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Stability of a model food web
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We investigate numerically the stability of a model food web, introduced by Nunes Amaral and Meyer
[Phys. Rev. Lett. 82, 652 (1999)]. The model describes a system of species located in niches at several levels.
Upper level species are predating on those from a lower level. We show that the model web is more stable
when it is larger, although the number of niches is more important than the number of levels. The food web is
self-organizing itself, trying to reach a certain degree of complexity, i.e., number of species and links among
them. If the system cannot achieve this state, it will go extinct. We demonstrate that the average number of
links per species and the reduced number of species depend in the same way on the number of niches. We also
determine how the stability of the food web depends on another parameter of the model, the killing probability.
Despite keeping the ratio of the creation and killing probabilities constant, increasing the latter reduces sig-
nificantly the stability of the model food web. We show that connectance dependence on the number of niches
has a power-type character, which agrees with the field data, and that it decreases with the number of species

also as a power-type function.
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I. INTRODUCTION

Food webs (FWs) are systems of many species interacting
with each other in a given way and forming a complex sys-
tem [1]. Such structures are very interesting from a theoret-
ical point of view and also from a practical one since many
habitats are de facto FWs. It is therefore natural that they
have been studied by biologists since a long time (see e.g.,
[2]). Recently physicists also got interested in FWs treated as
complex systems of interacting particles [3—7]. Theoretical
models developed by them present different levels of sophis-
tication and resemblance to either present day or paleonto-
logical biological data. Some of them are dealing with fixed
number of species and/or interactions among them [4,8],
while others allow for changes in these characteristics. Also
the range of problems studied is rather vast—distribution of
extinct species (avalanches) [3,9-11], unification of macro-
volution and microevolution [7], models in a network chang-
ing dynamically in time [12,13], and cost of resources trans-
fer in food webs [14-16]. Applicability of critical
phenomena concepts to FWs in general and the niche model
[17] in particular has been also discussed [18]. Interesting
reviews of models used and discussed by physicists in popu-
lation dynamics are given in [6,19].

There is, however, one important aspect which received
attention by biologists [20] but, to the best of our knowledge,
has not been considered by physicists. It is the relation be-
tween FW complexity and its stability. Early papers by
ecologists [21] suggested that stability increases with com-
plexity. The reasoning was that it is easier for a new species
to invade a habitat which has been already destroyed by men
(low diversity) than to invade a tropical forest. However later
May [22] and then Pimm and Lawton [23], using mathemati-
cal models, claimed that the opposite is true—complex sys-
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tems could not be stable. At the same time field studies
seemed to confirm the earlier statement. Since that time sev-
eral attempts, based generally on mean-field approach and
differential equations (see, e.g., the review by McCann [20]),
have been proposed to solve this paradox. In particular Kon-
doh [24] suggested that complex FW systems could be stable
due to their dynamic, not static, architecture, which may cor-
respond to adaptation of species (like food preferences) to
changing conditions within the FW.

In order to see how the stability-complexity relation will
look in an agent-based (Monte Carlo) FW model, we took
the well-known Amaral-Meyer (AM) model [3]. It has been
already intensively studied [9-11], without however an in-
depth analysis of its stability. There are several reasons for
choosing this model for such investigations. It shows good
agreement with the biological data [3,11]; it has dynamic
structure, with both number of species and number of links
among them changing in time. Finally, it is simple and there-
fore allows for clear identifications of the results. We assume
here, like in the original AM model, that the species charac-
teristics do not depend neither on density of species nor on
time.

II. MODEL

The AM model consists of L levels, each containing N
niches, which could be either occupied by a species or
empty. Each species at level [ (I=0,1,...,L) preys on spe-
cies occupying the level /-1 except for species at the bottom
level. The bottom level (producers) could be plants, mi-
crobes, bacteria, etc. They are autotrophs; using detritus
(dead plant or animal matter) they produce energy used by
others. On the next levels there are consumers, feeding on
producers. They are heterotrophs—could not make their own
food. Finally on the highest level are secondary consumers,
sometimes called also top predators, who are feeding on con-
sumers. We assume here that consumers, due to their cogni-
tive constraints, foraging strategy or other limitations, could
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FIG. 1. An example of a food web in the AM model with
L=5 levels and N=4 niches. Black rectangles stand for occupied
niches. Interaction between species (niches) are represented by the
arrows.

not switch from one type of prey to another. Hence if all the
prey of a given predator vanishes, the predator must also
disappear. Therefore, apart from the bottom level (primary
producers, prey only) and the top level (top predators) every
species may be prey and predator at the same time. Each
predator has up to k links (parameter of the model) to ran-
domly chosen species at the adjacent lower level. Dynamics
of the FW is generated by two simple processes, killing and
creation. In each time step, every species at the bottom level
is removed with probability p (killing probability, next pa-
rameter of the model) and the respective links to predators in
the level 1 are cut. A predator which lost all its links in this
way is likewise eliminated and links to species from the level
2 which predate on it are removed. This process may propa-
gate up to the top level, creating an avalanche. The size of
the avalanche is determined by the total number of species
affected by removing an occupied niche at the bottom level.
As far as creation is concerned, each remaining species pro-
duces, with probability u (another parameter), a species
which could be, with equal probability, put on an empty
niche either at the same level, one level below or one level
above. The new species receives links to randomly chosen
sites at the adjacent lower level. An example of a FW in the
AM model is shown in Fig. 1.

The model has therefore the following parameters: num-
ber of levels L, number of niches N, maximum number of
links per species k, killing probability p, and creation prob-
ability u. As in previous papers [3,9-11] we assume here that
p=2u. It has been shown in those papers that the model has
critical features, namely, the distribution of the avalanches
sizes follows a power law.

In this paper we shall investigate the relation between FW
stability and its complexity. Although intuitively clear, both
notions are not defined in ecology in an unequivocal way.
Complexity is generally associated with connectance, C, de-
fined as [25,26]

w
2

C=5 (1)
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where W is the actual number of links (feeding connections)
in the network and S is the species richness, i.e., the number
of species in the FW. It should be mentioned however that
this is the most widely used but not the only definition of
connectance. For some authors [26] complexity is just con-
nectance, for others [27] it is the product of connectance and
the number of species, and for still others [24] it is composed
of two factors—high species richness and dense trophic
links—or sometimes [25] even three (S, C, and link density)
factors. Here we take the simplest definition that complexity
is identical with connectance.

Definition of stability in biological systems also creates a
problem. It is of course a rather obvious notion if a FW is
modeled by a set of differential equations, but otherwise, as
stated in [28], operational measures are not very precise. Sta-
bility is often related to cascading extinctions which result in
the disappearance of all species in a given FW [29]. McCann
[20] gave a detailed discussion of FW stability together with
presentation of several definitions and their limitations. In all
real life and model FWs fluctuations in the number of spe-
cies at different trophic levels are observed. Therefore gen-
eral stability, related to the tendency of the system to go
away from extremely low or extremely high densities, seems
natural to be adopted. In theoretical models a measure of
stability is needed and here, like in [24] the probability that
at the end of simulations the investigated FW will contain
some species, defines our index of stability or survival
chance. We are aware that such a definition depends to some
extent on the simulation details—maximum time of simula-
tions and the number of runs. After some checking we have
decided that the maximum simulation time taken by us
[2X10° Monte Carlo steps (MCSs)] is satisfactory and
stretching simulation time, even by an order of magnitude,
will produce results almost identical with those presented in
this paper. Similarly for the statistics determining the sur-
vival chance, differences between averaging over 200 (used
here) and 300 runs are negligible. On the other hand scatter
of the extinction times is huge and taking 10 or 200 runs
does not improve the situation in any way. Therefore the
plots presenting average extinction times should be taken
cum grano salis.

In our previous paper [11] we have investigated the effect
of changing N on the stability of a FW with a fixed value of
L=7, showing that an increase in N stabilizes the FW. How-
ever, the role of L has not been discussed, neither the relation
between stability and complexity. These problems are ad-
dressed in the present paper. When writing about population
dynamics the term viability is customarily used to describe
survival success. In FW literature more often stability is em-
ployed.

Intrinsic characteristics of the investigated FWs, emerging
in time and useful in understanding its features, are con-
nectance C, number of species S in the FW, and the density
of links N\ per species. To be able to compare results coming
from FWs of different sizes, we shall also use another

quantity—the reduced number of species p. The definitions
are as follows [25,26]:
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FIG. 2. Survival chance versus number of available niches N at
each level for the case of constant total number of niches, i.e.,
N-L=400. FWs with small values of N are more vulnerable.
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P=r (2)
where C!(i,j;1) is the element of the connection matrix, with
values O or 1, between species i at level / and species j at
level /-1 at time . a'(j;¢)=1 if at time ¢ the niche j at level
[ is occupied and is equal to zero if it is empty. Brackets
(-+*)5,; denote averaging over a time period Ar, which we
took equal to 2% 10* MCSs after rejecting the first 2 X 10*
MCSs, except for very small FWs, which got extinct sooner.
(-++), means averaging over runs. At the beginning of simu-
lations the FW was empty and we filled up half, randomly
chosen niches at the bottom level. Upper levels were then
consecutively populated and appropriate links were created,
according to the general rules. In general we have performed
simulations until 2 X 10® MCSs and averaged over 100 inde-
pendent runs.

III. RESULTS

In order to see how the size of the system influences the
stability, we have studied first a FW of a fixed total number
of available niches and we took N-L=400. Field data often
refer to similar sizes of FWs [1,17]. We fix the maximum
number of links at k=6 and take killing probability p=0.01,
as in the original AM model. Survival chance and the aver-
age extinction time as functions of simulation time, mea-
sured in Monte Carlo steps, are shown in Figs. 2 and 3.

As could be seen from Fig. 2, among FWs with a constant
total number of niches, L-N=const, the bigger the number of
niches N at every level is, the more stable a given food web
is. For N=40 (L=10) the food webs have no chance to
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FIG. 3. Average extinction time as a function of N for the case
of constant total number of niches, i.e., N-L=400. Log-log scale.
FWs with bigger number of niches N have longer life expectancy.

exist. This agrees with the field data [1,17], where observed
FWs had only few trophic levels but contained many species.

Similar conclusions could be drawn from the results for
the average extinction times as a function of N. FWs with a
big number of trophic levels, each of which contains only a
few niches, have very short life expectancy and die out after
several thousands of Monte Carlo steps. The average extinc-
tion time increases then with N. Thus again, if L-N=const,
FWs with bigger values of N (less trophic levels L) seem to
be more stable. However, one should handle the data in Fig.
3 with caution. As mentioned above, all the results were
averaged over 100 independent runs and although the data
for the average extinction time offer some insight in the sta-
bility of FWs and are consistent with our findings on the
survival chance shown in Fig. 2, it should be noted that the
extinction times of a given food web were scattered very
much within each series of runs.

Let us focus now on FWs with a constant number of
trophic levels L. We shall concentrate our attention on the
case L=3, which corresponds to a class of FWs most often
studied by biologists [1,2], and vary N and k to get more
insight into the stability issue.

As shown in Fig. 4, FWs containing a small number of
niches at each trophic level (less than 40) are not stable at all.
They die out very quickly with probability 1. Then there is a
narrow transition region for 40 <N <60, in which a food
web has a nonvanishing (but less than 1) chance to survive.
For N> 60 all food webs studied by us are stable and survive
until the end of simulations. Changing the maximum number
of links k between the species helps only a little in the tran-
sition region: increasing k leads to stable food webs at
slightly smaller values of N.

After showing that the number of niches, N, is more im-
portant for the stability of a FW than the number of levels L,
let us consider now the case of L=3 and investigate the
dependence of the earlier introduced quantities—C,S,p,\
on N and the maximum number of links, k, a predator may
have. In Fig. 5 on the left panel we present reduced number
of species, p, as a function of N for k=6, 8§, and 12. As could
be expected, with increasing N the reduced number of spe-
cies grows; hence the FW moves away from potentially dan-
gerous low density regime. Similarly, allowing for more
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FIG. 4. Survival chance versus number of available niches, N, at
each level for the case of constant number of trophic levels L and
several values of the maximum value, k, of links per predator.
Larger values have positive effect on stability.

links increases p, which again agrees with experimental ob-
servation that stability is increased by addition of trophic
interactions [30]. The dependence of the average number of
links A\ has a similar dependence. It is interesting however to
note that the growth of p and N saturates at a certain level
and for N> 100 the growth is quite slow. This may suggest
that there exists an optimal reduced number of species and
average density of links. Further increase in p and/or \ will
not improve the stability and therefore is not realized. Such a
situation may be called self-regulation or self-organization of
a FW. There exists therefore an optimal degree of complexity
which allows the FW to exist. If a FW cannot reach those
values, it remains in a vulnerable state and most probably
will vanish. Saturation of the average link density with in-
creasing the number of niches and relatively weak depen-
dence of the “asymptotic” values of N\ on the maximum value
of k may be an argument in favor of the statement [31,32]
that there exists an upper limit to the link density [33]. It is
also interesting that by shifting the data for p one arrives at
nearly overlapping, except for very small systems, curves for
p and \ (see Fig. 6). Figure 7 shows, on a doubly logarithmic
scale, the plot of the connectance C [Eq. (2)] versus size N of
the FW. The dependence has a power-type character,

Cx N, 3)

irrespective of the value of k. To see whether the power-type
dependence found by us agrees qualitatively with field data,
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FIG. 6. Comparison of the dependence of reduced number of
species p and number of links per species N for L=3. Data for p are
shifted upward for better comparison.

we took from Table I of Ref. [26] data for FWs characterized
by the number of links per species (L/SW in their notation)
of about 4. This roughly corresponds to our parameter k=4,
which also measures the number of links a species could
have. As seen from Fig. 7 field data also show power-type
behavior with the same exponent.

Connectance could also be related to the number of spe-
cies S. Guill and Drossel [25] investigated in detail the niche
model introduced earlier by Williams and Martinez [17] and
have found that for systems not larger than 150 species the
relation has the form

Coc S, 4)

with @=0.88, which, in turn, gives a very weak dependence
of A on S,

A oc §O12, (5)

Our estimations of « (see Fig. 8), not restricted in the size of
the FW, give similar value of «, namely, a=0.91, irrespec-
tive of the value of k. Hence, the dependence of N\ on S is
even weaker. Close resemblance of the two results coming
from different models may suggest that the relation between
C and S is an important characteristic of a FW.

For FWs with more than just three levels, we have ob-
tained nearly identical results as reported above for L=3. In
particular for L=6 the exponent « is estimated as 0.9.
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FIG. 5. Left panel: reduced number of species in the FW versus number of niches N. Right panel: average number of links per species
also as a function of N. In both cases number of levels L=3. After initial increase, later on the dependence on N is rather weak.
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FIG. 7. Dependence of the connectance on N. Doubly logarith-
mic scale. The exponent is equal to —1. Field data are for Ythan
Estuary 1 and 2, St. Marks Seagrass, St. Martin Island, and Bridge
Brook Lake and are taken from Ref. [26].

We turn now to change one more parameter playing an
important role in determining the behavior of a FW, namely,
the killing probability, p, of species from the lowest level. It
has been shown before [3,10,11] that for the properties in-
vestigated in those papers, i.e., distribution of avalanches,
pyramidlike structure of FWs, etc., the parameter p does not
play an essential role. As in the original AM paper and the
later ones [3,10,11], we keep the creation probability two
times larger than the killing probability.

Figures 9 and 10 show the average survival chance and
the average extinction time as functions of p for L=8 and
N=50 and several values of k. Again, the extinction times are
very noisy. Averaging over even 1000 runs does not help and
therefore the lines show trends rather than values of z,.. On
the other hand the survival chance does not change very
much if we average over, say, 20 instead of 100 runs. In-
creasing the killing probability destabilizes a FW rather fast,
despite the fact that we are augmenting creation probability
at the same time. If we kill too many species at the bottom
level there are simply not enough resources at that level to
support the FW pyramid. In other words, big scale extinction
avalanches [3,9,11] happen too often and the system be-
comes unstable. Increasing the maximum number of links, &,
helps us to maintain FW in an alive state, although, as seen
from Fig. 11, where the average extinction times are shifted
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k=8 X
xX k=12 x

o o001 |
L=3 0=-091
0.001 ‘
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FIG. 8. Connectance versus number of species on a doubly loga-
rithmic scale.
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FIG. 9. Survival chance versus killing probability p for L=8 and
N=50 and several values of k. Regardless of the value of k, no FW
is stable for p larger than 0.1.

along the horizontal axis, the character of extinctions re-
mains the same. Increasing the number of available niches,
N, would make the system more stable, as we have seen from
Fig. 4. For a smaller number of levels, say L=4, the depen-
dencies will look almost exactly the same. The average num-
ber of links X shows (see Fig. 12) that increasing p leads not
only to smaller survival chances and faster extinction, but it
also reduces the complexity (if measured by \) of the FW.
Those with more levels are more complex in the sense of
average species having more links to its prey. It comes from
a different distribution of links in FW with L=4 and with
L=8, as shown in Fig. 13. We see that in FWs with higher
vertical structure there are more multiconnected species than
in those with fewer levels. For stable FWs this distribution of
links depends only very weakly on the number of niches N,
as shown in Fig. 14. The number of surviving species fluc-
tuates. For L=8 and N=100 the values range from about 150
to 700, independently of the value of k. For twice smaller
FWs, i.e., for N=50, the number of surviving species is also
two times smaller.

Let us go back now to the case of a fixed total number of
niches, L-N=400. One of the measures characterizing a FW
is the length of food “trees” forming the web [11,17,34]. In
our paper, the trees are defined as follows: each predator at
the top level is the root of a new tree. Starting from the root
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FIG. 10. Average extinction time versus killing probability p for
L=8 and N=50 and several values of k.
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FIG. 11. Average extinction time versus killing probability p for
L=8 and N=50 and several values of k, where the data for smaller
values of k have been shifted. It follows that the process of disap-
pearing of a FW goes along the same steps for various values of &,
although it happens at different times.

we go along its links to the lower level and mark all species
the root is feeding on. Then we check links to find their prey
species and so on. Since different predators do not really
compete for food in the AM model, we can treat the partially
overlapping trees as independent ones. The size of a tree is
then simply the total number of species that belong to
that tree. In Fig. 15, food tree distributions at time step
T=1.5X10° MCSs of three stable food webs are shown. We
see that the FWs have different structures. If a food web is
“wide” but “short” (big N, small L), there are more small
trees than the large ones. Increasing the value of L results in
increasing the size of the largest tree. At the same time the
number of small trees decreases. Note that the more big trees
are in a FW (i.e., more species are omnivorous), the less is
the probability that killing one species at the bottom level
will start an avalanche, which could endanger the existence
of the whole FW. Thus, the slope of the tree distribution in a
food web could be used as a measure of its stability: FWs
characterized by small slopes are more stable.

IV. CONCLUSIONS

We have investigated stability of a FW within the AM
model [3] with respect to changes of its size (L,N), maxi-
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FIG. 12. Average number of links per species, \, versus killing
probability p for the same system as shown in Fig. 11.
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FIG. 13. Distribution of number of links per species normalized
by the number of levels L. FWs with few levels tend to have a more
skewed distribution—many predators have just one link and few are
multilinked. This tendency is reversed when the number of trophic
levels is growing.

mum number of links (k), and killing probability (p). We
have introduced the following quantities characterizing a
FW—its connectivity C, average number of links per species
A, which separately, or together with C, could correspond to
complexity of the FW, the average number of species S, and
corresponding to it reduced number of species p, i.e., the
actual number of species divided by maximum possible
number of species. These quantities may be used as a mea-
sure of the diversity of the FW. The model studied by us has
a dynamic architecture, the number of occupied niches, i.e.,
number of species, and a number of connections between
them are changing in time. Therefore the suggestion made by
Kondoh [24] that dynamic systems increase their stability is
supported by our findings. We have also shown that reduced
number of species and link density behave in the same way
when the number of niches increases; they grow rather rap-
idly in the transition region from an unstable to a stable FW
and stay almost constant once the stability is reached. This
implies that the model FW self-organizes itself, keeping only
a number of niches sufficient for survival and connections
among them. The values depend, but not strongly, on the
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FIG. 14. Normalized by the number of levels L, distribution of
number of links per species for several values of the number of
available niches, N, in one level. For small N food webs are un-
stable. Once stability is reached, the distribution does not change
greatly.
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FIG. 15. Distribution of food trees at time T=1.5X 10° MCSs
for three different food webs (semilogarithmic scale). The maximal
size of a tree increases with L.

parameters of the model—k and N. The process is indepen-
dent of the initial number of occupied lowest level niches.
We have also demonstrated that the number of species at the
same trophic level is more important for the stability of FWs
than the number of those levels, which may explain why
most of the experimentally studied FWs have relatively few
levels. We have also shown that the connectance, which is
one of the parameters used by biologists [17,26] to measure
complexity of a FW, declines in a power-type way with in-
creasing number of niches. This agrees, up to the value of the
exponent, with the field data taken for FW with similar val-
ues of the average number of links [26]. We have obtained,
using a different model of a FW, nearly identical results for
the relation between connectance and the number of species
as Guill and Drossel [25]. According to one of the definitions
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of biodiversity [35], it is the variability among living organ-
isms and ecological complexes. Therefore our reduced num-
ber of species could be used as a measure of biodiversity,
like it has been done in [33]. We have demonstrated that both
the average number of links per species and reduced number
of species behave in a similar way, growing with the number
of trophic levels. This also agrees with biological data
[1,2,17]. Although stable systems, like those with N=100 or
more, may seem larger than the ones observed in nature
[1,17], only a fraction of niches is occupied in a stable model
of a FW, which brings the number of living species in such a
FW close to the experimental data. If we keep the product
n-L-k constant, stability is ensured if the number of niches
and links is increased at the cost of reducing the number of
levels. Such relations are valid for not too large killing prob-
ability p. Increasing its value, say above p=0.1, reduces
drastically the differences between particular cases. Finally,
we have found a connection between the slope of the food
tree distribution of a FW and its stability: the steeper the
slope the more vulnerable the FW.

One should however remember that in the construction of
the AM model one assumption is not very realistic. A species
(predator) could feed on any species from the level below. In
reality predating range is restricted by, e.g., spatial distances
or geographic obstacles. In this respect the niche model
[17,18] is more realistic.
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