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A network analysis is used to investigate the low connections of natural river channels. At the basin scale,
the river networks are analyzed according to the Horton-Strahler hierarchy. We propose a quantitative criterion
for the average junction degree as a function of a fixed hierarchical order of the network and independent of the
usual scaling laws. The numerical results of this analysis are compared with exact results of the Peano river
network, showing differences of the order of 10−3. This aspect is especially relevant for the characterization of
transport and diffusion processes at the basin scale.

DOI: 10.1103/PhysRevE.79.026108 PACS number�s�: 05.65.�b, 89.75.Hc, 92.40.Qk, 02.10.Ox

I. INTRODUCTION

Recently, networks have been studied extensively in many
sciences; see the reviews in �1,2� and references therein. In
the framework of fluvial geomorphology, river channel net-
works can be considered as systems with a low degree of
connections or junctions. In particular, for river channel sys-
tems, the role of these connections can also be analyzed us-
ing the criterion of the classical Horton-Strahler hierarchy
�3,4�. Besides, in the last decade, a parallel growth of many
studies conducted on the mechanisms that control the origin
and the dynamics of fluvial structures allowed some authors,
also in relation with the above-mentioned hierarchy, to relate
some fluvial morphometric magnitudes through scaling laws
�5�. In these studies a fundamental role is played by the
Peano river basin and the associated network �5–11�. This
deterministic network, which is a typical fractal plane-filling
structure, can be easily constructed through an iterative pro-
cedure, in which all steps are strictly related to the Horton-
Strahler criterion, and interior and exterior nodes are calcu-
lated directly via geometrical series expansions. Recently the
Peano network was also adopted to predict the role of hydro-
logic controls on invasion processes �of species, populations,
propagules, or infective agents, depending on the specifics of
reaction and transport� occurring in river basins �12,13�. In
this context rivers are considered to be ecological corridors
in which the reaction and transport parts can be represented
by nodes and links, respectively �13�.

In this paper, the average junction degree of the network
theory �1,2� is used to provide a descriptor useful for the
comparison between fluvial Hortonian structures and the
Peano river network. The average junction degree of a natu-
ral river network depends on the number of source nodes, but
not on the order. In contrast, the average junction degree of
the Peano river network depends on both the order and the
number of source nodes in force of the regularity of the
structure. Therefore, in order to compare substructures of the

same order, this descriptor is not useful. To overcome this
difficulty we introduce the mean average junction degree as
the mean value of the average junction degrees calculated on
all Hortonian substructures of the same order �. This de-
scriptor depends on both the order and the number of source
nodes. Using this descriptor, we numerically compare the
natural river network provided by the Corace river �Calabria,
Italy� with the Peano river network; in line with more recent
theories �12,13�, we find that the results are in very good
agreement, with an error of the order of 10−3.

II. HORTON-STRAHLER HIERARCHIES
AND NETWORK DESCRIPTORS

In a map that contains a well-developed river network, we
can identify distinct fluvial segments, properly called
streams. The streams are ordered according to a hierarchical
magnitude scale by assigning them positive integer numbers
�3,4�, specified as follows. First of all, going downstream on
the river, we identify the source streams, which are also
called first-order streams. We assign to each stream of this
kind the number 1. The confluence of two first-order streams
originates a new stream, which is called a second-order
stream. We assign them the number 2. These new streams, as
well as all streams of equal order or greater, originate and
end at two consecutive confluences, except for the terminal
stream, which closes the whole basin. In general, the order �
of a stream which originates from the junction of two
streams of order i and j, respectively, is given by

� = max�i, j� + �ij , �1�

where � is the Kronecker delta. To each stream of order �,
we assign the number �. A sequence of two or more streams
of equal order is called a channel of the same order. A sub-
structure of order � is any maximal subset of connected
streams which does not contain any stream of order greater
than �.

From the mathematical point of view, a river network is a
graph that contains no cycles—i.e., a set of connected arcs
whose basic elements are the nodes �which enclose the junc-
tions� and the edges �the streams�. We distinguish between
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source nodes �the river heads�, internal nodes �the junctions�,
and the radix or outlet. In general, the number of tributary
streams which connect to a single node is equal to 2 and, in
this case, we are in the presence of a directed acyclic digraph
�DAG�. In some cases, however, fractures or junction faults
can increase the number of tributary streams to a same junc-
tion. The number nn of nodes in a river network is related to
the number ns of source nodes and to the number nj of junc-
tion nodes by the equation

nn = ns + nj + 1. �2�

The number of streams, ne, as well as the numbers nn and nj
can be easily obtained from the number of source nodes as
follows:

nj = ns − 1, �3�

nn = 2ns, �4�

ne = nn − 1 = 2ns − 1. �5�

When the number of tributary streams that join into a
single node is greater than 2, as in random graph theory �14�
or in modern network theory, more descriptors are needed. A
graph which has k nodes, k−1 arcs, and no cycles is a tree of
order k. In the link-based random model by Shreve �15�, two
river networks are called topologically identical if their sche-
matic map projections can be continuously deformed and
rotated in the plane of projection so as to become congruent.
In the analysis of river networks by means of graph theory,
topologically identical networks are identified.

A local descriptor is the junction degree of a node, de-
noted by kn, that is the number of its inflow and outflow
tributaries. In Hortonian networks, this number is equal to 1
for the source and outlet nodes and it is on average 3 for the
interior nodes �Fig. 1�. The total junction degree of a net-
work, denoted by K, is the number of the junction degrees
over all n nodes:

K = �
n

kn. �6�

For a tree of order k, the following relation holds:

K = 2�k − 1� . �7�

The average junction degree is, by definition �1�,

�kn	 =
K
k

, �8�

and using Eq. �7� for a tree of order k, we find �1�

�kn	 = 2 − 2/k . �9�

In the case of large trees, which are characterized by a very
high number of nodes, �kn	 approaches 2. Moreover, reading
at the right-hand side of Eq. �7� the number of arcs doubled,
the average degree can be easily related, through Eqs. �3�–�5�
and �8�, to the number of junctions, source nodes, or streams,
respectively.

A. Average junction degree for the Peano river network

The relations mentioned in the previous paragraph can
also be determined for the Peano river network �see Fig. 2�.
This deterministic network, as mentioned above, is construed
through an iterative procedure: for �=1, the trivial prefractal
case is represented by a single-segment stream with only two
nodes; for �=2, two segments are crossed and four streams
are obtained with four exterior and one interior nodes. At the
arbitrary stage of generation, �, we have a total number of
4�−1 links with a number of exterior nodes �the source nodes
and outlet�, ne���, given by the relation

FIG. 1. An example of a Horton-Strahler river network tree. In
the figure, the junction degrees �parentheses�, the hierarchical order
� �brackets�, and the outlet order � �maximum� are specified.

(1)

(1)

w=1

(1)

(1)(1)

(1)

(4)

w=2

w=4w=3

FIG. 2. Construction of the Peano river network for a fourth
Horton-Strahler hierarchical order. In the figure is also shown the
number of connections for interior and exterior nodes at the first-
and second-order steps, respectively.
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ne��� =
8

3
�4�−2 − 1� + 4 �10�

and with a number of interior nodes, ni���, equal to

ni��� =
1

3
�4�−1 − 1� . �11�

Relations �10� and �11� are obtained directly through geo-
metric series and therefore in consideration of Eq. �5� the
total number of nodes �interior plus exterior� is equal to
4�−1+1. According to �8�, the average junction degree of the
Peano river network is given by

�kn���	P =
1 � ne��� + 4 � ni���

4�−1 + 1
=

22�+1

4 + 4� . �12�

In Eq. �12� the integer factors 1 and 4 are the junction de-
grees of the external and interior nodes, respectively. In
Table I are shown �for example�, for the Peano river network
of sixth order, the values of �kn���	P obtained through the
above equation. By considering the integer function �kn���	P
as a function of one real �complex� variable, we find that it
satisfies the initial-value problem for the Bernoulli differen-
tial equation of first order:

d�kn���	P

d�
− ��kn���	P = − ���kn���	P

2 ,

�kn�1�	P = 1, �13�

in correspondence with the values of the parameters

� = ln�4�, � =
1

2
. �14�

The graph of the integer function �kn���	P for a sixth-order
Peano river network is shown in Fig. 3.

In general—that is, in the case of a generic river
network—the index �kn	 of a specific substructure of order �
depends only on the number of source nodes of the substruc-

ture and enough from the order, unless for a minimum value

�2�−1 + 1� � 1 + �2�−1 − 1� � 3

2� =
2 � 2�−1 − 1

2�−1 ,

which corresponds to the minimum number of source nodes,
2�−1, that realizes a substructure of order �. On the contrary
the regularity of the iterative scheme which generates the
Peano river network �see Fig. 2� links the index �kn	 to the
order of the substructure as well as to the number of its
source nodes. In this case, in fact, each substructure of order
� has exactly a fixed number of source nodes which can be
calculated by the relation �10�.

B. Average junction degree for the Horton-Strahler hierarchy

In order to numerically compare a generic river network
with the Peano river network in relation to the totality of
their substructures of a fixed order, we introduce a descriptor.
This descriptor is neither a local descriptor nor a global de-
scriptor; in fact, it is a partial descriptor and it is defined as
follows.

For a generic river network, we denote by n�� , i� the
number of all substructures of order � with i source nodes.
We denote by n���= �·�� the vector of occurrences to the
order � of a partitioned river network according to the
Horton-Strahler hierarchy:

n��� = �n��,2�−1�,n��,2�−1 + 1�, . . . ,n��,2�−1 + L − 1���,

n��,2�−1 + L − 1� � 0

and

n��, j� = 0

for any

j � 2�−1 + L . �15�

In the definition of n���, the values n�� , i�, 1	 i
2�−1, as
well as the values n�� , j�, j�2�−1+L, do not appear since
they are all vanishing and not meaningful. L is the length of
the vector n���—i.e., the number of its components.

The average junction degree of a substructure of order �
with i source nodes is

�kn��,i�	 =
2i − 1

i
. �16�

We introduce the average junction degree of the river net-
work to the order �=1, . . . ,� through the equation

TABLE II. Number Ñ� of substructures of the same order �
extracted from the Corace river network according to the Horton-
Strahler hierarchy.

Order � 1 2 3 4 5 6

Number Ñ�
3277 803 178 39 7 1

TABLE I. Numerical values of �k���	P for the Peano river net-
work of sixth order.

Order � 1 2 3 4 5 6

�k���	P 1 1.6 1.88235 1.96923 1.99222 1.99805

�

�

�
� � �

1 2 3 4 5 6
0.0

0.5

1.0

1.5
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Ω

�k
n
�Ω
��

FIG. 3. �kn���	 versus � for the Peano river network.
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�kn���	 ª

�
i=2�−1

2�−1+L−1

n��,i�
2i − 1

i

�
i=2�−1

2�−1+L−1

n��,i�

. �17�

We note that �kn���	= �kn	 due to the requirement of maxi-
mality in the definition of substructures; in general, for each
�=1, . . . ,�, �kn���	 is a rational number which satisfies the
following properties:

�a� 2�2�−1−1
2�−1 	 �kn���	
2,

�b� supn����kn���	=2.
In statement �b� we assume that the vector of occurrences,

n���, varies in the totality of the Hortonian structures. In
order to verify property �a�, we note that, for a network
whose vector of occurrences to the order � is �1��, it yields

�kn���	 =
2 � 2�−1 − 1

2�−1 .

On the other hand, if the vector of occurrences to order � is
�0, . . . ,0 ,1�� of length L, then

�kn���	 =
2 � 2�−1 + 2L − 3

2�−1 + L − 1
�

2 � 2�−1 − 1

2�−1 .

Now, let us suppose that the vector of occurrences to the
order � is the generic �n�� ,2�−1� ,n�� ,2�−1

+1� , . . . ,n�� ,2�−1+L−1���. In this case from the definition
of �kn���	 we have

�kn���	 � �
i=2�−1

2�−1+L−1



n��,i�

�
i=2�−1

2�−1+L−1

n��,i��
2 � 2�−1 − 1

2�−1

=
2 � 2�−1 − 1

2�−1 �18�

and

�kn���	 	 �
i=2�−1

2�−1+L−1



n��,i�

�
i=2�−1

2�−1+L−1

n��,i��
2 � 2�−1 + 2L − 3

2�−1 + L − 1

=
2 � 2�−1 + 2L − 3

2�−1 + L − 1

 2. �19�

That is, statement �a� holds. Statement �b� follows from �19�
and from the fact that if the vector of occurrences to order �
is �0, . . . ,0 ,1�� of length L, we find

lim
L→�

�kn���	 = lim
L→�

2 � 2�−1 + 2L − 3

2�−1 + L − 1
= 2.

III. APPLICATION TO THE CORACE RIVER NETWORK:
ANALYSIS OF THE RESULTS

In the case of a natural river network of order � and for
each order �	�, the value of �kn���	 can be compared with
the value �kn���	P given by Eq. �12� which is the average
junction degree to the order � for a Peano river network of
order �.

By means of the new descriptor, we have compared the
Corace river network with the Peano river network. More
precisely, we have digitalized on a 1:25 000 scale the Corace

0 5 10 15 20 25

0

100

200

300

400

500

i

n�
2,

i�

FIG. 4. Occurrences n�2, i� for the Corace river network.

FIG. 5. Hortonian substructures of the Corace river network for
the order �=2.
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river network maps produced by the Italian Military Geo-
graphic Institute �Istituto Geografico Militare �IGM��
through the aerial photo restitution technique. In these maps,
which are in fact two-dimensional projections of the real
three-dimensional structure of the basin, the river network is
represented with the blue lines �drainage channel networks�.
The blue lines have been digitalized with an average spatial
resolution corresponding to about 5 m at the real scale. After
this preliminary operation the river network was partition-
ated through the Horton-Strahler hierarchy criterion. By this
procedure we found that, for the Corace river network, �

=6; afterward, we computed the numbers Ñ� of all substruc-
tures of order �=1, . . . ,� as shown in Table II and the vec-
tors of occurrences, nC���, to the orders �=1, . . . ,� as
shown in Fig. 4 for the special case of �=2. In Fig. 5 are
represented, as an example, the 803 substructures at second
order with the corresponding subareas of drainage. The com-
putation of the average junction degrees �kn���	C for the Co-
race river network has been carried out for any set of sub-
structures of order �=1, . . . ,6 through Eq. �17�. The
numerical results are shown in Table III, where the values of
�kn���	C are presented with their respective errors and with
the relative differences � from the corresponding values
�kn���	P for the Peano river network. The errors in �kn���	C
are computed by means a Poissonian distribution of the
counting n�� , i�, with a corresponding error �n�� , i�. Such
errors are then propagated through standard methods. From
the analysis of the results presented in Table III, we note that
the order of magnitude of the relative differences is 10−3. The
values of �kn���	C are then close to the exact values of
�kn���	P. In Fig. 6 these values are graphically compared for
all orders �.

The validity of relation �17� can be further tested. This
formula allows for the computation of the average junction
degree to a given order � by using the information provided
only through the source nodes of the substructures of that

order. On the other hand, for any given order � and for any
given vector of non-negative integers n= �n1 ,n2 , . . . ,nL�,
there exists a network with n1 substructures of order � each
with 2�−1 source nodes �the minimum number�, n2 substruc-
tures of order � each with 2�−1+1 source nodes, and so on;
by applying formula �17� to the vector n, the number �kn���	
for that network can be computed. In the framework of ran-
dom graph theory �14� and in consideration of the Shreve
theory �15�, the vector n can be obtained in a random way
through the relation n=round(M � random�L�), where M is a
positive real number which represents the maximum magni-
tude of the component data of n and L is the number of
components of n. In Table IV the relative differences � be-
tween �kn���	 for the vector n and �kn���	P are shown, in
correspondence with the orders �=2, . . . ,�−1 and the
specified values of M and L. The values of M and L have
been chosen as much as possible to be in agreement with the
values provided by the partition of the Corace river network
given in Table II according to the following criteria: for a
given order �=2, . . . ,�−1, L is the number of components
of the vector of occurrences, nC���; M1 is the maximum of
the components of nC���; and M2 is chosen to minimize the
differences between the averages of the components of the
random vector n and the vector nC���. The analysis of the
results presented in Table IV shows a greater difference with
the Peano network for lower values of � and, for higher
values of �, a better agreement of results, if compared with
those of Table III.

Taking into account the Corace case, we note that the
behavior of �kn���	 for a generic fluvial river network can be
analyzed directly. In fact, the discrete data �kn���	, �
=1, . . . ,�, can be computed; these data are then used as
input in a procedure of nonlinear best-fitting approximation
with a suitable family of functions. The family of functions

TABLE III. Numerical results of �kn���	C for the Corace river network and their comparisons with the
Peano river network.

Order � 1 2 3 4 5 6

�k���	P 1 1.600 1.882 1.969 1.992 1.998

�k���	C 1 1.598
0.013 1.887
0.02 1.971
0.01 1.995
0.002 1.999
0.001

� 0 0.001 0.003 0.001 0.001 0.001

�

�

�
� � �

1 2 3 4 5 6

1.0
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1.4
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Ω

�k
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��

FIG. 6. �kn���	 versus � for the Corace river network with error
bars and Peano river network �circles�, respectively.

TABLE IV. The relative differences � between �kn���	 for the
vector n and �kn���	P, in correspondence with the orders �
=2, . . . ,�−1 and the specified values of M and L. For a given
order �=2, . . . ,�−1, L is the number of components of the vec-
tor of occurrences, nC���; M1 is the maximum of the components
of nC���; and M2 is chosen to minimize the differences between
the averages of the components of the random vector n and the
vector nC���.

Order � L M1 � M2 �

2 23 457 0.172 69.83 0.172

3 40 19 0.028 8.90 0.032

4 201 3 0.007 0.62 0.008

5 539 1 0.007 0.51 0.002
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is chosen according to the exact case provided by the Peano
network: these functions satisfy the differential equation �13�
with specific parameter values �, �, and �:

�kn���	 =
1

� + �e−�� . �20�

Note that, in force of the initial condition at �=1, �, �, and
� are related by the equation

� + �e−� = 1. �21�

By using a nonlinear regression, we found for the Corace
case the following set of values: �=0.499 361, �=2.000 53,
and �=1.383 99 with an estimated variance of 5.86�10−6.
In this case we also found �+�e−�=1.0006. Therefore, we
suggest that the relation �20� can be used as a general law for
a description of the dependences of �kn���	 on the Hortonian
order �.

IV. CONCLUSIONS

The proposed analysis shows a correspondence between
the structures of the Corace river network and the Peano
river network: lower values of the hierarchical order produce
numerical results with differences of order 10−3. Although
the analyzed case is quite specific, we suggest that the aver-
age junction degree, introduced here, is a robust descriptor
for the physical characterization, at the basin scale, of the
relevant transport processes, independently of the knowledge
of scaling laws, and thus in general. Consequently it can be
integrated with the recent theories on transport-invasion pro-
cesses to provide a more accurate modeling of them. This
analysis can be also used in order to characterize, at the
channel scale, other hydraulic and fluvial dynamics seen as
manifestations of complex systems.
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