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We study localized traveling waves and chaotic states in strongly nonlinear one-dimensional Hamiltonian
lattices. We show that the solitary waves are superexponentially localized and present an accurate numerical
method allowing one to find them for an arbitrary nonlinearity index. Compactons evolve from rather general
initially localized perturbations and collide nearly elastically. Nevertheless, on a long time scale for finite
lattices an extensive chaotic state is generally observed. Because of the system’s scaling, these dynamical
properties are valid for any energy.
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I. INTRODUCTION

Hamiltonian lattices are one of the simplest objects in
nonlinear physics. Nevertheless, they still elude full under-
standing. Already the first attempt to understand nonlinear
effects ended with the Fermi-Pasta-Ulam puzzle, which is
still not fully resolved �see, e.g., the focus issue on “The
“Fermi-Pasta-Ulam” problem—the first 50 years” in �1��; an-
other remarkable feature found only recently is the existence
of localized breathers �2�. Quite often nonlinear effects in
lattices can be treated perturbatively, leading to well-
established concepts of phonon interaction and weak turbu-
lence. Beyond a perturbative account of a weak nonlinearity,
one encounters genuine nonlinear phenomena, like solitons
and chaos. The level of nonlinearity usually grows with en-
ergy, allowing one to follow a transition from linear to non-
linear regimes by pumping more energy in the lattice.

In this paper we study strongly nonlinear Hamiltonian lat-
tices that do not possess linear terms. We restrict our atten-
tion to the simplest one-dimensional case where particles
interact nonlinearly and no on-site potential is present. We
choose the interaction potential in the simplest power form;
thus, the lattice is characterized by a single parameter: the
nonlinearity index. The equations of motion obey scaling,
which means that the dynamical properties are the same for
all energies—only the time scale changes. Lattices of this
type have attracted a lot of attention recently, in particular
due to a prominent example: the Hertz lattice, which de-
scribes elastically interacting hard balls: it has nonlinearity
index 3 /2 �3–6�. We focus our study on the interplay of
solitary waves and chaos in such lattices. Some 25 years ago
Nesterenko �3,7–9� described a compact traveling-wave so-
lution in the Hertz lattice, which can be understood as a
compacton. Compactons have been introduced, in a math-
ematically rigor form, by Rosenau and Hyman �10,11� for a
class of nonlinear partial differential equations �PDEs� with
nonlinear dispersion. Compactons can be analytically found
if one approximates the lattice equations with nonlinear
PDEs, but less is known about the genuine lattice solutions.
Below, in Sec. III B we present a numerical procedure for
determining traveling waves for an arbitrary nonlinearity in-
dex and compare these solutions with those of the approxi-
mated PDEs �Sec. III A�. Furthermore, we show that com-
pactons naturally appear from localized initial perturbations

and relatively robustly survive collisions, but nevertheless
evolve to chaos on a long time scale in finite lattices �Sec.
IV�. The properties of chaos are studied in Sec. V. We dem-
onstrate the extensivity of the chaotic state by calculating the
Lyapunov spectrum and study the dependence of the
Lyapunov exponents on the nonlinearity index. Some open
questions are discussed in the concluding Sec. VI.

II. MODEL

Our basic model is a family of lattice Hamiltonian sys-
tems

H = �
k

pk
2

2
+

1

n + 1
�qk+1 − qk�n+1, �1�

which are parametrized by one real parameter: the nonlinear-
ity index n. Below we assume that n�1. The case n=1
corresponds to a linear lattice. Another interesting case is n
=3 /2. Such a nonlinearity appears, according to the Hertz
law, at the compression in a chain of elastic hard balls. For a
realistic system of balls, however, the potential has the form
like in �1� only for qk+1−qk�0; for qk+1−qk�0, no attract-
ing force is acting. A simplified realization of such a system
is the toy “Newton’s cradle”, which possesses the same Hert-
zian interaction law. However, the standard Newton’s cradle
consists of a few balls �typically 5�, which are not enough for
the formation of stationary traveling waves. Furthermore,
slight intervals between adjacent beads are not excluded,
contrary to experiments �4,7� where great care is taken to let
the beads be in effective contact. For different aspects of the
Hertz chain, see Refs. �6,9,12–21�, a review article �22�, and
references therein. Contrary to this, in our model �1� we as-
sume both repulsive and attracting forces.

Note that the potential in �1� is generally nonsmooth, ex-
cept for cases n=1,3 ,5 , . . .. Although the dynamics can be
easily studied in nonsmooth situations as well, we will
mainly focus below on the simplest smooth nontrivial case
n=3.

The lattice equation of motion reads

q̈k = �qk+1 − qk�n sgn�qk+1 − qk� − �qk − qk−1�n sgn�qk − qk−1� .

�2�

Since on the right-hand side of �2� only differences enter, it is
convenient to introduce the difference coordinates Qk=qk+1
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−qk. Then the equations of motion are transformed to

Q̈k = �Qk+1�n sgn�Qk+1� − 2�Qk�n sgn�Qk� + �Qk−1�n sgn�Qk−1� .

�3�

Note that a solitary wave in the variables Qk corresponds to
a kink �shocklike wave� in the variables qk.

Conservation laws. The equations of motion possess two
conservation laws: the energy and the total momentum. The
latter can be trivially set to zero by transforming into a mov-
ing reference frame.

Scaling. As mentioned in Refs. �3,5,9�, the lattice �1� has
remarkable scaling properties, due to homogeneity of the in-
teraction energy. It is easy to check that the Hamiltonian can
be rescaled according to

q = aq̃, p = a�n+1�/2p̃, H = an+1H̃, t = a�1−n�/2t̃ . �4�

Note that this scaling involves only the amplitude and the
characteristic time of the solutions: by decreasing the ampli-
tude, one obtains new solutions having the same spatial
structure, but evolving slower. We will see that this property
has direct consequences for the properties of traveling waves
and of chaos.

III. TRAVELING SOLITARY WAVES

In this section localized traveling waves are investigated,
first in a quasicontinuous approximation �QCA� and then via
numerical solution of the lattice equations. A mathematically
rigor proof of the existence of solitary waves in Hamiltonian
lattices of type �1� has been given in Refs. �23,24�.

A. Quasicontinuous approximation

Here, we represent the solution of the lattice equations �3�
as a function of two continuous variables Q�x , t�. We are
seeking for solitary waves which do not change their sign.
For definiteness, we consider Q�0 �this consideration is
therefore suitable for lattices where the nonlinearity index is
different for positive and negative displacements Q—e.g.,
for the Hertz lattice of elastic balls�. We present two ap-
proaches to find a continuous version of the lattice. In the
first one, we approximate the differences between two dis-
placements Q, while in the second one the displacement q at
each lattice site is expanded directly.

1. Expansion of differences

Here we look for a direct quasicontinuous approximation
of Eq. �3�. Expanding the difference coordinates Qk up to
fourth order, we obtain

Qk�1
n � Qn�x,t� � h�Qn�x,t��x +

h2

2
�Qn�x,t��xx

�
h3

6
�Qn�x,t��xxx +

h4

24
�Qn�x,t��xxxx, �5�

where h is the spatial difference between two lattice sites and
the subscripts denote differentiation with respect to x. Insert-

ing �5� into �3� and setting h=1, one arrives at the partial
differential equation

�Q�x,t��tt = �Qn�x,t��xx +
1

12
�Qn�x,t��xxxx. �6�

Equation �6� belongs to a class of strongly nonlinear PDEs,
because the dispersion term with the fourth derivative is non-
linear. The equation does not possess linear wave solutions
�this situation has been called “sonic vacuum” by Nester-
enko�3��, but it has nontrivial nonlinear ones. In this way it is
very similar to a family of strongly nonlinear generalizations
of the Korteveg–de Vries equation, studied in �10�, and can
be considered as a strongly nonlinear version of the Bouss-
inesq equation �11�.

Now we seek traveling-wave solutions of �6� by virtue of
the ansatz

Q�x,t� = Q�x − �t� = Q�s� . �7�

Then �7� reduces to the ordinary differential equation �ODE�

�2Qss = �Qn�ss +
1

12
�Qn�ssss. �8�

Furthermore, we assume that the solution tends to zero as s
→ ��. Thus after integrating twice we obtain

�2Q = Qn +
1

12
�Qn�ss. �9�

This equation also appears in the traveling-wave ansatz for
the K�n ,n� equation in �10�. Equation �9� can be solved for
an arbitrary power n by

Q�s� = ���mA1 cosm�B1s� , �10a�

with

m =
2

n − 1
, A1 = �n + 1

2n
	1/�1−n�

, B1 = 
3
n − 1

n
.

�10b�

2. Expansion of displacements

Another type of quasi continuum can be obtained if we
approximate Eq. �2�. Now the displacement q at each lattice
site is written as a continuous variable, which for the same
order of the spatial derivative as in �5� gives

qk�1 = q � hqx +
h2

2
qxx �

h3

6
qxxx +

h4

24
qxxxx. �11�

Inserting this expansion into the equations of motion �2� and
collecting all terms up to order of hn+3 yields

�q�tt = hn+1�qx
n�x +

hn+3

12
��qx

n�xxx −
n�n − 1�

2
�qx

n−2qxx
2 �x	 .

�12�

This equation is the long-wave approximation of Nesterenko
�3,9�. To compare it with Eq. �6�, we differentiate �12� with

respect to x, define Q̃=hqx, and set h=1:
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�Q̃�tt = �Q̃n�xx +
1

12
��Q̃n�xxxx −

n�n − 1�
2

�Q̃n−2Q̃x
2�xx	 . �13�

One can see that there is an additional term in �13� compared
to �6�. This is not so much surprising, as these two quasicon-
tinuous approximations correspond to expansions at the dif-
ferent positions of the original lattice; this effect is well
known for approximations of Hamiltonian lattices with PDEs
�25�. Because in the problem we do not have a small param-
eter �the lattice spacing h=1 is not small compared to the
wavelength�, none of the equations �6� and �13� can be ex-
pected to be exact in some asymptotic sense. Instead, one has

to justify them by comparing the solutions with those of the
full lattice problem; see Sec. III B below.

To find traveling waves in the direct expansion, we use

again the ansatz �7�, Q̃�x , t�= Q̃�x−�t�= Q̃�s�. Inserting this
ansatz and integrating twice yields then, analogous to �9�,

�2Q̃ = Q̃n +
1

12
�Q̃n�ss −

n�n − 1�
24

Q̃n−2Q̃s
2. �14�

One partial solution of this ordinary differential equation can
also be written as
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FIG. 1. The traveling waves obtained from �19a� and �19b� for various powers n. Markers show the wave on the lattice, dotted lines show
the corresponding solutions of the quasicontinuous approximation �6�, and dashed lines show solutions of the QCA �13�. Left column:
normal scale. Right column: logarithmic scale. �a�, �b� n=3 /2; �c�, �d� n=3; �e�, �f� n=11. Note that the width w of the compacton decreases
as n increases.
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Q̃�s� = ���mA2 cosm�B2s� , �15a�

but with different constants A2 and B2 �cf. �19,26��:

m =
2

n − 1
, A2 = � 2

1 + n
	1/�1−n�

, B2 =
6
�n − 1�2

n�n + 1�
.

�15b�

The solutions �10a�, �10b�, �15a�, and �15b� do not satisfy
boundary conditions. Moreover, they intersect with another,
trivial solution of �8�, Q=0. Remarkably, because of the de-
generacy of Eqs. �8� and �14� at zero, one can merge the
periodic solutions �10a�, �10b�, �15a�, and �15b� with the
trivial solution Q=0 �see a detailed discussion in �10,11��:

Q�s� = ����mAi cosm�Bis� , �s� �
�

2Bi
,

0, otherwise,
� �16�

with i=1,2. This gives a compacton—a solitary wave with a
compact support—according to definition �10,11�. For other,
nonsolitary solutions of �13�, see, e.g., �9,26�. Note that due
to the symmetries x→−x and Q→−Q, solitary waves with
both signs of velocity � and of amplitude A are the solutions.

It is important to check the validity of the solution �16� by
substituting it back to �8� or �13�. Then no terms are singular
for the case m�2 only—i.e., for n�2. Thus, the constructed
compacton solution �16� is, strictly speaking, not valid for
strong nonlinearities n�2. This conclusion is, however, only
of small relevance for the original lattice problem. Indeed,
the PDE �6� or �12� is only an approximation of the lattice
problem: because the spatial extent of the solution �16� is
finite, there is no small parameter allowing us to break ex-
pansion �5� or �11� somewhere. Just breaking it after the
fourth derivative is arbitrary and can be justified only by the
fact that in this approximation one indeed finds reasonable
solutions at least for some values of n. A real justification can
come only from a comparison with the solutions of the lat-
tice equations, to be discussed in the next subsection. And
there we will see that the solution can be found both for
weak and strong nonlinearities n�2.

B. Traveling waves in the lattice

In the lattice, the traveling-wave ansatz reads Qk�t�=Q�k
−�t�=Q�s�. Inserting this ansatz into the lattice equations �3�
yields

�2Q��s� = Qn�s − 1� − 2Qn�s� + Qn�s + 1� . �17�

We employ now the scaling �4� and set �=1. As demon-
strated in �27�, this advanced-delay differential equation can
be equivalently written as an integral equation

Q�s� = 

s−1

s+1

�1 − �s − 	��Qn�	�d	 . �18�

�One can easily check the equivalence by differentiating �18�
twice.� We can now, following the approach of Petviashvili
�28,29�, construct an iterative numerical scheme to solve the
integral equation �18�. Starting with some initial guess Q0,
one constructs the next iteration via

Qi+1 = � �Qi�
�Q*�	


Q* �19a�

and

Q* = 

s−1

s+1

�1 − �s − 	��Qi
n�	�d	 �19b�

�practically, we used the L1 norm for �·��. We have used 

= n

n−1 , which ensured convergence of the iterative scheme.
The integral in �19a� and �19b� was numerically approxi-
mated by virtue of a fourth-order Lagrangian integration
scheme �30�. In Fig. 1 the traveling waves for various powers
n are shown. Using the logarithmic scale, one clearly recog-
nizes the compact nature of the waves.

In Fig. 2 we show the dependences of the total energy E,
the solution L1 norm NL1

and the amplitude Qmax of the
found waves on the nonlinearity index n for a fixed wave
velocity of �=1. Remarkably, the effective width NL1

/Qmax

decreases with increasing nonlinearity index and it seems
that the profile of the compacton converges to a triangular
shape as n→�. A similar result has been obtained in �20�,
where the dependence of the pulse velocity on the nonlinear-
ity index has been analyzed for large n in the binary collision
approximation.

C. Estimation of the tails

It is clear from the integral form �18� that the solution
cannot have a compact support. In this section we estimate
the decay of the tails. We start with �18� and substitute
Q�s�=e−f�s�:

Q�s� = 

s−1

s+1

�1 − �s − 	��e−nf�	�d	 . �20�

We consider the tail for large s�0 if we assume a rapid
decay of Q�s�; then, the integrand in �20� has a sharp maxi-
mum at s−1. Thus we can approximate the integral using the

1.1

1.3

1.5

2 6 10 14 18

Q
m

ax

n

1
1.5

2
2.5

E

1.4
1.8
2.2
2.6

N
L

1

FIG. 2. The dependence of the amplitude Qmax, the energy E,
and the L1 norm NL1

of a compacton on the nonlinearity index n. In
this plot �=1. For comparison, the curves from the quasicontinuous
approximation are shown with dotted lines for the Eq. �6� and with
dashed lines for Eq. �13�.
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Laplace method. At the maximum we expand f�	� into a
Taylor series around s−1, keeping only the leading first-
order term:

Q�s� � 

s−1

s+1

�1 − �s − 	��exp�− nf�s − 1� − nf��s − 1�

��	 − �s − 1���d	 . �21�

We shift the integration range

Q�s� � e−nf�s−1�

0

2

	e−nf��s−1�	d	 , �22�

where we also replace the decreasing part of the kernel with
	. Since this integrand decreases very fast, we can set the
upper bound of the integration to infinity; then, by partial
integration we obtain
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FIG. 3. �a� The tails of the compactons in double-logarithmic scale. �b� Comparison of the estimate �27� with the compactons obtained
from �19a� and �19b�.
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FIG. 4. Evolution from an initial step for the nonlinearity index n=3. The lattice length is N=128, and open boundary conditions �hence
q̈1= �q2−q1�n and q̈N=−�qN−qN−1�n� are used. The initial conditions are qk�t=0�= �n+1�1/�n+1� for k�64 and 0 otherwise; initial momenta are
zero. Different plots show different quantities of the lattice: �a� the coordinates qk, �b� the energy Ek defined in �28�, �c� the difference
coordinates Qk=qk+1−qk at time t=80 �the initial state at t=0 is shown here as the dashed line�, and �d� the difference momenta Pk= pk+1

− pk at t=80. The compactons originating from this initial state are clearly separated near the borders of the chain; those in the middle part
are still overlapped.
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Q�s� = e−f�s� �
e−nf�s−1�

�nf��s − 1��2 . �23�

Taking the logarithm of this equation yields

− f�s� = − nf�s − 1� − 2 ln�nf��s − 1�� . �24�

Since we expect that f�s� is a rapidly growing function of s,
we can neglect the logarithmic term and obtain

f�s� = nf�s − 1� . �25�

This equation is solved by

f�s� = Cns = Celn�n�s, �26�

where C is an arbitrary constant. Finally we obtain that the
tail decays superexponentially:

Q�s� = e−f�s� � e−Cns
= exp�− C exp�ln�n�s�� . �27�

This expression was first obtained by Chatterjee �5� using a
direct expansion of the advanced-delayed equation �17�.

In Fig. 3�a� we show the tails of the compactons for vari-
ous values of n, and in Fig. 3�b� we compare the estimated
decay rate �27� with compactons obtained numerically from
the traveling-wave scheme �19a� and �19b�. To obtain the
double-logarithmic decay rate �=d ln��ln�Q�s���� /ds, we first

compute ln��ln�Q�s���� and then the derivate is calculated us-
ing a spline smoothing scheme �31�. To suppress small os-
cillations of the tails, we average the numerical obtained de-
rivative in the last 1 /6 of the compacton domain. The
numerical value of � is shown in Fig. 3�b�. Both coincide
very well.

IV. EVOLUTION AND COLLISIONS OF COMPACTONS

A. Appearance of compactons from localized initial
conditions

The compact solitary waves constructed in the previous
section are of relevance only if they evolve from rather gen-
eral, physically realizable initial conditions. For an experi-
mental significance �see �4,7� for experiments with Hertz
beads�, it is furthermore important that the emerging com-
pact waves be established on relatively short distances; oth-
erwise, dissipation �which has not been considered here� will
suppress their formation. We illustrate this in Figs. 4 and 5.
There we report on a numerical solution of the lattice equa-
tions �2� on a finite lattice of length N=128 �so that at the
boundaries q̈1= �q2−q1�nsgn�q2−q1� and q̈N=−�qN
−qN−1�nsgn�qN−qN−1� hold�. One of the quantities we report
is the local energy at site k defined as
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FIG. 6. �a� Compactons emerging from localized random initial conditions. The nonlinearity index is n=3. The gray scale corresponds
to the energy �28� of the lattice site. �b� Energy distribution of the compactons emitted from localized random initial conditions. The statistics
was obtained from 60 000 simulations; in each simulation, the lattice was integrated to the time T=1000 and the energy distributions of the
compactons emerging to the right �black circles� and left �crosses� have been determined. The distributions obey in very good approximation
P�E��E−a ln�E�−b, with a=0.57 and b=5.47.
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Ek =
pk

2

2
+

1

2�n + 1�
��qk+1 − qk�n+1 + �qk − qk−1�n+1� . �28�

As an initial condition, we have chosen a kink in the vari-
ables qk: qk= �n+1�1/�n+1� for k�64 and qk=0 elsewhere.
This profile has unit energy; it corresponds to the localized
initial condition in the variable Q: Qk=
k,64�n+1�1/�n+1�. The
evolution of different variables is shown in Fig. 4. From the

initial pulse of Q, a series of compactons with alternating
signs is emitted in both directions. The amplitude of the per-
turbation near the initially seeded site decreases and corre-
spondingly increases a characteristic time of the evolution.
We expect that at large times, compactons with small ampli-
tudes will continue to detach. In Fig. 5 we show the evolu-
tion from the initial step for different nonlinearities n
=1.5,3 ,10. The plots look very similar, and compactons are
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FIG. 7. Collisions of compactons in the Hamiltonian lattice with n=3. Shown are difference coordinates Qk. We have considered six
different collision scenarios. In each plot the lower panel is the initial configuration of the lattice, the middle panel is the state of the lattice
at some time during the maximal overlap, and the upper panel shows the lattice past the collision. �a� Compactons of equal energy having
opposite amplitudes and velocities, �b� compactons of equal energies and amplitudes but opposite velocities, �c� compactons of different
energies having amplitudes and velocities of opposite signs, �d� compactons of different energies having amplitudes of the same and
velocities of opposite signs, �e� compactons of different energies having velocities and amplitudes of the same sign, and �f� compactons of
different energies having velocities of the same sign and amplitudes of opposite signs.
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emitted in every case. The number of emitted compactons
and their amplitudes depend on the nonlinearity index.

In our next numerical experiment, we studied the emer-
gence of compactons not from a sharp step in the coordinates
qk, but from localized random initial conditions. In Fig. 6�a�
we show a typical evolution in a lattice of length N=512
�with nonlinearity index n=3� resulting from random initial
conditions qk in the small region N /2−5�k�N /2+5
around the center of the lattice. In this region the coordinates
qk have been chosen as independent random numbers, iden-
tically and symmetrically uniformly distributed around zero,
while pk�0�=0. Furthermore, the energy of the lattice was set
to E=1 by rescaling. In a particular realization of Fig. 6�a�,
at the initial state two compactons emerge to the right and
four compactons to the left. In the center of the lattice, a
chaotic region is established and slowly spreads over the
lattice, possibly emitting more compactons on a longer time
scale. In Fig. 6�b� we perform a statistical analysis of this
setup by showing the energy distribution of compactons
emitted from localized random initial conditions as described
above. This distribution was obtained from 60 000 simula-
tions; in each simulation, the energy of the emitted compac-
tons has been determined and counted. The functional form
of the distribution obeys in very good approximation P�E�
�E−a ln�E�−b, with a=0.57 and b=5.47.

B. Collisions of compactons

As we have demonstrated above, compactons naturally
appear from rather general initial conditions. To characterize
their stability during the evolution, we study their stability to
the collisions. This study is not complete, but only illustra-
tive, as in Fig. 7, we exemplify different cases of collision of
two compactons in a lattice with n=3. These six setups
present all possible scenarios of two compactons: �i� two
colliding compactons with the same amplitudes, �ii� two
compactons with different amplitudes moving toward each
other, and �iii� two compactons with different amplitudes
moving in the same direction and passing each other. Each of

these three cases has two subcases, because the amplitudes
can have the same or different sign. It should be mentioned
that these six collisions do not represent the complete picture
of all collisions. Moreover, we have not varied parameters
such as the distance between two colliding compactons or
their amplitudes.

In all the cases presented, the initial compactons survive
the collision: they are not destroyed, although they do not
survive the collision unchanged. In all cases the collision is
nonelastic; some small perturbations �which presumably on a
very long time scale may evolve into small-amplitude com-
pactons� appear.

Because of this nonelasticity, on a finite lattice after mul-
tiple collisions initial compactons get destroyed and a cha-
otic state appears in the lattice, as illustrated in Fig. 8. There
we show the evolution of the two compactons with the same
amplitude and sign of the amplitude for three different non-
linearities: n=3, n=9 /2, and n=11. In the first two cases, the
chaotic state establishes relatively fast. In the third simula-
tion with n=11, the situation is different. Here the chaotic
state does not appear even on a very long time scale. We run
the simulation for very long times up to T=2�105, but
could not observe the development of a chaotic state. We
have checked this phenomenon also for higher values of n
with the same result. Presumably, these initial conditions lie
on a stable quasiperiodic orbit or are extremely close to such
a one.

V. CHAOS IN A FINITE LATTICE

As demonstrated above, in a finite lattice general initial
conditions evolve into a chaotic state. For characterization of
chaos, we use Lyapunov exponents. The chaotic state of the
lattice has also been characterized in �22,32� by the means of
the velocity distribution of the lattice site. It has been found
that the lattice possesses a quasinonequilibrium phase, char-
acterized by a Boltzmann-like velocity distribution, but with-
out energy equipartition.

(a)

(b)

(c)

FIG. 8. Collisions of compactons and emergence of chaos after multiple collisions. Different plots show different nonlinearity indices �a�
n=3, �b� n=9 /2, and �c� n=11. Time increases from left to right, and the difference coordinates Qk are shown in gray scale. Remarkably the
elasticity of the collision increases with increasing nonlinearity index n, so that practically no irregularity appears at n�10.
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First, we check that chaos in the lattice is extensive; i.e.,
the Lyapunov exponents form a spectrum when the system
size becomes large �Fig. 9�a��. This property allows us to
extend the calculations of finite lattices to the thermody-
namic limit. Note that due to the two conservation laws, four
Lyapunov exponents vanish; we have not found any more
vanishing exponents, indicating the absence of further hid-
den conserved quantities.

For a lattice of length N=16, the dependence of the
Lyapunov exponents on the nonlinearity is shown in Fig.
9�b�. For a fixed total energy �we have set H=N=16 in these
calculations�, the Lyapunov exponents grow with the nonlin-
earity index. The plot presented in Fig. 9�c� indicates that
�max� ln n, although we did not consider very high nonlin-
earity indices to make a definite conclusion on the asymptot-
ics for large n.

We stress here that because of the scaling of the strongly
nonlinear lattices under consideration, chaos is observed for
arbitrary small energies—only the Lyapunov exponents de-
crease accordingly.

VI. CONCLUSION

In this paper we have studied strongly nonlinear Hamil-
tonian lattices, with a focus on compact traveling waves and
on chaos. We have presented an accurate numerical scheme
allowing one to find solitary waves. Moreover, from the in-
tegral form representation used one easily derives the super-
exponential form of the tails. In this way we have confirmed

this remarkable result by Chatterjee �5� by another analytical
method and by accurate numerical analysis. The constructed
compactons were then studied via direct numerical simula-
tions of the lattice. Their collisions are nearly elastic, but the
small nonelastic components on a long time scale destroy the
localized waves and result in a chaotic state. Chaos appears
to be a general statistically stationary state in finite lattices,
with a spectrum of Lyapunov exponents where the largest
one grows roughly proportional to the logarithm of the non-
linearity index.

We would like to mention here also several aspects that
deserve further investigations. Recently, the problem of heat
transport in one-dimensional lattices has attracted a lot of
attention �33�; here, the properties of strongly nonlinear lat-
tices may differ from those possessing linear waves. Also a
quantization of these lattices seems to be a nontrivial task, as
there are no linear phonons to start with. Finally, the Ander-
son localization property of disordered lattices has been re-
cently intensively discussed for nonlinear systems. For
strongly nonlinear lattices the problem has to be attacked
separately, as here one cannot rely on the spectral properties
of a linear disordered system.
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