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How complex is quantum motion?
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In classical mechanics the complexity of a dynamical system is characterized by the rate of local exponential
instability which effaces the memory of initial conditions and leads to practical irreversibility. In striking
contrast, quantum mechanics appears to exhibit strong memory of the initial state. Here we introduce a notion
of complexity for a quantum system and relate it to its stability and reversibility properties.
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The question of how complex is quantum motion is of
fundamental importance with deep connections to entangle-
ment and decoherence. However, our knowledge of the rela-
tions between complexity, dynamical stability, reversibility,
and chaos is far from being satisfactory, sometimes even
confusing, and a clearer understanding is necessary.

To this end let us first consider classical motion where
things are quite well settled. Classical complex systems are
characterized by positive Lyapunov exponent, i.e., by local
exponential instability. They have positive algorithmic com-
plexity and, in terms of the symbolic dynamical description,
almost all orbits are random and unpredictable [1].

In spite of many efforts [2], the problem of characterizing
the complexity of a quantum system is still open. Indeed the
above notion of complexity cannot be transferred, sic et sim-
pliciter, to quantum mechanics, where there is no notion of
trajectories. Still, a comparison between classical and quan-
tum dynamics can be made by studying the evolution in time
of the classical and quantum phase-space distributions, both
ruled by linear equations.

First investigations focused on reversibility, namely, on
the propagation of roundoff errors in numerical simulations
[3]. Strong and impressive evidence has been gathered that
the quantum evolution is very stable, in sharp contrast with
classical dynamics in which the extreme sensitivity to initial
conditions, which is the very essence of classical chaos,
leads to a rapid loss of memory.

Later on, a different approach focused on the stability
properties of motion under small variations of system param-
eters. This approach does not raise any difficulty in the clas-
sical context since exponentially unstable systems exhibit the
same rate of exponential instability by slightly changing the
initial conditions with fixed parameters or by changing pa-
rameters with fixed initial conditions. On the other hand, the
advantage of the latter approach is that it can be applied to
phase-space distributions. Here one computes the so-called
fidelity [4,5], defined as the overlap between two distribu-
tions evolving under two slightly different Hamiltonians. It is
tempting to connect the behavior of fidelity to the regular or
chaotic behavior of quantum motion. Indeed, the original
expectation, which seemed quite natural, was that fidelity
should remain close to 1 at all times for integrable systems
and fall down exponentially for chaotic systems [6,7]. How-
ever, this expectation is not fulfilled.
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For the purpose of the present paper it is necessary here to
make clear the following. The motivation for the introduc-
tion of fidelity, namely, the suggestion to analyze the stability
of motion by perturbing the Hamiltonian rather than the ini-
tial state, originated from the observation that in quantum
mechanics, due to the unitary evolution, the scalar product
(1) (¢)) of two initially close states |¢(0)) and | (0))
does not change in time. However, two points must be
stressed: (i) the classical evolution of phase-space density is
also unitary and linear and therefore the overlap of two ini-
tially close phase-space distributions does not change with
time in classical mechanics as well; (ii) for classically cha-
otic quantum systems, the fidelity decay, depending on the
perturbation strength, can be Gaussian or exponential. A
power-law decay is also possible in the quantum diffusive
regime [8]. Furthermore, for integrable systems the fidelity
decay can be faster than for chaotic systems [5]. On the other
hand, even in classical mechanics the fidelity decay does not
clearly distinguish between chaotic and integrable systems.
In short, fidelity is not a good quantity to characterize the
complexity of motion, either in quantum or in classical
mechanics.

In this paper, we propose the number of harmonics of the
Wigner function as a suitable measure of the complexity of a
quantum state. We recall that in classical mechanics the num-
ber of harmonics of the classical distribution function in
phase space grows linearly for integrable systems and expo-
nentially for chaotic systems, with the growth rate related to
the rate of local exponential instability of classical motion
[9]. Thus the growth rate of the number of harmonics is a
measure of classical complexity. Since the phase-space ap-
proach can be equally used for both classical and quantum
mechanics, the number of harmonics of the Wigner function
appears as the correct quantity to measure the complexity of
a quantum state. In what follows, we examine the behavior
of this quantity and its relation to fidelity and reversibility
properties. Moreover, we show that the number of harmonics
can be used to detect the transition from integrability to
quantum chaos. A detailed derivation of some of the results
discussed in this paper can be found in Ref. [10].

The Wigner function. Let us consider a generic nonlinear
system which exhibits a transition from quasi-integrable to
chaotic behavior as the strength of the nonlinearity is in-
creased. More precisely we consider the Hamiltonian opera-
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tor H=H(G",4:t)=HO(A=a'a)+HV(4",4;¢) with a time-
independent unperturbed part H©® with a discrete energy
spectrum bounded from below. Here a',a are the bosonic,
creation-annihilation operators and [4,a47]=1.

We will use the method of c-number a-phase space bor-
rowed from quantum optics (see, for example, [11]). This
method is basically built upon the basis of the coherent states
|a) which are defined by the eigenvalue problem d|a)
:%|a>, where « is a complex variable independent of the
effective Planck’s constant 7. An arbitrary coherent state is
a)zlA)(%ﬂO), with the help
of the unitary displacement operator D(\)=exp(Ad'—\*4).
The Wigner function W in the a-phase plane is related to the
density operator p as follows:

obtained from the ground state,

W(a*, ;1) = ffwﬁW@%W@nmwmmL

(1)

1
h

where the integration runs over the complex 7 plane.
The harmonic’s amplitudes W,, of the Wigner function are
given by the expansion

1 < .
Wi as0)=— 2 W, (I:ne™, (2)

m=—o

where a= \fie‘ia, with (7, 6) action-angle variables.
The fidelity. Following the approach developed in Ref.

[12], we consider now the forward evolution

p(1) = U0pO) T (1) (3)
of an initial (generally mixed) state p(0) up to some time ¢

=T. A perturbation P(&) is then applied at this time, with
perturbation strength &. For our purposes, it will be sufficient
—igv

to consider unitary perturbations ﬁ(§)=e , where V is a

Hermitian operator. The perturbed state

p(T,&) = P(OH(T)PH(é) (4)

is then evolved backward, with the same Hamiltonian, for
the time 7, thus obtaining the final state

p(0|T,¢) = UN(T)p(T, &) U(T). (5)

Finally, we consider the distance between the reversed

ﬁ(0| T,&) and the initial p(0) state, as measured by the Peres
fidelity [4]

TpOIT,9p(0)] _ Tp(T.9p(T)]
T p*(0)] T p(T)]

This quantity is bounded in the interval [0,1] and the distance
between the initial and the time-reversed state is small when
F(&;T) is close to 1. In particular, F(&;7T)=1 when the two
states coincide. The last equality in Eq. (6) is a consequence
of the unitary time evolution.

The Peres fidelity (6) can be expressed in terms of the
Wigner function as

F(&T) = (6)
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szaW(a*,a;O)W(a*,a;O

T,¢)
F(&T) =

fdzaWZ(a*,a;O)

JdZaW(a*,a;T)W(a*,a;T,g)
= : (7)
fdzaWz(a*,a;T)

The advantage of this representation is that it remains valid
in the classical case when the Wigner function reduces to the
classical phase-space distribution function W.(a*, a;1).

Growth of the number of harmonics. As is well known,
the paramount property of the classical dynamical chaos is
the exponentially fast structuring of the system’s phase space
on finer and finer scales. In particular, the number M (z) of
harmonics (Fourier components) that significantly contribute
in the expansion (2) of the classical phase-space distribution
W, grows exponentially in time for chaotic motion. The cru-
cial point is that only in quantum mechanics the number of
harmonics of the Wigner function is directly related to the
expectation value of physical observables. Therefore, in
quantum mechanics an exponential growth of the number of
harmonics is not allowed in general [9,13,14].

For an explicit numerical evaluation of the number of
harmonics we will focus on the quantity

40 0
> m*| dllW, (1)
m=—o0 0

(), =" | (®)
O
m=—x J(

The quantity \fm, provides an estimate of the number
M(t) of harmonics developed by the time ¢ and therefore of
the complexity of the Wigner function at time .

Relation between fidelity and number of harmonics. This
relation takes a very simple form when the perturbation at
the reversal time #=T is a rotation of the quantum phase-
space distribution W(a*, a;1). Consider the unitary transfor-

mation (3) with the perturbation operator V= and the rota-
tion angle &. In this case we obtain [10]

+00

> sin’(ém/2) f dI\W,,(I;)?
Flen=1-2""— =" )
S | aiwop
m=—x J(

The lowest-order & expansion of this equation reads

F(&n~1- %§2<m2>,. (10)

Notice that relations (9) and (10) between distance F and
number of harmonics can be applied to classical dynamics,
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FIG. 1. (Color online) Root-mean-square radius {(m%), of the
distribution of harmonics vs time f, at wy=1, go=1.5, 6=0.5.
Squares, diamonds, and triangles correspond to 2=0.01, 0.1, and 1.
In this latter case, p(0)=|0)0|. Empty circles refer to classical dy-
namics and the dashed line fits these data.

provided that the harmonics of the classical distribution
function W, instead of those of the Wigner function W are
used.

Hllustrative example. Let us consider the kicked quartic
oscillator model, defined by the Hamiltonian [13,15-17]

H =hogi + 1272 = ig(n(@ +a"), (11)

where g(t)=g,=,8(t—s), A=a'a, [a,a"]=1. In our units, the
time and parameters %, w, as well as the strength g, of the
driving force are dimensionless. The period of the driving
force is set to 1. The corresponding classical Hamiltonian
function, expressed in terms of complex canonical variables
a,ia*, is given by

H, = wglaf’ +|of* - g()(a" + a). (12)

We choose the initial state to be an isotropic mixture of
coherent states: p(0)=[d*aP(|al?)|a)al|, where P(I=|al?)
= ie‘” A, Correspondingly, the initial Wigner function is iso-
tropic and Gaussian, W(a*,a;O)xe"”“z/(mm). Only the m
=0 harmonic is excited, so that (m?),_,=0. The particular
case A=0 corresponds to the pure ground state, which occu-
pies the minimal quantum cell with the area 7/2.

The classical dynamics of model (11) becomes chaotic
(with negligible stability islands) when the perturbation
strength go=1. In this regime the mean action grows diffu-
sively with the diffusion coefficient D~ g?.

Chaotic regime. We now compare, in the chaotic regime,
the evolution in time of {m?), for quantum and classical dy-
namics. For this purpose, we solve both the quantum and the
classical Liouville equation. In the latter case, the initial
phase-space distribution W,(a*, a;0) xelal® has size &
which coincides, for a given value of 7, with the size /2 of
the Wigner function corresponding to the initial quantum
ground state p(0)=|0)(0|. The quantum to classical transition
is then explored by keeping & constant and considering, for
smaller and smaller values of #, initial incoherent mixtures
of size d=A+#/2. The results are shown in Fig. 1. The ex-
ponential increase of (m?), takes place only up to the Ehren-
fest time scale tzocIn A [15]. Note that the short-time corre-
spondence between quantum and classical evolution of the
number of harmonics was reported in Refs. [9,14]. After that
time, a much slower power-law increase follows. Namely,
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FIG. 2. (Color online) Reversibility properties of quantum dy-
namics. The backward evolution starts at the reversal time 7=50.
We show \{m?), for different values of the perturbation parameter:
from bottom to top, £=¢&.(T) Xexp(-1/2), I=8,...,1, [=0 (thick
black curve marked by the closed circle), and [=-1,...,-6, at w,
=1,A=1, go=2, A=1. Circles indicate positions of the minimum on
each curve.

the number of harmonics M(f) ~ v’m increases linearly for
the pure state case, where (m?),~(n)>ocr> due to diffusive
growth of the mean action, and slower than linearly for mix-
tures [10]. This growth eventually saturates due to quantum
localization [13] of diffusive motion.

From Eq. (10) we can estimate a critical perturbation
strength £,(T)=~2/{m?)y, such that the fidelity F(&;T) re-
mains close to 1 after the backward evolution as long as &
<&,(T), whereas reversibility is lost when &= &.(T). This
statement is illustrated in Fig. 2 for the number of harmonics,
estimated by \s’m. Therefore we establish a direct connec-
tion between complexity of phase-space distribution and de-
gree of reversibility of motion. Due to the strikingly different
growth in time of the number of harmonics for classical and
quantum chaotic motion, &.(T) drops exponentially with 7 in
the classical case and at most linearly in the quantum case
(after the Ehrenfest time scale). Therefore our analysis ex-
plains the numerically observed [3] much weaker sensitivity
of quantum dynamics to perturbations as compared to clas-
sical dynamics.

Note that, due to the exponential proliferation of the num-
ber of harmonics in classical mechanics, formula (10) is only
valid up to a time logarithmically short in the perturbation
strength & After that time, due to diffusive growth of the
mean action, the decay of the fidelity F turns from exponen-
tial to power law [18], Foc1/(Dt), while the number of har-
monics still grows exponentially with time and correctly de-
scribes the complexity of chaotic motion.

Crossover from integrability to quantum chaos. It is
known that in the integrable regime the number of harmon-
ics, computed in the action-angle representation, grows lin-
early with time [9] and that nearby orbits separate linearly
fast [19]. We show (see the inset of Fig. 3) that the linear
growth of \(m?) also takes place in quantum mechanics, up
to the Heisenberg time scale ¢, #~". The strikingly different
behavior of the number of harmonics of the Wigner function
in the integrable and chaotic regimes suggests that this quan-
tity may be used to detect, in the time domain, the crossover
from integrability to quantum chaos. Note that the vast lit-
erature on such transition is based on the statistical distribu-
tion of energy levels [7]. Since in the chaotic regime and
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FIG. 3. (Color online) Dependence of {m?), on the perturbation
strength g at time =3, for 4=0.01, wy=1, A=0. Inset: time evo-
lution of \(m?), in the integrable regime, at go=1, wy=1, 5=0.5
and, from bottom to top, #=1,0.1,0.05,0.02,0.01,0.005.

before the Ehrenfest time, exponential instability leads to an
exponential growth of the number of harmonics of the
Wigner function, we expect that such quantity can be used to
detect, even for times comparable to the Ehrenfest time
scale, the integrability to chaos crossover. Indeed, we show
in Fig. 3 that {(m?), computed at a given time ¢, exhibits a
sharp increase when the perturbation parameter g,=0.5.
From this figure we can conclude that the crossover from
integrability to chaos takes place in the region 0.5=<g,
=0.7.

Discussion. To summarize, we have shown that the num-
ber of harmonics of the Wigner function is a suitable mea-
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sure of complexity of a quantum state, in that this quantity is
directly related to the reversibility properties of quantum mo-
tion and, at the classical limit, reproduces the well-known
notion of complexity based on local exponential instability.
We would like to stress that in relation to other, very inter-
esting, proposed measures of quantum complexity, such as
quantum dynamical entropies [2], our quantity is very con-
venient for numerical investigations. It becomes therefore
possible to investigate complexity as a function of the effec-
tive Planck’s constant. To establish the proposed different
measure of complexity, it will be useful to check it on atypi-
cal cases, such as, for instance, integrable systems which
exhibit the random matrix theory spectral statistics typical of
chaotic systems [20]. Moreover, the above outlined phase-
space approach is quite general and can be readily extended
to systems with, arbitrary number of degrees of freedom,
including qubit systems, whose Hamiltonian can be ex-
pressed in terms of a set of bosonic creation-annihilation
operators. Therefore in many-body systems the (number of)
harmonics of the Wigner function could shed some light on
the connection between complexity and entanglement, a fun-
damental issue of great relevance for the prospects of quan-
tum information science. Moreover, we believe that the de-
pendence of the number of harmonics on control parameters
could be used not only to investigate the integrability to
quantum chaos crossover but also to detect quantum phase
transitions.
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