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The response of a nonlinear optical oscillator subject to a delayed broadband bandpass filtering feedback is
studied experimentally, numerically, and analytically. The oscillator loop is characterized by a high cutoff
frequency with a response time 7~ 10 ps and by a low cutoff frequency with a response time 6~1 us.
Moreover, the optoelectronic feedback also consists of a significant delay 7, of the order of 100 ns. Depending
on two key physical parameters, the loop gain B and the nonlinearity operating point ®, a large variety of
multiple time scale regimes are reported, including slow or fast periodic oscillations with different waveforms,
regular or chaotic breathers, slow time envelope dynamics, complex and irregular self-pulsing, and fully
developed chaos. Many of these regimes are exhibiting new features that are absent in the classical first-order
scalar nonlinear delay differential equations (DDEs), which differ in the modeling by the low cutoff only.
Nearly all kinds of solutions are recovered numerically by a new class of integro-DDE (iDDE) that take into
account both the high and low cutoff frequencies of the feedback loop. For moderate feedback gain, asymptotic
solutions are determined analytically by taking advantage of the relative values of the time constants 7, 6, and
7p. We confirm the experimental observation of two distinct routes to oscillatory instabilities depending on the
value of ®. One route is reminiscent of the square wave oscillations of the classical first-order DDE, but the
other route is quite different and allows richer wave forms. For higher feedback gain, these two distinct
regimes merge leading to complex nonperiodic regimes that still need to be explored analytically and numeri-
cally. Finally, we investigate the theoretical limits of our iDDE model by experimentally exploring phenomena
at extreme physical parameter setting, namely, high-frequency locking at strong feedback gain or pulse pack-
ages for very large delays. The large variety of oscillatory regimes of our broadband bandpass delay electro-
optic oscillator is attractive for applications requiring rich optical pulse sources with different frequencies
and/or wave forms (chaos-based communications, random number generation, chaos computing, and genera-

tion of stable multiple GHz frequency oscillations).
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I. INTRODUCTION

Time-delayed feedbacks are responsible for diverse phe-
nomena such as regenerative chatter between the machine
tool and the workpiece [1], sudden changes in the qualitative
dynamics of physiological processes [2,3], and laser pulsat-
ing outputs caused by optical feedback from a distant mirror
[4]. A popular way to describe these effects is to formulate
delay differential equations (DDEs) where the state of a vari-
able at time ¢ depends on its value at time ¢—7,. However,
DDEs are mathematically difficult to analyze and much of
the recent understanding of their possible solutions essen-
tially results from detailed computer simulations. This is par-
ticularly the case in optics where the effects of optical and
optoelectronic feedback are studied in detail leading to sys-
tematic comparisons between experiments and theory. An
important by-product of these research activities is the iden-
tification of specific classes of DDEs that show similar dy-
namical phenomena caused by the delay such as the stabili-
zation of unstable steady states, square-wave oscillations, or
fast quasiperiodic oscillations.

While developing broadband and high-speed optical in-
tensity chaos generators for chaos communication [5-7], a
particular electro-optical delay oscillator has been designed
that revealed several new dynamical phenomena. Some of
these observations may be qualitatively described using the
standard scalar nonlinear DDE
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' =—x+flx(t-7p)], (1)

where a prime means differentiation with respect to time ¢,
Tp being the delay and 7 being the linear relaxation time of
the dependent variable. The nonlinear function f(x) might
practically, e.g., represent the negative feedback of a physi-
ological control [8] [f(x)=a(1+x")""], the reinjection of part
of the output light into the input of a passive resonant optical
cavity [9] {f(x)=a[1+2b cos(x—x,)]}, or the delayed syn-
chronization of two oscillators [10] [f(x)=—-a sin(x)]. Equa-
tion (1) has been studied in detail for its square-wave oscil-
lations in the limit of large delays. However, some of our
experimental observations cannot be captured by the solu-
tions of Eq. (1) and they motivated the analysis of the fol-
lowing integro-DDE (iDDE)

H'IJI x(p)dn+ ™' =- (1 +g>x+f[x(t— w1l (2

0

where the integral term comes from the bandpass feature of
the broadband amplifier commonly used in modern optical
communications. In contrast to this, previous realizations of
similar electro-optic oscillators [11-13] did not have the
electronic filtering of a high-pass type (i.e., with a low-
frequency cutoff). Here, the ratio between the integral time 6
and the differential time 7 corresponds to the ratio between
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the high and the low cutoff frequencies characterizing the
bandwidth of modern commercially available 10 Gb/s (or
more) electronics for high speed optical links. In our setup, it
may span almost six orders of magnitude and the delay 7,
can be widely adjusted between € and 7. For short delays, the
accessible range is limited by the minimal length of the fi-
bers and electrical connectors required to close the optoelec-
tronic feedback loop. This length corresponds to about one
meter or less of optical fiber, leading to a delay of a few
nanoseconds or even tenths of nanoseconds. On the other
hand, very long delay of several tens of microseconds, cor-
responding to several kilometers of optical fiber, can be re-
alized owing to the low absorption of modern fibers. In this
paper, we concentrate on the case for which we have a nearly
equally distributed logarithmic spacing of the different time
constants, i.e.,

6= 107, = 10°7. (3)

Except for those studies devoted to specific oscillatory
regimes [14-16], a systematic experimental and theoretical
bifurcation analysis of an iDDE problem that depends on
three distinct time constants is missing. Mathematically, the
limit #— o of Eq. (2) leads to Eq. (1) but one needs to be
cautious because this limit is singular [17]. As we will dem-
onstrate, multiple time scale solutions are becoming the rule
for sufficient feedback rate, providing new waveforms and
new bifurcation mechanisms. None of our analyses are rou-
tine applications of singular perturbation technique, and they
have been performed in detail for corresponding parameters
and compared with the experimental results whenever it was
possible, in particular for the low feedback gain conditions.
For higher feedback gain, analytical studies are much more
difficult, and thus experimental results are mainly confronted
with numerics. Several numerical simulations and their
analysis are reported, in order to additionally support the
applicability of the iDDE model.

The article is organized as follows. In Sec. II, we describe
the experimental setup as well as the instruments used to
investigate the output of the optical oscillator. In Sec. III, we
derive the iDDE model (2), and discuss the qualitative role
of key physical parameters. We emphasize their practical
tuning range and establish dimensionless dynamical equa-
tions. We also present the numerical tools that are used for
the exploitation and discussion of the experimental data. Sec-
tion IV reports the first periodic oscillations observed for low
feedback gain. Using singular perturbation techniques, a de-
tailed theoretical and numerical analysis is proposed, on the
basis of the normalized iDDE. The higher feedback gain situ-
ations are then reported in Sec. V, mainly supported by nu-
merical simulations due to the much more challenging dy-
namical complexity for an analytical approach. Section VI
illustrates the extreme dynamics diversity with the same
setup. The latter is elucidated using rf spectra bifurcation
diagrams for complementary insight. We also present further
interesting dynamical phenomena obtained for different par-
ticular settings of the physical parameters (influence of a
varied high cutoff frequency or of a longer time delay). This
section aims at showing some of the consequent open issues
concerned by such iDDE dynamics and, thus, underlining the
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FIG. 1. (Color online) Experimental setup of the nonlinear
electro-optic delay oscillator.

nonexhaustive content of the present article. We finally sum-
marize our report, with discussions and conclusions in Sec.
VIIL

II. EXPERIMENTAL SETUP

The experimental setup is sketched in Fig. 1, showing the
electro-optic nonlinear delay oscillator. Following the prin-
ciple of Refs. [12,14], an optical nonlinear transformation of
the electrical input of an integrated-optic electro-optic
LiNbO; Mach-Zehnder (MZ) modulator, is performed by its
two-wave interference modulation transfer function. The MZ
is seeded by the light of a 1.55 um DFB semiconductor laser
whose power P, can be varied from O to around 10 mW.
Note that the laser operates in an unmodulated continuous
wave (CW) mode without any optical feedback. The nonlin-
early modulated optical intensity at the MZ output is sent
through an optical fiber which is mainly responsible for the
time delay 7. Subsequently, the light enters the optoelec-
tronic feedback path where intensity fluctuations are detected
by a broadband amplified photodiode (PD) with 12 GHz
bandwidth and S=1.9 V/mW conversion efficiency. This
photodiode converts and filters the nonlinearly transformed
optical signal back into the electrical domain. The electrical
signal is then amplified by a broadband rf driver (18 dB gain,
or amplitude amplification of G=8) which modulates via the
electro-optic effect the optical path difference (OPD) of the
MZ, thus closing the feedback loop of the nonlinear delay
oscillator. Considering all the devices in the electronic path
(i.e., optoelectronic detection, amplification, and electro-
optic modulation of the OPD), the combined linear filtering
process has a bandwidth of around 30 kHz—12 GHz, mainly
limited by the amplified photodiodes. This broadband band-
pass filtering is the dynamical phenomenon responsible for
the integral and differential terms of the dynamics that ap-
pear in Eq. (2).

The light intensity dynamics of the MZ output can be
analyzed at the free output of the 2 X2 (50/50) fiber coupler.
For monitoring, we either use a broadband unamplified dc-
coupled photodiode PD’ with 16 GHz bandwidth, or the am-
plified optical input of a 6 GHz real time digital oscillo-
scope, thus offering also a dc-coupled detection capability,
but with a reduced bandwidth of 3.5 GHz. Low light inten-
sities can be monitored best in time up to a maximum fre-
quency of 3.5 GHz, whereas higher light intensities can also
be detected with the broadband photodiode so that the re-
corded time series are only limited by the scope bandwidth,
being 6 GHz. For the observation of faster frequencies up to
the unamplified photodiode bandwidth (16 GHz), we also
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have the possibility to connect the corresponding electrical
output to a 22 GHz rf spectrum analyzer. Note that the actual
intensity fluctuations might have much higher frequency
components, due to the adiabatic nonlinear transformations
performed by the interference effect. The OPD modulation
via the electro-optic effect is indeed limited up to 12 GHz
due to the electronic feedback path filtering. The adiabatic
nonlinear MZ modulation transfer function might generate
intensity fluctuations that exhibit the second or even the third
harmonics of the OPD spectrum, depending on the OPD am-
plitude modulation. According to the amplifying capability
of the electronic feedback, the rf driver can deliver up to
13 V peak-to-peak. Additionally considering that the rf
electro-optic sensitivity of the MZ allows for a 7-phase shift
OPD for V,=4.0 V, an effective third order polynomial
nonlinearity can be obtained via the utilized interference
phenomenon. The measured signals are corresponding to a
filtered—and thus slightly modified—version of the MZ out-
put intensities, according to the combined filtering of the
photodetector, and of the scope or rf spectrum analyzer.

I11. BASIS FOR THEORY AND EXPERIMENT
A. Dynamical modeling of the setup

In order to investigate the behavior of our optical oscilla-
tor, we formulate a mathematical model of the form of Eq.
(2). The main device responsible for the rich variety of dy-
namical responses is the broadband amplified photodetector.
It is characterized by a high cutoff frequency with a response
time 7 and by a low cutoff frequency with the integral re-
sponse time 6. The simplest description in the frequency do-
main for such a filter, corresponds to a second order band-
pass filter with the following transfer function:

Y _ Ulio)
(1+iwd)(1+iwr) Plio)

In Eq. (4), U(iw)=V(iw)/G and P(iw) are defined as the
Fourier transform (FT) of the output voltage u(¢) and input
optical power p(7) of the photodiode. The optical power p(r)
is the one observed at the MZ output, but delayed in time by
Tp=nlL/c, where L, n, and c are the length of the fiber gen-
erating the delay, its refractive index at the operating wave-
length, and the speed of light in vacuum, respectively. As-
suming a standard commercial telecom MZ, it is given by
p(t)=aP, cos’[ v (t—1p)/ (2V )+ P] where a accounts for
the losses of the MZ and @ is a static offset phase in the
interference condition. The parameter ® can be adjusted
through a bias voltage on a couple of extra dc electrodes.
Those electrodes thus have their own half wave voltage
Vyae=4V, a value similar to V. The voltage v(r)
=FT~'[V(iw)] is the one applied on the rf electrodes of the
MZ. It equals Gu(r) assuming that the rf driver of gain G has
a broader bandwidth than the one of the photodiode. More-
over, we assume that the bandwidth of the electro-optic ef-
fect exceeds that of the photodiode as well. It then implies
that the filtered output of the photodiode is not filtered again
by either the driver or by the MZ rf electrodes. Instead, the
output signal is amplified with the gain G, and subsequently

H(iw)=S 4)
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converted into an optical phase difference in the MZ inter-
ferometer.

From Eq. (4), and using the conversion rules from the
Fourier domain back to the time domain [iw—d/(dt) and
(iw)™'— [df], we obtain

t

' (1)/G + (1 + g>v(t)/G + %J v(s)/Gds

)

= aP,S cosz[ﬂ'M + (D] . (5)

arrf
In dimensionless form, this equation becomes

t

™ +x+ Flf xds = B{cos*[x(t — ) + ] — cos*(P)},
0

(6)

where we have neglected the small term 7/6=2.45X107°,
The arbitrary time #, has been chosen so that Eq. (6) admits
a steady state for x (x=0). The dimensionless dependent
variable x=mv/(2V, ) is proportional to the signal in the
electronic feedback driving the MZ. Note that the observed
quantity is not x(¢) but f[x(r)], which is defined by

fx) = Beos?(x + D). (7)

It is the nonlinear transformation of x via the MZ modulation
transfer function (output intensity of a two-wave interferom-
eter). The normalized parameter 8= maPySG/(2V ;) mea-
sures the amplitude of the delayed feedback. It can be lin-
early increased by tuning the optical laser power P, through
laser diode injection current ;. The feedback phase @ is
defined by &=V, /(2V_ 4) and is experimentally con-
trolled via an external dc voltage V. applied across indepen-
dent electrodes. Following the f(x) nonlinearity, ® gives rise
to a 7 periodicity which can be scanned by V. over a 2V 4.
range.

It is mathematically convenient to rewrite Eq. (6) as a
system of two first-order differential equations. There are
two different ways to do this and both derivations offer ad-
vantages for the analysis. The first way is to introduce the
new variable y = [(x(s)ds, leading to the following equations
for y and x:

y' =x, (8)

™' =—x— 6y + Blcos?[x(t — ) + P] - cos>(P)}. (9)

A second way is to differentiate Eq. (6) with respect to ¢
and formulate the following second-order DDE for x:

" =—x"— 0%+ Blcos?[x(t - ) + P} (10)
Introducing the new variable z=x', we then obtain

x' =z, (11)

7' =—z7- 6 'x+ Blcos’[x(t — p) + D]} (12)

For clarity, the meaning and values of the fixed parameters
are listed in Table I.
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TABLE 1. Physical and modeling parameters of the realized
electro-optic nonlinear delay oscillator.

Parameter Value Meaning

™ 44.65 ns delay

T 13 ps high frequency cutoff
0 5.3 us low frequency cutoff
Py 0-10.5 mW optical input

P =10.5 mW maximal input

a 0.082 optical losses parameter
S 1.9 V/mV conversion efficiency of PD
G 8 power gain of amplifier
B 0-5.1 normalized feedback gain
Vit max 13.0V maximum rf voltage
Vot 40V halfwave rf voltage

Vo de 41V halfwave dc voltage

D [—7/2,+/2] rad offset interference phase

In summary, the filtered optical feedback is described by
the iDDE (6) which is equivalent to the system of two
coupled first-order DDEs for either x and y [Egs. (8) and
(9)], or x and z [Egs. (11) and (12)]. The formulation of our
problem is based on the assumption of a second-order band-
pass filtering. In practice, the bandpass process is more com-
plex since the cutoff frequency stop band is measured to
have an amplitude decay much faster that 20 dB/decade (as
well as the start band at low frequency cutoff). A more ac-
curate and complex description would, however, require sev-
eral higher order derivatives as well as higher-order inte-
grals.

B. Data analysis tools

We have mainly used three techniques for data analysis. A
first rather global characterization of the dynamics corre-
sponds to a bifurcation diagram-like representation, obtained
for fixed values of all the parameters except @, which was
finely tuned over its periodicity range, varying V4. over a
2V 4 interval. For each value of @ or, equivalently, V., we
have recorded long time series that allowed us to derive, for
each dynamical regime, a probability distribution function
(PDF) of the observed variable. In the model, this variable is
related to the quantity f[x(¢)], the nonlinear transformation,
but the obtained time series is inevitably a filtered version of
flx(#)] according to the limited real time acquisition band-
width of the instruments. A vertical cut of the bifurcation
diagram versus V. thus consists of the color-scale encoded
PDF, for a fixed dynamical regime, i.e., for fixed parameters
(d, B, mp, etc.). Many such diagrams have been recorded for
different values of the normalized feedback gain 8 from 1.3
to 5.1, obtained experimentally with laser diode currents I,
between 30 and 80 mA (optical input powers P, between 0
and 10.5 mW). For low feedback gains, we typically find
low complexity dynamics, whereas higher gains usually lead
to more complex nonlinear regimes, among which fully de-
veloped chaos can be experimentally achieved.
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A second tool for characterization of the dynamics is the
time series itself, from which we can determine the shape
and the time scale of the waveform in dependence on the
parameter @. The ® values of the presented time series have
been chosen so that they reveal the most important dynami-
cal regimes among the vast variety of observable situations.

Finally a third technique, the direct rf spectral analysis
(not obtained by calculation of the FFT of the time series, but
measured with an electrical spectrum analyzer with a band-
width of 22 GHz), is used to gain complementary insight
into the dynamics in the spectral domain. It is particularly
useful for higher complexity regimes, for which complex
waveforms are obtained and analytical description is much
more difficult. Additionally, it provides insight into the loss
of information of the time domain measurements due to the
limited bandwidth of the 6 GHz real time digital scope,
which is about one half of the effective bandwidth of the
optical intensity fluctuations. Due to the huge spectral range
for the relevant frequencies, we recorded low-frequency
spectra from 9 kHz to 100 MHz, and also broadband spectra
from 7 MHz up to 19.4 GHz. This Fourier spectral analysis
reveals the energy distribution in the frequency domain, thus
indicating the actual characteristic frequencies of different
dynamical regimes, sometimes enabling a discrimination be-
tween regimes of similar amplitudes but of different frequen-
cies. For very complex solutions and multiple time scale
waveforms, we also propose a wavelet analysis, which not
only reveals the Fourier frequencies, but also their evolution
in time along a very slow envelope.

IV. LOW FEEDBACK GAIN DYNAMICS

We analyze Egs. (8) and (9) or Egs. (11) and (12) both
numerically and analytically and quantitatively compare ex-
perimental and theoretical observations whenever possible.
The basic steady state solution x=0 is stable if |3 sin(2®)|
<1 [16]. If B<1, the trivial solution is always stable what-
ever the value of @ is. If 8> 1, a Hopf bifurcation is possible
at B=1/|sin(2®)|. If sin(2®) >0, the Hopf bifurcation fre-
quency is w,=m/71p 1implying the emergence of
27p-periodic limit-cycle oscillations. As B is further in-
creased, we note numerically that this frequency remains
constant although the waveform undergoes substantial
changes. On the other hand, if sin(2d) <0, the Hopf bifur-
cation frequency is w_==21/ 7, and the bifurcation leads to
Tp-periodic oscillations. But as soon as 3 increases, we find
the emergence of low-frequency oscillations with a period
approximately 100 times larger than 7. This phenomenon is
confirmed experimentally and is totally unexpected since it
cannot be anticipated from the Hopf bifurcation analysis. We
investigate both the low-frequency and square-wave oscilla-
tions in the Secs. IV B and IV D, respectively.

A. Experimental observations

For very low feedback gains of <1, there is nearly no
feedback and the measured power at the MZ output is dc
depending only on the parameter @, but not on the feedback.
Gradually increasing ®@ from negative values and detection
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FIG. 2. (Color online) Dynamics for low feedback gain. (a)
Probability distribution function of the intensity for /; =30 mA (B
=1.3). Exemplary intensity time series are shown in panel (b) for
V4e=2.25V and in (c) for V4=6.00 V (®#=0.56 and 0.64). The
dotted gray line shows numerically obtained dynamics using Eq.

(2).

with the dc-coupled PD’ reveals the expected cosine square
modulation provided by f(x). In other words, the basic
steady state is stable for all values of ®.

As the feedback gain is increased by increasing the in-
jected optical intensity, the linear stability analysis of the
steady state predicts a change of stability for sufficiently high
absolute value of the slope of the nonlinear function f(x).
This is shown in Fig. 2(a), where the PDF of the possible
regimes is represented as a function of V.. The logarithmic
color scale, which will be used in all our PDF plots, indicates
the probability density in percent, normalized to the total
number of events. It can be deduced from the figure that the
® values corresponding to strong slopes of the f(x) nonlin-
earity are no longer leading to stable steady states, but to
widespread PDF indicating pulsating oscillatory regimes.
Specifically, two distinct time-periodic regimes are observed
in the bifurcation diagram of Fig. 2 [see the time traces in (b)
and (c)]. In Fig. 2(b) a period of the order of 6 is observed
for positive slopes of the f(x), whereas in Fig. 2(c) a period
of the order of 27, occurs for the negative slope. The latter is
clearly the regime predicted by the Hopf bifurcation at 7y
=1 and is equivalent to the period-2 square-wave oscillations
previously found for the Ikeda equation. Note that plateaus
are not strictly constant due to the effect of 6 (dc filtering
out).

In Fig. 2(b), the numerical solution reproduces the low-
frequency oscillations as it can be seen by the dashed gray
line in Fig. 2(b). The good agreement between experiment
and theory has been achieved for the parameters provided in
Table I and with B=1.3 and ®=-0.57. Quantitative match is
obtained by using 6#=3.66 us. This small difference might
originate from the more complex filter profile than the one
used in our model.
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FIG. 3. Limit-cycle oscillations of the reduced (x,v) ordinary
differential equations. The values of 7 and 6 are listed in Table I.
The values of the control parameters are S=1.3 and ®=-0.57. The
figure represents F=1.632f(x), where the coefficient 1.632 has been
determined by comparing experimental and numerical regimes. The
points x=x- denotes the critical points where a fast transition layer
occurs; (a) temporal waveform; (b) bird-shaped orbit in the phase
plane (x,sv). Fast and slow (where v=x' is close to 0) parts of the
orbit can be constructed analytically in the small-¢ limit. They lead
to the critical points x. where the fast transition layers appear.

B. Low-frequency oscillations

The low-frequency oscillations observed experimentally
and numerically for ®=-1.57 are not the result of the desta-
bilizing effect of the delay, but it originates from a different
bifurcation mechanism. We note that the period of the oscil-
lations is in the us time range which corresponds to the time
scale of 6. Introducing s= #~'t and v = 6z into Eqgs. (11) and
(12), we obtain

x'=v, (13)

ev’ =—v —x+ B{cos’[x(s — &) + D]}, (14)

where differentiation is now with respect to s, €, and & being
defined by

e=10"=245% 107, 8=r,07' =843 % 107,

(15)

The low value of & motivates to neglecting the delay in Eq.
(14). The reduced equations then lead to the following sys-
tem of two first-order ordinary differential equations:

x'=v, (16)

ev’ =—v —x+ Blcos’(x + P)]'. (17)

The long-time numerical solution of Egs. (16) and (17) is
shown in Fig. 3(a). The oscillations are strongly pulsating
with fast transition layers connecting slowly varying pla-
teaus. The limit-cycle solution can be analyzed in the phase-
plane and separate approximations for the slow and fast parts
of the orbit can be determined analytically in the limit of &
small [see Fig. 3(b)]. We omit all details of the analysis and
only concentrate on the main results. In first approximation,
the slowly varying plateaus of the envelope satisfy Eq. (17)
with e=0 given by

v=—x+ Blcos’(x + P)]'. (18)

After differentiating the last term in Eq. (18) and using Eq.
(16), Eq. (18) can be rewritten as

026208-5



PEIL et al.

X
T 1+ Bsin(2x+2®)

v= (19)
This approximation fails as soon as the denominator in Eq.
(19) approaches zero. The critical points x=x.. satisfying the
condition

Bsin(2x +2P)=-1, (20)

are the points where the limit-cycle undergoes the fast tran-
sition layers. They are given by

x+=—%arcsin(,3_l)—(1>, (21)

x_= %[— o+ arcsin(8 )] - . (22)
Using the values of B8 and ®, we determine x,=0.13 and
x_=-0.56. These critical points are necessary for observing
the bird-shaped limit cycle in Fig. 3(b). Note that Eq. (20)
for x. contains the previous observation that the low-
frequency oscillations only appear if 8 sin(2d) <-1, which
is the case [Bsin(2d)=-1.18]. If we now compare the os-
cillations shown in Fig. 3(a) with the experimental oscilla-
tions shown in Fig. 2, we note similar amplitudes for the
plateaus but smoother transition layers in the case of the
experimental observations. We attribute this difference to the
effect of the actual presence of the small delay during the
fast transitions layers. This effect is ignored in the leading
order problem (16) and (17), according to the adopted hy-
pothesis.

C. Stability of the low-frequency oscillations

The rapid bursting oscillations observed numerically and
experimentally motivates a stability analysis of the slowly
varying envelope. Recall that the leading approximation of
the slowly varying plateaus satisfies Eq. (17) with e=6=0.
With Eq. (16) but keeping the delay &8, Eq. (17) now reduces
to

x' +x= Blcos?[x(s — &) + P]}". (23)

We analyze this equation by a multitime scale analysis where
(=65 is a the fast time and s is the previously defined
slow time of the slowly varying plateaus. We summarize the
main results. The leading approximation x=x,({,s) satisfies
the following equation:

xo= BeosH[xg({— 1) + ]+ F, (24)

where F is the constant of integration. The expression (24)
provides the successive maxima and minima, xy=xg,, of a
square-wave-like solution. The extrema x, satisfies the fol-
lowing equation for a map:

Xon = Bcos>(xg,_; + P) + F. (25)

Note that we have obtained Eq. (25) by integrating Eq. (23)
with respect to the fast time . Consequently, we need to
assume that the constant of integration F is a function of the
slow time s. In order to obtain an equation for F, we need to

PHYSICAL REVIEW E 79, 026208 (2009)

investigate the higher-order problem for x=x; and apply a
solvability condition. This condition is

14
ar =—lim lf xo(s,8)dE. (26)
£Jo

A period-1 fixed point of Eq. (25) corresponds to x,=x,_;
=x*. From Egs. (25) and (26), we find

x* = Bcos’(x* + D) + F, (27)
dF
E =—x*. (28)

Differentiating Eq. (27) with respect to s and using Eq. (28),
we correctly obtain Eq. (18) describing the slowly varying
plateaus. Thus, the period-1 fixed point solution correctly
match the slowly varying envelope of the rapid oscillations.
In order to determine if rapidly varying oscillations are pos-
sible, we need to determine if a period-2 fixed point is pos-
sible. We consider x=x* as our reference solution and keep F
constant. F is defined by means of Eq. (27), i.e.,

F=x*— Bcos’(x* + D). (29)

From Eq. (25), we determine the following linearized equa-
tion for x=x*:

u,=— Bsin(2x* +2P)u,_,, (30)

where u,=x,—x* is defined as the small perturbation. Seek-
ing then a solution of the form u,=r", the characteristic
equation for r is

r=—Bsin(2x* + 2P). (31)

The solution x=x* (F constant) is stable if |r| <1, i.e., when
|8 sin(2x*+2®)| < 1. The critical condition r=1 marks a
saddle-point, i.e., if Bsin(2x*+2®)=-1. This condition ex-
actly matches the condition (20) for the onset of the fast
transition layers. On the other hand, the critical condition r
=-1 marks a Hopf bifurcation point, i.e., if

Bsin(2x* +2®) = 1. (32)
The solutions of Eq. (32) are

1
Xy = > arcsin(1/8) — ®, (33)

Xy = %[— a—arcsin(1/8)] - ®. (34)

For ®=-7/10 and B=2.5, we find x;,=0.5199 and xj_
=-1.462. Later on in Sec. V, we will also demonstrate the
occurrence of this analytically derived behavior in the ex-
periment. Figure 4 show the bifurcation diagram of the stable
solutions of the map (25). To complete the analysis of the
bursting oscillations, we need to take into account the slow
evolution of F described by Eq. (26) which has been ignored
here for simplicity.
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X

FIG. 4. The bifurcation diagram of the extrema of the rapid
oscillations overlap the slowly varying envelope. ®=—7/10 and
B=25.

D. Square-wave oscillations

We first introduce the delay time s=¢/7, as our basic
reference time. Together with I/tEyTBl, Egs. (8) and (9) be-
come

u' =x, (35)

ex' =—x— Su+ Blcos?[x(s — 1) + ] — cos?(P)},
(36)

where prime now means differentiation with respect to s. J'is
defined in Eq. (15) and the new parameter &, is given by

g =11p=29X107* (37)

A typical long time solution of Egs. (35) and (36) has been
determined numerically and is shown in Fig. 5. x and u ex-
hibit square-wave and sawtooth oscillations, respectively. In
the limit &, —0, Egs. (35) and (36) reduce to the following
problem for u and x:

u' =x, (38)

0=—x—u+ Bl{cos?[x(s = 1) + ®]—cos*(P)}. (39)

Equations (38) and (39) are describing a map in x com-
bined with a differential equation in u. Starting from arbi-
trary initial conditions u(0)=u, and x=x,(1 <s<0), we have
numerically found that the solution of Egs. (38) and (39)
slowly evolves (on a long 6! time scale) towards a bounded
square-wave solution for x. The plateaus of the square wave
are almost constants and the size of the transition layers is
O(6) small. We wish to determine the square-wave two-

X u
0.2 27.5¢
L2 280}
-0.6

4 5 6 0123 456
S

FIG. 5. Long time solution of the full iDDE problem for &
=0.57, B=1.5, £,=2.9X 107, and 6=8.43x 1073
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FIG. 6. Bifurcation diagram of the square-wave oscillations for
B=0.57. x,=x,o is determined from a map derived in the double
limit £;,—0 and 6—0. The bifurcation point is located at 3.
=1/sin(2®)=1.1. At B=1.5, the extrema are located at x= *0.66

which matches the values found numerically from solving the origi-
nal iDDEs.

periodic solution in the limit 6— 0. To this end, we seek a
solution of the form

u,= 5_1”n0(5) + unl(s) + o, (40)

xn=xn0(s)+8xnl(s)+ ) (41)

where the subscript n refers to the time interval n<s<n
+1(n=0,1,2,...). The §! scaling in Eq. (40) is motivated
by the fact that u needs to be O(57!) in order to remain in Eq.
(39) as 6—0. Introducing Egs. (40) and (41) into Egs. (38)
and (39), and equating to zero the coefficients of each power
of & leads to a sequence of simpler problems for the un-
known functions in Egs. (40) and (41). From Eq. (38), we
find that
Uy =0 and i, =2, (42)
while from Eq. (39), we obtain that
— X0 = Uy + Blcos®(x,_; o+ ®) — cos*(P)]=0. (43)

Equation (42) for u, implies that u, is a constant for all
n. But Eq. (43) then implies that x, is also constant. Inte-
grating Eq. (42) and taking into account the continuity of the
solution at each s=n, gives

Up1 = XpoS
Uy = X0+ Xo(s = 1),

Ui =Xoo+ X190+ =+ + X1 0+ Xyo(s = 11) (44)

(n<s<n+1). A period-2 square-wave solution satisfies the
conditions

uy1(2) = ug1(0) and x,0 = xgp. (45)
Using Eq. (44), the first condition requires
X00+X10=0, (46)

which is illustrated by the antisymmetric extrema for the
stable limit cycle shown in Fig. 6. The second condition
implies, using Eq. (43), that
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FIG. 7. (Color online) Dynamics for moderate feedback gain.
(a) Probability distribution [color scaling, same as in Fig. 2(a)] of
the intensity, for I; =45 mA (8=2.4). Characteristic intensity time
series are shown in (b) for V4.=2.25V, (¢) V4.=3.75V, (d) Vg4
=6.50 V, and (e) V4.=7.50 V.

— X109 — Upo + Blcos*(xg + P) — cos?(P)]=0,  (47)

— X0 — Uy + Blcos?(xg+ P) —cos’(D)]=0.  (48)

Subtracting these two equations and using Eq. (46), we
eliminate u,, and x,;; and obtain the following equation for
Xoo only:

2x00 + B[COSZ(XOO + CD) - COSZ(— Xoo + CD)] =0. (49)

Using trigonometric identities, xgo=x¢o(B) is given by (in
implicit form)

2x 00

B iz ®)sintang 0

This solution is shown in Fig. 6 together with x;5=—xpp. A
numerical study of Egs. (38) and (39) indicates that the
period-2 square-wave solution remains stable until S=2.1.
Above this value, the two plateaus of the period-2 solution
start to break allowing more fast transition layers.

V. MODERATE TO HIGH GAIN DYNAMICS
A. First interplay of slow and fast time scales

Figure 7 shows a similar experimentally obtained bifurca-
tion diagram as in Fig. 2, but for a larger feedback rate. We
note that the ® range for which a stable steady state can be
obtained is now limited to the maxima of f(x) where the
slope is still sufficiently low to counterbalance the feedback
gain.
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FIG. 8. Zoom into the chaotic breathers dynamics presented in
Fig. 7(b).

Due to the higher gain, the various solutions depending on
@ now give rise to a more complex structure, in which the
different intrinsic oscillator time scales start to be involved
simultaneously. Analytical approaches are thus becoming
more difficult from that level of the feedback gain. There-
fore, we plan to compare all our observations with numerical
simulations of Eq. (2). Four typical time traces are shown in
Figs. 7(b)-7(e). Figures 7(b)-7(d) corresponds to two bifur-
cations of the two previously described oscillatory regimes.
Figure 7(e) is the most complex regime observed for moder-
ate feedback, it can, however, be reproduced by simulation
of our iDDE model with excellent qualitative agreement with
the experiment.

Figures 7(b) and 7(c) are observed for negative values of
® [i.e., positive slope of f(x)]. It is indeed corresponding to
the bifurcated state of the low-frequency oscillations, as pre-
dicted analytically in the previous section and shown in Fig.
4. Here, the low-frequency dynamics introduces a sweeping
of the fast dynamical states along a standard Ikeda-like bi-
furcation diagram with a period doubling route to chaos. The
sweeping is, however, definitely not externally imposed by
varying a bifurcation parameter, but it is self-generated by
the iDDE dynamics, with a scanning period related to the
slow time scale 6. The fast bursting oscillations are observed
with one slow period of the envelop. The experimental fast
bursting oscillations overlapping the upper slow envelope are
represented in Fig. 8, a magnification of Fig. 7(b). They first
consist of large amplitude oscillations (chaotic part of the
swept Ikeda-like bifurcation diagram) with an irregular inter-
nal structure exhibiting fast fluctuations of the order of the
characteristic time 7. As the envelope amplitude decreases,
the dynamics becomes more and more regular, and are al-
most periodic in a square wave fashion. The periodicity is
then twice the delay 7 as expected from our analysis. When
the envelope dies out, the amplitude goes to zero and the dc
level switches, in the same way as was analytically shown
for the fast transition layer of the bird limit-cycle initiating a
new bursting activity. This sequence of high and low fast
oscillations appear periodically. After careful numerical in-
vestigations (suppression of very long transients), we found
this slow-fast oscillatory regime from the numerical integra-
tion of the iDDE model. Such regimes have been called ear-
lier chaotic breathers in Ref. [16].

Similar behaviors have been obtained experimentally for
deviations of the feedback gain B of about 10%, and over a
continuous range of the bias voltage V. between 0-4.1 V,
which corresponds to an offset phase interval of —7/2<®
<0 (this range covers the segment of the nonlinear function
with a positive slope). Depending on the level of the feed-
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FIG. 9. Zoom into the nearly periodic dynamics shown in Fig.
7(d).

back gain B, a full or a partial Ikeda-like bifurcation diagram
is observed, from the steady state to chaotic oscillations (for
the higher B values of the 10% variation range), or from the
steady state to the first period doubling regimes (for the low-
est B values). The influence of the parameter @ controls the
asymmetry between the lower and the upper envelope of the
Ikeda-like bifurcation diagram, and it affects the pseudoduty
cycle of the two bursting events during a complete slow
period. These effects can be seen from the time series pre-
sented in panel Fig. 7(c) compared with the ones in panel (b),
or from Fig. 7(a) through the thickness of the upper and
lower horizontal red line in the left part of the bifurcation
diagram (V4. €[0,4.1]).

We next concentrate on the regime in Fig. 7(d) related to
positive values of ® [i.e., negative slope of f(x)]. This
®-parameter range corresponds to the 27, -periodic square-
wave oscillations in the previous section. With the slightly
higher feedback imposed in this section, they are suddenly
changing into rapid oscillations with a period much shorter
than 275,. Small noiselike amplitude variations are also
present. To gain insight into the behavior on the fast time
scales, a zoom is shown in Fig. 9. The figure exhibits a
constant envelope amplitude and the slow time scale 6 does
not appear. The fine structure is a nearly periodic and sym-
metric, with a period related to about 14 times the fast time
scale 7, and exactly 1/79 times 7. This surprising rational
correspondence of the characteristic frequency is most prob-
ably the signature of a harmonic resonance between the in-
verse of the delay 7 and the fast time scale 7. Similar re-
gimes were described in the literature for Ikeda DDE, also
called higher harmonic synchronization [21]. They are ob-
served here in a robust way with respect to small parameter
changes in 8 and ®. The range of ® for which this regime is
observed approximatively corresponds to a local nonlinear
function f(x) with negative slope, and concave curvature.

The third characteristic regime of the bifurcation diagram
in Fig. 7(a) is presented by the time series depicted in Fig.
7(e). This regime is probably one of the richest in terms of
diversity and relevant time scales. It is obtained for a nega-
tive slope range of the nonlinear function f(x), with either
positive [convex profile of f(x)] or negative (concave profile)
sign of the second derivative of f(x). It is, however, best
pronounced experimentally for convex curvature (close to a
minimum) since, with a concave curvature (close to a maxi-
mum), its observation requires more critical parameter tun-
ing. We analyze this feature as follows: Eq. (5) is indeed
invariant with respect to the symmetry x— (7—x), because
of the antisymmetry of the nonlinear function, and because
the feedback is not dc preserving. Thus (7—x) becomes
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FIG. 10. Zooms into three different dynamical events occurring
during the temporal evolution of the single envelope breathers dy-
namics of Fig. 7(e).

equivalent to (—x) on the left-hand side: this gives a reason
why we observe this regime (and also others for different
feedback levels) on both sides of the antisymmetry point of
f(x), i.e., the inflection point, where the second derivative
vanishes. However, symmetry is experimentally broken by
the noise level within the feedback loop, which is higher
close to a maximum of f(x) (higher shot noise in the photo-
diode). This observation seems to be reasonably correlated
with the greater experimental difficulties to reach the regime
when operating close to a maximum, since noise contributes
more significantly in lowering the deterministic impact on
the actually observed regime.

The detailed evolution of the fast structure along the slow
envelope of the regime in Fig. 7(e) is analyzed by using the
magnified time series in Fig. 10, and with the help of the
wavelet transform reported in Fig. 11. The global shape of
this regime qualitatively recalls the breathers dynamics
shown in Fig. 7(b) and reported in Ref. [16], but without the
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FIG. 11. (Color online) Time traces (upper) and wavelet analysis
(lower). (a), (c) For the experimental time trace in Fig. 7(e) and
(b),(d) for a time trace obtained numerically from the model in Eq.
(2). The normalized parameters considered for the simulation are
B=2.8 and ®=2.04, and the other parameters are listed in Table I.
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switching events between the two different upper and lower
envelopes. By contrast, this dynamical regime exhibits con-
secutive but similar envelop events, each starting from nearly
zero amplitude and mean level, followed by fast oscillations
of increasing amplitudes. This “mean” amplitude varies on a
slow time scale (of the order of ) until the amplitude slowly
decays before the next event starts. The structure and the
shape of the envelope of the rising and falling edges look
similar and almost symmetric. A zoom into the rising edge is
presented in Fig. 10(a) which gives insight into the dynamics
on the faster time scales. We find that the rising edge starts
from zero with a continuously growing amplitude squarelike
waveform, with a 27, period. As the dynamics evolves to-
wards higher amplitudes, the upper and lower plateaus of the
square waveform become more and more noisy. This sce-
nario resembles the period doubling cascade and inverse cas-
cade of standard scalar delay equations when the feedback
gain is used as a bifurcation parameter (see, e.g., Refs.
[12,18]). As already discussed for the dynamics in Figs. 7(b)
and 7(c), it is as if the slow integration time 6 induces a
sweeping of a fast Ikeda-like bifurcation diagram. However,
no parameter of the bandpass oscillator is varied in time, and
thus the slowly varying fast dynamics should be considered
as a full dynamical regime. We expect that under such fixed
parameter settings, the broadband bandpass dynamics expe-
riences slow time scale instabilities, which might be related
to a competition between the slow characteristic time 6 and
the transient characteristic time of the equivalent low pass
delay dynamics. The latter is indeed typically in the order of
several 10 or 100 times the delay and is comparable to 6.
After this starting event of the envelope until large ampli-
tude values of 4 (in the vertical arbitrary unit of the time
traces), the maximum amplitude of the fast oscillations ex-
periences a small but abrupt change at =52 us, from values
slightly above down to slightly below 4 a.u. This abrupt
change corresponds to the switching at faster time scales of
the previous noisy fluctuations plateaus, to nearly square
waves and large amplitude 27, oscillations as shown in Fig.
10(b). This square wave oscillation is maintained over sev-
eral tens of microseconds with a nearly constant upper pla-
teau level, and a very slowly increasing lower plateau level,
until £~78 us. Then, the oscillation changes again to fully
developed large amplitude broadband chaos. After this tran-
sition, the dynamics admits the complete available dynami-
cal bandwidth, from the low frequency cutoff related to 6, up
to the high-frequency cutoff related to 7. This is illustrated
by the 600 ns zoom at =78 us given in Fig. 10(c). The
transition to chaos is linked to an evolving decrease of the
average rf power of the oscillator. Accordingly, the amplitude
of the dynamics then continuously decreases to almost zero.
At the very small amplitude of the fast chaotic oscillations,
the envelope recovers some 7, periodic structure before
completely vanishing down to zero, similarly to the oscilla-
tions shown in Fig. 8. This “off state” lasts for a few micro-
seconds (of the order of # again), until a new envelope starts.
Analytical investigations of this complex regime is chal-
lenging. However, numerical (rather time consuming) inves-
tigations allowed us to clearly link this experimental obser-
vation to the iDDE model established theoretically for our
setup. The agreement between experiment and numerical
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simulations is particularly relevant for further investigations
of the time traces through a more detailed time-frequency
wavelet analysis, as depicted in Figs. 11(b) and 11(d). This
complementary analysis reveals the diversity of the fast os-
cillations observed along the whole duration of the slow en-
velope, and the chronology of their occurrence. The wavelet
analysis involves a vertical logarithmic frequency scaling
which provides visual insight into the spectral evolution of
the dynamics over the full duration of the slow envelope. We
refer to the Appendix for a brief description of the continu-
ous wavelet transform.

The numerical simulations of this regime is very demand-
ing because the dynamics admits all characteristic time
scales, spanning more than six orders of magnitude. Numeri-
cal simulations with the actual experimental time parameter
values were only possible when particular care in the calcu-
lation procedure was taken (see the Appendix), because of
memory overflow. The numerical results qualitatively con-
firm the validity of the iDDE model. In Fig. 11 we compare
experimental [(a) and (c)] and numerical [(b) and (d)] results:
in the first two third of the slow envelope, we observe nearly
periodic square waves with intermediate frequencies related
to the inverse of twice the delay (1/7p,), whereas the last
third of the slow envelope reveals a broadband chaoticlike
spectrum, spreading up to high frequencies of the order of
1/7. Only the starting edge of the envelope differs between
numerics and experiments. We note a continuously increase
of the envelope amplitude in the experiment, whereas the
numerical solution is more abruptly starting with large am-
plitude oscillations. Abrupt large amplitude oscillations are
observed experimentally in Figs. 7(b) and 7(c), Fig. 8, and
have been reported for breathers in Ref. [16]. However, our
simulations were unable to reproduce the smooth start of the
envelope amplitude [as reported in Figs. 7(e) and 11(a)].

B. Unstable steady states

Further increasing the feedback gain fully destabilizes the
dynamics for any value of the offset phase ®. The stable
fixed points previously located at the extrema of the nonlin-
ear function at around 4.7 and 8.5V, still present for I,
=45 mA [see Fig. 7(a)], disappear as it can be seen in the
bifurcation diagram for I; =50 mA shown in Fig. 12(a). For
this slightly higher feedback gain, we do not find important
qualitative changes by contrast to what we have observed for
a small increase of S in the regimes of lower feedback gains.

Nevertheless, one additional dynamical phenomena arises
which is illustrated by the time series in Fig. 12(b) and its
zoom shown in panel (c). The dynamics in this regime re-
sembles the one already described in Figs. 7(c) and 9, be-
cause it exhibits a similar period for the fast dynamics. How-
ever, the higher gain condition allows for a destabilization of
the constant amplitude of the oscillation observed previously.
Here a second amplitude level arises and leads to a slower
time scale connected with a periodic square wave amplitude
modulation (AM) of the fast oscillations. The AM time scale
is of the order of the delay 75, while the slow characteristic
time @ does not seem to play any role. Similar behaviors
have been reported in the literature on delay dynamics: one
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FIG. 12. (Color online) (a) Probability distribution [color scal-
ing, same as in Fig. 2(a)] of the intensity for /;=50 mA (8=2.8).
(b) Possible isomeric state of the intensity time series for Vi,
=5.00 V. (c) Zoom into (a).

case focuses on the low pass feedback scheme (Ikeda or
Mackey-Glass) [19], and another case has been described
very recently [20] for the bandpass scheme, but with a nar-
row band character (a setup intended for generation of high
spectral purity microwave oscillations).

In the first case, it is well known that successive higher-
harmonic bifurcations can occur for sufficiently large delay
[21], and lead to multistable periodic solutions known as
“isomers” [19]. The time series presented in Fig. 12(b) re-
veals both properties, i.e., a very high harmonic (79) of the
fundamental P2 oscillation and an additional AM pattern re-
peating each 27,. Due to the long delay in our setup, we
have observed that the AM pattern can vary substantially
even for small changes of the key parameters, giving experi-
mental indication for multistability.

In the second case [20], the delay dynamics involves a
very narrow bandpass filter in addition to a very long delay
line (several kilometers). It was then demonstrated that the
desired oscillation [22,23], can exhibit a secondary bifurca-
tion of its amplitude through an increase of the feedback
gain. It was shown that the instability mechanism observed
in that bandpass scheme, was of the same kind than that for
the low pass case, but from the envelope dynamics rather
from the microwave oscillation.

C. Influence of the phase for the high feedback

The possible regimes for high feedback gain are shown in
the bifurcation diagram of Fig. 13. The two distinct re-
sponses depending on ® have disappeared for a fully devel-
oped chaotic dynamics. These regimes are of particular in-
terest for chaos communications [6,7]. In this regime the
dynamics typically feature a flat and broadband rf spectrum
with an all-time scale chaotic time trace (almost noiselike),

PHYSICAL REVIEW E 79, 026208 (2009)

Power [arb. units]

&

=

=]

g

S,

g 0 I T T T T T T T 1

§ 0 5 10 15 20 25 30 35 40

Time [ns]

E‘ (C) T T T T T T T T T

m-50

o,

5-60

% noise floor

&-70 I L T ¥ T ¥ T L T ¥ T ¥ T ]
0 2 4 6 8 10 12

Frequency [GHz]

FIG. 13. (Color online) Dynamics for high feedback gain. (a)
Probability distribution of the intensity for /; =70 mA (B8=4.3). (b)
Intensity time series for V4,=6.50 V. (¢) Corresponding rf spectra.

continuously spanning a very broad temporal scale from the
slow (6), via the intermediate (7)), to the fast (7) character-
istic times. The large amplitude waveform is a signature of a
strong nonlinear regime. Practically this means that the am-
plitude at the input of the nonlinear function f(x) is able to
scan much more than one extremum, and even up to three
according to the voltage swing capability of our rf driver,
compared to the V1. The strong nonlinear delay feedback is
also known to allow for a nearly Gaussian PDF [24,25] in
the standard scalar differential delay dynamics. Performing a
vertical cut in Fig. 13 for almost any value of V., we find a
vertical color distribution of the PDF corresponding to a bell-
like shape which can either be perfectly symmetric, or
slightly tilted towards higher or lower power levels depend-
ing on ®.

VI. COMPLEMENTARY EXPERIMENTS

A. rf spectral overview over the dynamics

Figure 14 reveals the spectral signature of the previously
described bifurcation diagrams of Figs. 2(a), 7(a), 12(a), and
13(a). It highlights the frequency range typically associated
to the inverse of the delay time 7,=45 ns, so that vp,
=1/(27p)=11 MHz. For the low gain condition in Fig.
14(a), the square wavelike oscillation is confirmed by the
presence of the frequency vp, and its odd harmonics. This
holds for the parameter ® region which corresponds to the
strongest negative slope at around V4. =6.25 V (the decreas-
ing linear part of the cos” nonlinearity). Some spurious even
harmonic are also present in the strong positive slope region
close to V4.=2.25 V. These weakly pronounced oscillations
can occur close to the extrema of the slow envelope oscilla-
tions on the @ time scale [see Fig. 2(b)].

For the low to moderate gain conditions presented in Fig.
14(b), the double round trip frequency vp, appears for nearly
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FIG. 14. (Color online) Low-frequency part of the rf spectra of
the dynamics in dependence on the MZ bias. The conditions are (a)
1;=30 mA, (b) I;=45 mA, (c) I;=50 mA, and (d) /,=70 mA and
correspond to a progressively larger gain.

all the @ values with more or less pronounced weight. The
only exceptions are the zero slope regimes of the nonlinear-
ity. It is particularly interesting that the square wave oscilla-
tion is present within the fine structure of all the slowly
varying envelope time series, found for positive slope of the
nonlinearity. Furthermore it can be seen in panel (b) that for
the higher harmonic oscillations present at V4.=6.5 V [Figs.
7(d) and 9], vp, and its harmonics do also exist, but with a
relatively small amplitude. This is due to the fact that most of
the energy is located in the GHz frequency range which is
not shown here.

As the feedback gain is further increased, the vp, signa-
ture is more and more diffused, as can be seen in panel (c).
This is a consequence of the lower relative weight of the
square wave within the breathers envelope. The fine structure
of the envelope is mainly chaotic because of the high gain
that is available for nearly all the phase space region which is
continuously scanned on the slow time scale . Only if the
envelope dynamics is in vicinity of the zero slope region of
the nonlinearity, the local gain is sufficiently small to allow
for the square wave oscillations.

Finally, for high feedback gain [panel (d)], the dynamics
is strongly nonlinear and chaotic, covering more than one
extrema of the nonlinear function with large and fast ampli-
tude fluctuations so that the vp, signature broadens so much
that it disappears. It can still be guessed for ® values corre-
sponding to low slopes of f(x), but it is nearly absent in the
maximum slope region (Vg.=2.5 or 6.5 V, i.e., = * 7/4).

In addition to the high gain chaotic dynamics, we have
examined extreme parameter conditions and found two un-
expected oscillatory regimes. They are described in detail in
the next subsection.
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FIG. 15. (Color online) High-frequency range spectral (a) and
PDF temporal (b) bifurcation diagram for a high feedback gain of
1,=75 mA.

B. High-frequency oscillations

The broad frequency range rf-spectral bifurcation diagram
in Fig. 15(a) was obtained for a high gain condition (/
=75 mA, or B=4.7). The expected behavior is a fully devel-
oped chaotic regime for the complete available range of the
phase parameter space, as reported in Fig. 13. But by con-
trast to Fig. 13 we now find that a periodic window appears
for a ® range close to the maximum of f(x). As the oscilla-
tion frequencies occurs at around 13—14 GHz, with the os-
cilloscope it is not possible to identify dynamics in the time
domain due to the limited bandwidth. This can be seen in the
corresponding PDF bifurcation diagram presented in Fig.
15(b). In this representation the high-frequency oscillation
appears “virtually” as a stable steady state which corresponds
to the mean value of a strictly positive fast oscillation.

According to the model equation (2), the fast oscillation
frequency should be related to the high cutoff frequency of
the feedback filtering i.e., the inverse of the fast characteris-
tic time 7. To investigate this assumption experimentally, we
deliberately modify this high cutoff, setting it to several dif-
ferent values by implementing different standard telecom
Bessel-Thomson low-pass filters into the electronic feedback
loop. By this we find high-frequency oscillations which turn
out to be linearly related to the particular cutoff frequency of
the introduced low-pass filters. This interesting result is
shown in Fig. 16. We also find that the parameters (3, ®) for
which we find these oscillations, also depend on the imposed
cutoff frequency. Decreasing the cutoff frequency of the low-
pass filter, the oscillations are observed for lower B, while
the phase value continuously increases towards ®=m/4.

Solving Eq. (2) numerically with the experimental values
of B and @, we did not find the observed fast oscillations. In
order to investigate this inconsistency between experiment
and modeling, we modified the model taking into account the
higher order of the actual differential process. Since the ob-
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FIG. 16. High-frequency oscillations as a function of the high-
frequency cutoff of the bandpass filter. (a) vuo=2.7 GHz, (b)
Veuoft = 12 GHz. The gray lines in the inset depict the profiles of the
corresponding filters.

served properties of the oscillations are obviously deter-
mined by the high cutoff properties, we numerically investi-
gated the influence of filtering with a second order high
cutoff, while we neglected the low cutoff. This can be done,
since the high-frequency oscillations do not give rise to the
O-related low-frequency components in this particular case.
With the second order low-pass filter (a filter of Butterworth
kind was chosen), we were able to numerically recover the
expected fast oscillations with a frequency indeed related to
the high cutoff of the filter. The new model equation is given
by

d’x

)+ \E%(r) +x(1) = B cosHx(t - mp) + P].

o Jadiad
dt

(51)

The higher order of the high-frequency stop band thus seems
to play a major role in the mechanism for this particular rf
oscillation. From the numerics, we find that modeling of a
second order cutoff can generate these oscillations and the
experimentally observed parameter dependence. However,
we also find that the tolerable parameter range is smaller than
in the experiment which indicates that even higher order fil-
tering might further stabilize this phenomena. The calibrated
filters used in the experiment were filters with fifth-order
cutoff. Without limiting the feedback bandwidth with those
filters (thus using the widest available bandwidth limited by
the photodiode, the driver, and the MZ only), the measured
cutoff was even of eighth order. Our results suggest that
higher order high-pass filtering influences the dynamics
when the characteristic time of the slow low-frequency cut-
off is of importance. Whether this is indeed the origin of the
observed complex single breather envelope dynamics, as dis-
cussed in Fig. 10, needs to be further investigated.

C. Multipulse dynamics

Finally, we report on another very different behavior ob-
served in our system, which might be related to multipulse
excitability. This phenomenon has been theoretically pre-
dicted for an optically injected semiconductor laser [26]. Re-
cently multipulse excitability has also been observed experi-
mentally [27,28]. In our setup, a particular pulse behavior
with similar properties is observed for moderate feedback,
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FIG. 17. Multipulse dynamics for 7p=1.1 us.

and ® around the maximum of the nonlinear function f(x).
However, a significant parameter change is proposed with
respect to the previously reported dynamical regimes. Spe-
cifically, the delay 7p is set to the larger value of 1.1 us.

For these conditions we can find pulsating dynamics. An
example is presented in Fig. 17 in which panel (a) shows a
4 us long segment of the amplitude time series measured
with an ac detector, while a zoom into the time series is
depicted in (b). The time series show that the dynamics is
repetitive on different time scales. Specifically, we find se-
quences of regularly spaced pulse package with a repetition
rate of the order of 1 GHz. The number of pulses within each
package can vary considerably, as it can be seen in (b). How-
ever, the global pattern of pulse package sequences is repeti-
tive (almost periodic) with a period of twice the delay. Inter-
estingly, the mean number of pulse packages, as well as the
number of pulses in each package strongly depends on ® and
B. We find that parameter variations of the order of a few
percent also can lead to irregularly distributed pulse se-
quences for which we cannot identify a global 2 7,-repetitive
pattern. Increasing further B or varying @, the dynamics
typically evolve into a chaotic regime, in which the dynam-
ics become broadband, comprising the full dynamical band-
width of the system.

The mechanism leading to this kind of self-pulsating be-
havior in our delay system is still being investigated. One
difficulty is the need for long simulations due to the large
delay time resulting in very long transients. A second diffi-
culty is the possibility that higher order filtering effects as in
previously analyzed high gain case cannot be neglected. This
has motivated new asymptotic studies which are currently in
progress. Nevertheless, work is in progress to support under-
standing of this, as well as the other unusual behaviors that
have been observed in this broadband band-limited nonlinear
delayed feedback oscillator, with analytical derivations.

VII. DISCUSSION AND CONCLUSION

We have investigated the dynamical properties of an op-
tical oscillator subject to a delayed bandpass filtering feed-
back. Its dynamical response is described by an integro-DDE
that differs from Ikeda family of first-order DDEs, only by
the presence of an integral term. Depending on the feedback
phase, two different routes to limit-cycle oscillations have
been explored both experimentally and analytically. Our re-
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sults are interesting on three different levels. First, the pres-
ence of different time scales in the problem does not imme-
diately lead to a multiperiodic or chaotic regimes. For
relatively low feedback rate, a fast square-wave and a low-
frequency time-periodic regime have been observed. Practi-
cally, the classical square-wave output caused by a large de-
lay is no more the only possible waveform. Second, new
bifurcation mechanisms have been identified that are respon-
sible for the progressive modifications of the basic time-
periodic solution. Third, the mathematical limit from the
iDDE to the DDE as the high-pass filter time response goes
to infinity (or its frequency cutoff goes to zero) is highly
singular and each case needs to be carefully explored.

For increased feedback gains, these typical iDDE periodic
oscillations have been found to bifurcate through different
mechanisms, depending essentially on ®. The integral time
scale slow periodic regime evolves into complex periodic
and chaotic breathers. They are consisting of fast bursting
oscillations with the differential time scale 7and 6, as well as
the delay time scale 7p. These breathers show slowly varying
amplitudes, superimposed to a slow periodic envelope of the
order of the integral time scale.

The square wave periodic oscillation ruled by the delay,
bifurcates into faster nearly square waveforms, which have
shown a higher harmonic resonance with the very fast differ-
ential time scale. For high feedback gains, the two distinct
dynamical regimes finally merge all into broadband chaotic
oscillations, for any value of the parameter ®. These oscil-
lations are covering the whole bandwidth of the oscillator,
revealing complex nonlinear mixing of the three different
time scales that were separately dominating at low feedback
gains: the slow integral time scale, the delay, and the fast
differential time scale.

Additional particular behaviors have been also reported
that correspond to extreme physical parameter settings: high-
frequency locking at strong feedback gains, or pulsating be-
havior with complex pulse patterns for very large delays. The
described dynamical behaviors are far from being exhaustive
considering the huge range of possible parameter settings for
our setup. In addition to further explore the possible dynami-
cal outputs of our system, theoretical, numerical, and analyti-
cal work is required to better understand the different mecha-
nisms. Many of the new dynamical features, such as, e.g., the
occurrence of very low-frequency oscillation related to the
low-frequency cutoff time and the breathers dynamics, are
already captured by the model we have derived in Eq. (2).
This demonstrates that an integrodifferential process (and
also higher-order filtering) can lead to different dynamical
phenomena than the ones known for the commonly consid-
ered standard differential processes. Such effects may also
arise in other information transmission systems in modern
communication technologies, or in living systems in the
fields of neurobiology. Furthermore, integrodifferential pro-
cesses are widely spread in many control engineering appli-
cations using the proportional integral derivative (PID) con-
trol system described by the same linear terms in Eq. (2).
Delay effects are being intensively investigated in control
theory [29], since they are concerned. However, they usually
do not consider strong or moderate nonlinearties, which
might induce important instability phenomena as the numer-
ous ones described in this article.
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APPENDIX

1. Numerical integration scheme

Numerical simulations reported in Figs. 2(b) and 11(c)
were obtained after integrating numerically the normalized
two variable differential delay equation (5) [obtained from
the integrodifferential model (2)], with a standard fourth-
order Runge-Kutta algorithm adapted for delay equations.
With such a delay dynamics, the integration procedure re-
quires a permanent memory of the last computed samples
over a time interval corresponding to the delay, thus consti-
tuting a complete initial condition for the dynamics, or dif-
ferently speaking, a full state of the infinite dimensional
phase space. Then, the most important numerical problems
encountered with this kind of huge multiple time delay dy-
namical system, are the long computation time required to
construct a transient free 7, initial condition [typically a few
thousands of 7p-long time intervals as for the solution in Fig.
11(b)] and a very long waveform that is able to cover both
the very fast fluctuations of the order of 7, as well as the very
slow envelope related to 6.

The first issue concerns only the computation time, with-
out any technical problem. The second issue is, however,
strongly concerned by memory overflows, if one would like
to keep all the samples for the whole duration of a very slow
envelope as in Fig. 11(b). This has been experienced as not
possible with “standard” up-to-date PCs, even with 2 Gb
RAM memory. The represented waveform in Fig. 11(b) was
calculated using small gathered time slots, each of which
was individually obtained with the full integration time step
resolution, but then filtered and undersampled to keep a rea-
sonable memory for the representation of the full envelope.

Quantitative informations about the calculation of the
breather waveform in Fig. 11(b) are as follows: integration
time normalized to the fast characteristic time 7 was h
=0.02, the number of samples required to consider the actual
experimental delay 7, reported in Table I is then 3.43 X 10°,
which represents a dynamics memory, or a dimension of the
numerical integration, of around 170k samples, and the ratio
e=7/6 indicating the full time scale spreading of nearly 6
orders of magnitude was 2.45X 1075

The long breather envelope would thus require a full res-
olution representation of around 0.2G samples with a double
real amplitude representation: this is far beyond the limit for
memory overflow with the available computation means. To
manage this memory overflow problem, we calculated 10
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times a 50 7p-long time series, each of which was filtered
and undersampled with a factor 400. After combining these
10 filtered time series, the resulting 500 7p-long waveform
could thus cover the whole breather envelope duration, as
represented in Fig. 11(b). The choice of this 400 undersam-
pling factor was also motivated by the actual experimental
number of samples, so that the numerically obtained time
series had also the same number of samples. Both numerical
and experimental time series were then processed in a easily
comparable way through a wavelet transform.

2. The wavelet analysis

To look for characteristic frequencies within the temporal
envelop, we used the continuous wavelet transforms [30] in
Fig. 11, in order to unfold time series into time and fre-
quency. The wavelet transform W.(a,z) of a signal x(z) is
defined as
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400

Wa,r) = v, (t— 1)x(7)dT, (A1)

—o0

where the function W () originates from the Morlet mother
wavelet W(r), and the scaling parameter a:
V(1) = L_\I’( I ) _ Lr R o) (A2)

va \a Va

The scale parameter a allows to expand or contract the wave-
let before convoluting it with the signal. The wavelet acts as
a filter, by selecting the components of x(¢) that correspond
to the frequencies centered at f=w,/a [o, is typically set to
5.5, thus leading to the vertical scale in Figs. 11(c) and
11(d)]. The coefficient W (a,t) assumes a high value when
there is a significant contribution of the signal at the fre-
quency f and at the time 7. The advantage with respect to the
usual Fourier transform lies in a local spectral analysis in
time instead of a global one.
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