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Two natural and widely used representations for the community structure of networks are clusterings, which
partition the vertex set into disjoint subsets, and layouts, which assign the vertices to positions in a metric
space. This paper unifies prominent characterizations of layout quality and clustering quality, by showing that
energy models of pairwise attraction and repulsion subsume Newman and Girvan’s modularity measure.
Layouts with optimal energy are relaxations of, and are thus consistent with, clusterings with optimal modu-
larity, which is of practical relevance because the two representations are complementary and often used
together.
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I. INTRODUCTION

Many systems of scientific or practical interest are decom-
posable into subsystems with strong internal and relatively
weak external interactions �1�; for example, there are groups
of friends or collaborators in social networks, sets of topi-
cally related documents in hypertexts, or blocs of interlocked
countries in international trade. If systems are modeled as
networks, with the system elements as vertices and their in-
teractions as edges, then each subsystem corresponds to a
so-called community, a set of vertices with dense internal
connections but sparse connections to the remaining
network.

Two widely used representations of networks are layouts,
which assign the vertices to positions in a metric space, and
clusterings, which partition the vertex set into disjoint sub-
sets. Both representations can group densely connected ver-
tices, by placing them at nearby positions or in the same
cluster, and separate sparsely connected vertices, by placing
them at distant positions or in different clusters, and can thus
naturally reflect the community structure. Requirements like
the grouping of densely connected vertices are often formal-
ized as mathematical functions called quality measures, and
the optimization of quality measures is a common strategy
for the computation of both layouts �2,3� and clusterings
�4–7�. Despite these commonalities, and although layouts
and clusterings are often used together as complementary
representations of the same network, there is no coherent
understanding of layout quality and clustering quality.

This paper unifies Newman and Girvan’s modularity �8�,
a popular quality measure for clusterings, with energy mod-
els of pairwise attraction and repulsion between vertices
�e.g., �2,3��, a widely used class of quality measures for lay-
outs. After an introduction of the quality measures in Sec. II,
Sec. III shows that layouts with optimal energy and cluster-
ings with optimal modularity represent the community struc-
ture similarly, and Sec. IV demonstrates that modularity ac-
tually is an energy model of pairwise attraction and
repulsion, if clusterings are considered as restricted layouts.
Section V discusses the application of these results for com-
puting consistent clusterings and layouts.

II. ENERGY MODELS AND MODULARITY

Quality measures for representations of networks formal-
ize what is considered as a good representation, and allow to

compute good representations automatically using optimiza-
tion algorithms. Mathematically, a quality measure maps net-
work representations to real numbers, such that larger �or
smaller� numbers are assigned to better representations, and
the best representations correspond to maxima �or minima�
of the measure. This section introduces two widely used
quality measures, namely energy models based on pairwise
attraction and repulsion for layouts, and Newman and Gir-
van’s modularity measure for clusterings.

To obtain uniform and general formulations, both mea-
sures are defined for weighted networks. In a weighted net-
work, each vertex v has a nonnegative real vertex weight wv,
and each unordered vertex pair �u ,v� �including u=v� has a
nonnegative real edge weight w�u,v�. Intuitively, a vertex �or
edge� of weight k can be thought of as a chunk of k vertices
�or edges� of weight 1. The commonly studied unweighted
networks correspond to the special case where the edge
weights are either 0 �no edge� or 1, and the vertex weights
are 1.

A. The (a ,r)-energy model for layouts

A d-dimensional layout p of a network maps each vertex
v to a position pv in Rd; it thereby assigns a distance to each
vertex pair �u ,v�, namely the Euclidean distance �pu− pv�
between the respective vertex positions. So-called energy
models are an important class of quality measures for lay-
outs. In general, smaller energy indicates better layouts. Be-
cause force is the negative gradient of energy, energy models
can also be represented as force systems, and energy minima
correspond to force equilibria. For introductions to energy-
based or force-directed layout, see Refs. �2,3�.

The most popular energy models for general undirected
networks either are similar to stress functions of multidimen-
sional scaling �9�, or represent force systems of pairwise at-
traction and repulsion between vertices. Models of the
former type �e.g., �10�� enforce that the distance of each
vertex pair in the layout approximates some prespecified dis-
tance, most commonly the length of the shortest edge path
between the vertices. They will not be further discussed, be-
cause their layouts reflect these path lengths rather than the
community structure.

In models of the latter type, adjacent vertices attract,
which tends to group densely connected vertices, and all
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pairs of vertices repel, which tends to separate sparsely con-
nected vertices. The strengths of the forces are often chosen
to be proportional to some power of the distance. Formally,
for a layout p and two vertices u ,v with u�v, the attractive
force exerted on u by v is

w�u,v��pu − pv�apupv
� ,

and the repulsive force exerted on u by v is

wuwv�pu − pv�rpvpu
� ,

where �pu− pv� is the distance between u and v, pupv
� is the

unit-length vector pointing from u to v, and a and r are real
constants with a�r.

The condition a�r ensures that the attractive force be-
tween connected vertices grows faster than the repulsive
force, and thus prevents infinite distances except between
unconnected components. For most practical force models
holds a�0 and r�0, i.e., the attractive force is nondecreas-
ing and the repulsive force is nonincreasing with growing
distance. In the widely used force model of Fruchterman and
Reingold �11�, a=2 and r=−1.

By exploiting the fact that force is the negative gradient of
energy, the force model can be transformed into an energy
model, such that force equilibria correspond to �local� energy
minima. For a layout p and constants a ,r�R with a�r, the
�a ,r� energy is

�
�u,v�:u�v

	w�u,v�
�pu − pv�a+1

a + 1
− wuwv

�pu − pv�r+1

r + 1

 , �1�

where �pu− pv�−1+1 / �−1+1� must be read as ln� pu− pv�
�because x−1 is the derivative of ln x�. The �1,−3� energy
model has been proposed by Davidson and Harel �12�, and
the �0,−1� energy model is known as the LinLog model
�13,14�.

B. The modularity measure for clusterings

A clustering p of a network partitions the vertex set into
disjoint subsets called clusters, and thereby maps each vertex
v to a cluster pv. Proposals of quality measures for cluster-
ings are numerous and scattered over the literature of diverse
research fields; surveys, though nonexhaustive, are provided
by Refs. �5,6,14,15�.

One of the most widely used quality measures was intro-
duced by Newman and Girvan, and is called modularity. It
was originally defined for the special case where the edge
weights are either 0 or 1 and the weight of each vertex is its
degree �8�, and was later extended to networks with arbitrary
edge weights �16�. �The degree of a vertex is the total weight
of its incident edges, with the edge weight from the vertex to
itself counted twice.� Generalized to arbitrary vertex weights,
the modularity of a clustering p is

�
c�p�V�

	 w�c,c�

w�V,V�
−

1
2wc

2

1
2wV

2 
 , �2�

where V is the set of all vertices in the network, and p�V� is
the set of clusters; the weight functions are naturally ex-

tended to sets of vertices or edges: w�c,c� is the total edge
weight within the cluster c, and wc is the total weight of the
vertices in c.

Intuitively, the first term of the modularity measure is the
actual fraction of intracluster edge weight. In itself, it is not
a good measure of clustering quality, because it takes the
maximum value for the trivial clustering where one cluster
contains all vertices. This is corrected by subtracting a sec-
ond term, which specifies the expected fraction of intraclus-
ter edge weight in a network with uniform density. Thus
modularity takes positive values for clusterings where the
total edge weight within clusters is larger than would be
expected if the network had no community structure.

C. Optimization algorithms

Finding a minimum-energy layout or a maximum-
modularity clustering of a given network is computationally
hard; in particular, modularity maximization was recently
shown to be NP complete �17�. In practice, energy and
modularity are almost exclusively optimized with heuristic
algorithms that do not guarantee to find optimal or near-
optimal solutions.

An extensive experimental comparison of energy-
minimization algorithms for network layout was performed
by Hachul and Jünger �18�; however, most of the examined
algorithms make fairly restrictive assumptions about the op-
timized energy model. More general and reasonably efficient
is the force calculation algorithm by Barnes and Hut �19�,
whose runtime is O�m+n log n� per iteration for a network
with m edges �with nonzero weight� and n vertices �assum-
ing that the number of dimensions is small and the vertex
distances are not extremely nonuniform�. The number of it-
erations required for convergence typically grows sublinearly
with n.

Clustering algorithms for networks are surveyed in Refs.
�4,6,7,20�. A relatively fast yet very effective heuristic for
modularity maximization is agglomeration by iteratively
merging clusters �starting from singletons�, combined with
single-level �21� or multilevel �22� refinement by iteratively
moving vertices; an efficient implementation requires a run-
time of O�m log2 n� �assuming O�log n� hierarchy levels in
agglomeration and O�1� iterations through all vertices per
level in refinement�.

III. ENERGY MODELS AND MODULARITY REVEAL
COMMUNITIES

A set of vertices is called a community if the density
within the set is significantly larger than the density between
the set and the remaining network. The density between two
disjoint sets of vertices T and U is intuitively the quotient of
the actual edge weight and the potential edge weight between
T and U; formally, it is defined as w�T,U� /wTwU, where wU is
the total weight of the vertices in U, and w�T,U� is the total
edge weight between T and U. Similarly, the density within a
vertex set U is w�U,U� / �wU

2 /2�. �This generalizes standard
definitions of density from graph theory �23� to weighted
networks with self-edges.�
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Existing theoretical results, which will be summarized
and extended in this section, already show that the commu-
nity structure of a network is reflected in layouts with opti-
mal �a ,r� energy �for certain values of a and r� and in clus-
terings with optimal modularity. What has previously
escaped notice is the striking analogy: The separation of
communities in an optimal layout is inversely proportional to
�some power of� the density between them, and the separa-
tion of communities in an optimal clustering reflects whether
the density between them is smaller than a certain threshold.
As an important limitation, the result for layouts will be de-
rived only for two communities, and cannot be expected to
hold precisely for more communities. Therefore, the consis-
tency of �a ,r�-energy layouts and modularity clusterings will
be reconsidered in Sec. V, after further evidence has been
presented in Sec. IV.

In what appears to be the only previous work that for-
mally relates energy-based layout to modularity clustering
�14�, we did not established similarities between optimal lay-
outs and optimal clusterings, but only noted that the modu-
larity measure is mathematically similar to the density
�called normalized cut in �14��, as both normalize the actual
edge weight with a potential or expected edge weight.

A. Representation of community structure in layouts
with optimal (a ,r) energy

This section discusses how the distances in a layout with
optimal �a ,r� energy can be interpreted in terms of the com-
munity structure of the network, and how this interpretation
depends on the parameters a and r. For the simple case of a
network with two vertices, the minimum-energy layouts can
be computed analytically �Theorem 3 in �14��. If the vertices
u and v have the distance d, the �a ,r� energy is

U�d� ª w�u,v�
da+1

a + 1
− wuwv

dr+1

r + 1
.

The derivative of this function is 0 at its minimum d0; thus

0 = U��d0� = w�u,v�d0
a − wuwvd0

r

d0 = 	w�u,v�

wuwv

−1/�a−r�

. �3�

Thus the distance of the two vertices in a layout with optimal
�a ,r� energy is the −�1 / �a−r��th power of the density be-
tween the vertices. In particular, the distance is the inverse
density if a−r=1, and the distance is almost independent of
the density if a−r�1. This impact of a−r on the represen-
tation of the community structure is illustrated for a larger
network in Fig. 1.

Replacing the edge �u ,v� with two edges �u , t� and �t ,v�,
where t is a new vertex with weight 0, increases the optimal
distance between u and v by a factor of 2a/�a−r�. Because the
�a ,r� energy is defined only for a−r�0, the factor is 1 if
a=0, and greater than 1 if a�0. This result has a significant
implication, given that the addition of t increases the path
length between u and v �from one to two edges� without
changing the density: The optimal distance of u and v de-

pends only on the density, and not on the path length, if
a=0 �as in the LinLog energy model�, and increases with the
path length if a�0.

The results for networks with two or three vertices can be
generalized, at least as approximations, to larger networks. In
a network with clear communities, for example, the density
within the communities is �by definition� much greater than
the density between the communities, and thus the intracom-
munity distances in an optimal layout are much smaller than
the intercommunity distances �unless a−r is very large�. This
can be approximated by assuming that the vertices of each
community have the same position, and thus by considering
each community as one big vertex. For networks with more
than two communities, Eq. �3� cannot be expected to hold
precisely for all pairs of communities, because this would
often imply distances that violate the triangle inequality.
Nevertheless, the qualitative reasoning generalizes: Dis-
tances are less dependent on densities for large a−r, and less
dependent on path lengths for small a.

Figure 2 illustrates the impact of the parameters a and r
for two simple networks: For a−r�1 �bottom right�, the two
triangles are less clearly separated than for a−r=1 �bottom
left and top right�, and only for a=0 �left� does the path
length between the triangles not affect their distance. Figure
3 summarizes the results of this section.

B. Representation of community structure in clusterings
with optimal modularity

Reichardt and Bornholdt �24� observed that, in a cluster-
ing with maximum modularity, the density between any two

FIG. 1. Layouts with small LinLog energy �a−r=1� and with
small Fruchterman-Reingold energy �a−r=3� of a pseudorandom
network with eight clusters �intracluster density 1.0, expected inter-
cluster density 0.2�.

a= 0 a= 1

r = 0 violates a > r

r =−1

FIG. 2. Layouts with optimal �a ,r� energy for different values
of a and r. All vertices and edges have weight 1, except for the
small vertex between the triangles which has weight 0.
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clusters is at most the density within the entire network, and
the density between any two subclusters obtained by splitting
a cluster is at least the density within the network. �Clusters
may still have a smaller density than the network, essentially
because vertices without self-edges decrease the density
within their cluster but cannot be split.� The argument is
simple. Joining two clusters c and d with c�d increases the
modularity by

w�c,d�

w�V,V�
−

wcwd
1
2wV

2 ,

which is positive if and only if

w�c,d�

wcwd
�

w�V,V�
1
2wV

2 ,

i.e., if the density between c and d is greater than the density
within the network. In a clustering with maximum modular-
ity, neither joining nor splitting clusters may increase the
modularity, which yields the claim.

These observations imply that the granularity of cluster-
ings with maximum modularity depends on the overall den-
sity within the network, which may be undesirable for some
applications. For example, if the density within the network
is sufficiently small, then two dense subnetworks connected
by only one light-weight edge are joined into a single cluster,
instead of forming two separate clusters �25�. Similarly, dou-
bling a network �by adding a second copy of the same net-
work� halves its density, and thus generally coarsens the op-
timal clustering instead of preserving it �17�. Because such
granularity-related issues are specific to discrete representa-
tions like clusterings, they provide a major motivation for the
supplementary �and sometimes even exclusive� use of con-
tinuous representations like layouts.

IV. ENERGY SUBSUMES MODULARITY

Modularity can be considered as a special case of �a ,r�
energy. Section IV A formally derives this result, and Sec.
IV B explains how this derivation is facilitated by the defi-
nitions of �a ,r� energy and modularity in Sec. II, which gen-
eralize previous definitions from the literature.

A. Transformation of modularity into (a ,r) energy

The modularity of a clustering p was defined in Sec. II B
as

�
c�p�V�

	 w�c,c�

w�V,V�
−

1
2wc

2

1
2wV

2 
 ,

i.e., as the difference of the actual fraction of intracluster
edge weight and the expected fraction of intracluster edge
weight. Because each edge is either intracluster or interclus-
ter, the fraction of intracluster edge weight and the fraction
of intercluster edge weight add up to 1:

�
c�p�V�

w�c,c�

w�V,V�
+ �

�c,d��p�V�:c�d

w�c,d�

w�V,V�
= 1;

similarly, the corresponding expected fractions add up to 1.
Thus the modularity of p can be written in terms of inter-
cluster edge weights as

�
�c,d��p�V�:c�d

	−
w�c,d�

w�V,V�
+

wcwd
1
2wV

2 

= − �

�u,v��V:pu�pv

	 w�u,v�

w�V,V�
−

wuwv
1
2wV

2 
 .

Let k be the number of clusters in p. Without changing the
modularity of p, the k clusters can be considered as positions
in Rk−1, such that each pair of different clusters has the dis-
tance 1. �Intuitively, the k clusters form the corners of a
regular �k−1�-simplex with edge length 1; a �k−1�-simplex
is the �k−1�-dimensional analogue of a triangle.� Then the
clustering p is a �k−1�-dimensional layout, and the modular-
ity of p can be rewritten as

− �
�u,v��V:pu�pv

	 w�u,v�

w�V,V�
�pu − pv� −

wuwv
1
2wV

2 �pu − pv�
 .

The condition pu�pv of the sum can be dropped or replaced
with u�v, because it excludes only vertex pairs �u ,v� with
�pu− pv�=0.

Because the distances between the vertices are 0 or 1, the
modularity of p equals

− �
�u,v�:u�v

	 w�u,v�

w�V,V�
�pu − pv�a+1 −

wuwv
1
2wV

2 �pu − pv�r+1

for all a ,r�R with a�−1 and r�−1. This is the negative
�a ,r� energy, except for the constant factors in the attraction
term and the repulsion term, which change only the scaling
of the optimal layouts.

B. Prerequisites of the transformation

The transformation of modularity into �a ,r� energy in the
previous section is based on the definitions of the measures
in Sec. II, which generalize previous definitions from the
literature in several respects. First, the goal of most energy-
based layout techniques is to produce easily readable box-
and-line visualizations, which differs from and even conflicts

� �
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� �
� �
	



� �
� �
� �

 �
� �
� �
� �

� �
� �
� � �
� �

�
�
�
�
�
�
�
�

� � � � � � � �

� � � � � � � � �

� � � �
� � � � � � � � �

� �
� � � �

� � � � � � �

�


 �

� � � � � � � � � � � 
 � � � � � � � �

� � � � � � � � 
 � � � � �

�
� �
� �
�
�
�
� �
�
�
�
�
�
�
�
�
�

�
�
�
�
� �

� �
�
�
� �

� �
� �
� �
� �
�

� �
� �
� �
� �
� �
� �
�

� �
� �
� �
� � �
� �

� � � � � �

FIG. 3. Impact of the parameters a and r on the optimal layouts
of the �a ,r�-energy model.
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with producing faithful representations of the community
structure. The classic energy models of Eades �26�, Fruchter-
man and Reingold �11�, and Davidson and Harel �12� prima-
rily reward the conformity to aesthetic criteria like small
edge lengths and uniformly distributed vertices, and thus of-
ten prevent the clear separation of sparsely connected verti-
ces and the clear grouping of densely connected vertices �see
Fig. 1�. The design and evaluation of energy models with the
explicit purpose of representing the community structure
started only recently with the LinLog model �13,14�. Tech-
nically, the classic energy models are, or are similar to, in-
stances of the �a ,r�-energy model where the difference
a−r is fixed and too large; the �a ,r�-energy model is param-
etrized with this difference.

Second, most existing energy models are designed to
strongly discourage the placement of several vertices on the
same position, while clusterings may place many vertices in
the same cluster. Technically, existing energy models are not
mathematically equivalent to modularity because the expo-
nent of the distance in the repulsion energy is fixed and too
small; the �a ,r�-energy model is parametrized with this
exponent.

Third, the modularity measure and most energy models
were originally defined for networks without vertex weights.
The vertices are implicitly weighted with 1 in most classic
energy models �e.g., �11,12,26��, and with their degree in the
original modularity measure �8�. It was only recently ob-
served that degree weighting may also improve the readabil-
ity and interpretability of energy-based layouts �14,27�. The
definitions of �a ,r� energy and modularity in Sec. II are gen-
eralized to arbitrary vertex weights, and thus subsume both
degree weights and unit weights.

C. Related work

In the analysis of dissimilarity matrices, the computation
of clusterings and layouts with identical quality measures is
fairly common �e.g., �28,29��. The trick is to represent both
clusterings and layouts of dissimilarity matrices as dissimi-
larity matrices: The dissimilarity of two objects in a layout
can be defined as their Euclidean distance �as for networks�,
and the dissimilarity of two objects in a clustering can be
defined as the average dissimilarity of the objects in their
clusters �unlike for networks, which specify no dissimilari-
ties for their vertices�. With this common representation of
clusterings and layouts, it is easy to design common quality
measures.

For networks, there appear to be no previous proposals of
using identical quality measures for both clusterings and lay-
outs. Some clustering algorithms compute layouts as inter-
mediate results, for example eigenvector-based heuristics for
modularity clustering �30,31� and approximation algorithms
for some related partitioning problems �32–34�, but these
layouts are not intended to be useful on their own.

V. OPTIMAL-ENERGY LAYOUTS CONFORM TO
OPTIMAL-MODULARITY CLUSTERINGS

Clusterings and layouts complement each other as repre-
sentations for the community structure of networks. Layouts

are limited to two or three dimensions in practice, and thus
cannot faithfully represent inherently high-dimensional
structures, but they may show crucial details that are missing
in clusterings: �1� the density between clusters, and more
generally, the relationship between clusters, e.g., whether
their separation is clear or fuzzy, and which vertices form
their interface; �2� the density within clusters, and more gen-
erally, the internal structure of clusters, e.g., whether a dense
cluster is composed of even denser subclusters; �3� the den-
sity between vertices and clusters, e.g., whether a vertex is
central or peripheral to its cluster, or whether the assignment
of a vertex to a cluster is rather arbitrary because it is closely
related to several other clusters.

However, a layout permits these interpretations only if it
is consistent with the corresponding clustering, i.e., if the
layout and the clustering group the vertices according to the
same criteria. In previous works, some authors nonetheless
consider vertex groups in arbitrary force-directed layouts as
clusters, while others rightly note that they have no reasons
to suppose that such interpretations are valid. Sections III
and IV finally provide such reasons, as summarized in the
following section.

A. Evidence

Section IV showed that for clusterings with k clusters,
considered as restricted �k−1�-dimensional layouts, the
�a ,r�-energy model is equivalent to the modularity measure
if a�−1 and r�−1. Thus �unrestricted� layouts with optimal
�a ,r� energy are relaxations of clusterings with optimal
modularity if �a� the layouts have at least k−1 dimensions,
and �b� a�−1 and r�−1.

Concerning condition �a�, the dimensionality of layouts
can be somewhat reduced without large changes of the pair-
wise vertex distances, and thus without large changes of the
�a ,r� energy. Hence the consistency of optimal layouts and
optimal clusterings does not break down immediately if the
layout has less dimensions than the clustering has clusters.

Condition �b� does not imply that layouts with optimal
�a ,r� energy closely resemble clusterings with optimal
modularity precisely for a�−1 and r�−1. On the one hand,
the condition r�−1 is necessary for clusterings to permit the
assignment of several vertices to the same cluster, but not for
layouts which may group vertices without placing them on
exactly the same position. On the other hand, the precise
values of a and r hardly matter for clusterings where the
distance between vertices is either 0 or 1, but were shown to
be important for layouts in Sec. III. Considering the results
of Sec. III, �a ,r�-energy layouts most closely resemble
modularity clusterings if �1� a�r, a�0, and r�0 �by the
definition of �a ,r� energy�; �2� a�0, such that distances do
not reflect path lengths; and �3� a−r�1, or at least a−r�” 1,
such that distances reflect densities.

B. Examples

The purpose of this section is to illustrate the consistency
of �a ,r�-energy layouts and modularity clusterings, and the
benefits of this consistency, for several real-world networks.
It should be stressed that the purpose is not to validate the
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�a ,r�-energy model or the modularity measure, which are
already widely used and discussed in many previous works;
and the purpose is not to prove the consistency of
�a ,r�-energy layouts and modularity clusterings, because the
mathematical evidence summarized in the previous section is
more general than any number of examples.

The example networks are listed in Table I. The weight of
each vertex is set to its degree, as in the original modularity
measure �8� and in the edge-repulsion LinLog energy model
�14�. In visualizations, each vertex is represented as a box, its
degree �weight� as area of the box, and its cluster member-
ship as shape of the box.

As motivated in the previous section, the parameters of
the energy model are set to a=0 and r� �−2,−1.5,−1�, with
r=−2 for networks with very nonuniform density
�modularity�0.5�, and r=−1 for networks with fairly uni-
form density �modularity�0.3�. The variation of r improves
the readability by ensuring that vertices are not placed too
closely, but otherwise does not affect the grouping of the
vertices.

Because the exact optimization of �a ,r� energy and modu-
larity is computationally hard, the presented layouts and
clusterings are not guaranteed to be optimal �except for the
clustering of the book copurchase network �17��, but are the
best known representations. The JAVA program used for gen-
erating these representations is freely available �42�. It em-
ploys the Barnes-Hut algorithm for energy minimization, and
agglomeration with multilevel refinement for modularity
maximization �see Sec. II C�.

In the karate club network �Fig. 4�, each vertex represents
a member of a karate club, and the edge weight of each
vertex pair specifies the number of contexts �like university
classes, bars, or karate tournaments� in which the two mem-
bers interacted. The main vertex groups in the
�0,−1.5�-energy layout coincide with the four clusters of the

modularity clustering, and the layout correctly indicates that
joining triangles and circles into a single cluster is almost as
good as separating them �modularity 0.435 versus 0.445�.
The clustering and the layout both segregate the members
who left the club after the instructor was fired �gray boxes�,
with the exception of one member who followed the instruc-
tor mainly to preserve his chance for a black belt.

In the book copurchase network �Fig. 5�, the vertices rep-
resent books on U.S. politics, and edges of weight 1 connect
books that were frequently purchased together. The clusters
are generally well separated in the layout; a few members of
the smaller central clusters are placed closely to one of the
two large clusters, which correctly indicates that they are
densely connected with parts of these large clusters, and their
assignment to a smaller cluster is a close decision. The clus-
tering and the layout, especially their two main groups, con-
form well to Newman’s classification �36� of the books as
liberal �light gray�, neutral �dark gray�, or conservative
�black�; the layout is more suitable to represent the liberal-
to-conservative ordering of the books.

The food classification network �Fig. 6� represents the
categorizations of 45 foods by 38 subjects of a psychological
experiment, who were asked to sort the foods into as many
categories as they wished based on perceived similarity.
Each vertex represents a food, and the edge weight of each
vertex pair is the number of subjects who assigned the cor-
responding foods to the same category. The clusters corre-

TABLE I. Example networks

Name Size Source

Karate club 34 �35�, Fig. 3; unweighted version
used in �8,17,36�

Book
copurchase

105 Compiled by V. Krebs, provided by
M. Newman �43�; also used in �17,36�

Food
classification

45 Compiled by Ross and Murphy �37�,
published in �38�, Table 5.1

World trade 66 World Bank �44�

FIG. 4. �0,−1.5�-energy layout and modularity clustering �rep-
resented by shapes� of the karate club network. The modularity of
the clustering is 0.445. Gray boxes represent members who left the
club after the instructor was fired.

FIG. 5. �0,−2�-energy layout and modularity clustering of the
book copurchase network. The modularity is 0.527. Shades repre-
sent the classification as liberal �light gray�, neutral �dark gray�, or
conservative �black�.

FIG. 6. �0,−1.5�-energy layout and modularity clustering of the
food classification network. The modularity of the clustering is
0.402. �The edges are elided to avoid clutter.�
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spond well to groups in the layout, but the layout also indi-
cates that the borders between some clusters are rather fuzzy
�e.g., between snacks and sweets�, that some clusters could
be split into subclusters �e.g., fruits and vegetables�, and that
some foods cannot be clearly assigned to a single cluster
�e.g., water, spaghetti�. The grouping in both the clustering
and the layout largely conforms to common food categories.

The world trade network �Fig. 7� models the trade be-
tween 66 countries in the year 1999. The vertices represent
countries, and the edge weight of each vertex pair specifies
the trade volume between the corresponding countries in
U.S. dollar. The clustering and the layout both group the
countries of the three major economic areas �East Asia and
Australia, America, and Europe�. The layout also reflects that
countries like IRN and EGY cannot be clearly assigned to
either the East Asian or the European group, and shows
many smaller groups of closely interlocked countries like
CHN and HKG, AUS and NZL, GBR and IRL, and the
Nordic countries.

VI. CONCLUSION

As representations for the community structure of net-
works, layouts subsume clusterings, thus quality measures
for layouts subsume quality measures for clusterings, and in
fact prominent existing quality measures for layouts—
namely, energy models based on the pairwise attraction and
repulsion of vertices—subsume a prominent existing quality
measure for clusterings—namely, the modularity measure of
Newman and Girvan.

This result has implications for the entire life cycle of
quality measures. Their design is facilitated because quality
measures for layouts may also be applied to clusterings, and
vice versa. For example, recent extensions of the modularity
measure to directed networks �39� and bipartite networks
�40� can be directly generalized to energy models for layouts.
The evaluation of quality measures for clusterings and lay-
outs can be partly unified, i.e., performed without distin-
guishing between clusterings and layouts. This has been
demonstrated in �15� with a computation of the expected
measurement value for networks with uniform expected den-
sity, a particularly important analysis technique �14,31,41�.
In the optimization of quality measures, components of clus-
tering algorithms may be reused in layout algorithms and
vice versa, for example the agglomeration �coarsening� phase
of multilevel heuristics. Moreover, energy-based layout algo-
rithms might serve as initial stage of clustering algorithms,
similarly to eigenvector-based layout algorithms in existing
approaches �see Sec. IV C�. Finally, unified quality measures
help to ensure the consistency of clusterings and layouts �see
Sec. V�, which is crucial because the two representations are
often used together.
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