
classical level low temperatures lead to an enhancement of
the current for intermediate values of the dissipation �see
Fig. 2 upper and middle panels corresponding to �
=0.7,0.75�. In the case of weak dissipation ��=0.9 in the
lower panel of Fig. 2�, which displays larger values of J�, the
effect of thermal noise is negligible. For higher temperatures,
the thermal effects reduce �p� in all cases. This can be inter-

preted as follows: Thermal noise reduces the energy loss
caused by dissipation �with no kicks, the system would attain
a Boltzmann distribution�, so higher energies can be reached,
in comparison with a pure dissipative process. But since this
diffusion also tends to blur the asymmetry of the strange
attractor, the two effects compete and transport has a maxi-
mum for low values of T, and then decreases.

At the quantum level we can clearly see that the previ-
ously described thermal enhancement is not generally
present, at least for the �eff values we have considered. It is
important to note that these values are consistent with experi-
mental implementations using, for example, cold sodium at-
oms in a laser field having a wavelength �=589 nm �for
more details see �9,15��. However, we observe a very slight
growth of the current for the �eff=0.055 case with �=0.9
�see the blue triangles in the lower panel of Fig. 2� indicating
that the temperature dependence of the current is very sensi-
tive to the particular dynamics of the system. For a different
example, an enhancement of the quantum transport has been
observed �14�, hence it is difficult to extract universal behav-
iors. For �=0.7 the quantum current is lower than the clas-
sical one for all temperatures, as already pointed out in �15�,
but only for T=0. The same happens in the case of weak
damping �=0.9 �nevertheless, for �eff=0.055 and T�0.1
both currents coincide�. The case �=0.75 shows a different
behavior. At T=0 the quantum currents �for any of the �eff
values we have considered� are larger than the classical ones,
that is, there is an enhancement due to the finite size of �eff.
Also, the maximal quantum current corresponds to �eff
=0.165, and this is valid for all the temperatures shown �for
T=0.05 it is still greater than the classical one�. For larger
quantum coarse graining �see �eff=0.494� quantum currents
decrease. In this sense, it seems that the effect of quantum
fluctuations on the quantum directed currents is analogous to
the effect of those of thermal origin on the classical ones.
Small fluctuations of thermal or quantum mechanical origin
assist directed transport while large fluctuations �correspond-
ing to high temperatures or to large values of �eff, respec-
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FIG. 2. �Color online� Asymptotic current value J� as a function
of temperature T. Upper panel shows the case for �=0.7, the
middle one for �=0.75, and the lower one for �=0.9. Black circles
stand for the classical values. The quantum cases correspond to �
=0.055 �blue triangles�, �=0.165 �green diamonds�, and �=0.494
�red squares�. As initial conditions we have taken 106 random points
�classical� and a density operator with equal population at all the
possible p eigenstates inside the phase-space region given by (x
� �0,
� , p� �−
 ,
�).
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tively� blur the asymmetry of the attractor and thus kill the
net current.

It is interesting to note that in the case �=0.75 the thermal
diffusion associated with the temperature which gives the
maximal value of the current ���2�=0.12 for T=0.25� is of
the order of the quantum coarse graining �eff corresponding
to the strongest quantum current. For �=0.7 the classical
current attains its maximum value at T=0.05 ���2�=0.03�,
which corresponds to a value of �eff that we were not able to
consider in our numerical calculations.

The analogy between thermal noise and quantum coarse
graining can also be appreciated when looking at the
asymptotic Poincare sections and Husimi distributions �dis-
played in Fig. 3 for �=0.75, �eff=0.055�. As expected, at
zero temperature the quantum Husimi function reproduces
well the main patterns of the classical attractor but shows
less fine structure �see the upper panels�. If a small tempera-
ture is introduced the fine details of the classical distribution
are smoothed out and both distributions look more alike �see
the lower panels corresponding to T=0.1�. On the other hand
the quantum distributions at zero and finite temperatures are
practically indistinguishable, indicating that the quantum
coarse graining is at least of the order of the thermal one for
these values of T.

We finally study J�t� as a function of t �i.e., the number of
iterations of the map�. Results for �=0.75 are shown in Fig.
4, where different temperatures and �eff values have been
considered. Besides the mentioned fact that the asymptotic
value is reached very rapidly, we notice that the transient
behavior shows a very close quantum-to-classical correspon-
dence. The classical current peak observed at t�10 for low

temperatures �T=0.1� is also present in the quantum current
when �eff=0.055 and T=0. This peak disappears from the
classical current at larger temperatures �T=0.85�, and so
does the quantum one at �eff=0.494 and T=0. So the analogy
seems to hold at all times.

IV. CONCLUSIONS

In this work we have analyzed the behavior of a chaotic
dissipative system that shows directed transport under the
influence of a thermal bath, both in its classical and quantum
versions. We have varied the strength of the coupling with
the environment and also the temperature. We have found
that the transport enhancement effect due to a finite tempera-
ture is highly dependent on the system specific properties. In
fact, it depends on the coupling strength of the system with
the environment and also on the � size. Moreover, we could
find an analogy between the effects caused by thermal and
quantum fluctuations. These results open the possibility for
many further studies that include finding ways of obtaining
large ratchet currents in experimentally realistic situations in
kicked Bose-Einstein condensates �BECs� and cold atoms
experiments. These are one of the best candidates to test our
results since even BECs show an unavoidable fraction of
noncondensed atoms when kicked. If kicks become strong,
thermal excitations will be of much relevance rather than a
negligible effect. With the sort of calculations presented in
this paper the effects of this fraction on the transport proper-
ties of the system could be estimated.
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FIG. 3. Phase space portraits for �=0.75 at t=40. Left-hand
panels correspond to the classical while the right-hand panels cor-
respond to the quantum strange attractors. In the upper panels T
=0, while in the lower ones T=0.1. As initial conditions we have
taken 106 random points �classical� and a density operator with
equal population at all the possible p eigenstates inside the phase-
space region given by (x� �0,
� , p� �−
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�).
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FIG. 4. �Color online� Current J as a function of time t, for
coupling strength �=0.75. Thin black lines correspond to the clas-
sical values, while thick green �gray� lines correspond to the quan-
tum cases �in these last cases we always take T=0�. We show re-
sults for T=0.1 and �eff=0.055 �dotted-dashed lines�, and for T
=0.85 and �eff=0.494 �solid lines�. As initial conditions we have
taken 107 random points �classical� and a density operator with
equal population at all the possible p eigenstates inside the phase-
space region given by (x� �0,
� , p� �−
 ,
�).
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