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Derivation and analysis of an ordinary differential equation mean-field model
for studying clinically recorded epilepsy dynamics
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In this paper we describe how an ordinary differential equation model of corticothalamic interactions may be
obtained from a more general system of delay differential equations. We demonstrate that transitions to
epileptic dynamics via changes in system parameters are qualitatively the same as in the original model with
delay, as well as demonstrating that the onset of epileptic activity may arise due to regions of bistability. Hence,
the model presents in one unique framework, two competing theories for the genesis of epileptiform activity.
Similarities between model transitions and clinical data are presented and we argue that statistics obtained
from, and a parameter estimation of this model may be a potential means of classifying and predicting the onset

and offset of seizure activity.
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I. INTRODUCTION

Electroencephalography (EEG) is a technique for record-
ing the brain’s electrical activity [1]. The generators of this
activity are primarily cortical nerve cell potentials. Specifi-
cally, cortical pyramidal cells receive both excitatory and
inhibitory postsynaptic potentials, which in turn generate ex-
tracellular currents that effectively sum up into a macro-
scopic signal. This summation process is made possible due
to the alignment of the apical dendrites of pyramidal cells
perpendicular to the surface of the scalp, whereas the
postsynaptic activity in dendrites of other neurons that are
tangential to the scalp are not measured.

Close correlates between the dynamical activity patterns
observed in EEG and the cognitive state of the subject have
been inferred, and consequently EEG is frequently used as a
diagnostic tool in subjects with a variety of neurological dis-
orders [1]. In the past few years, there has been increasing
interest in the use of mathematical models of macroscopic
brain activity to explain transitions between different dy-
namical states observed in EEG [2-5], with a particular fo-
cus on understanding the transition between healthy and sei-
zure states in epilepsy [4-9]. These recent works have
focussed on a mean-field description of cortico-thalamic in-
teractions, which have been implicated in detailed physi-
ological studies [10] as being crucial in determining dynami-
cal activity arising during sleep and epilepsy [11,20].

The focus of our research is a class of primary generalized
seizures, absence seizures, which typically affect children
and young adults. There is a classical waveform associated
with such seizures, namely, a 3 Hz “spike and wave” (SW)
discharge, that appears approximately synchronously across
all EEG channels. However, closer inspection of such dis-
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charges reveals a much greater array of dynamical behavior,
such as polyspike and wave, and wave-spike discharges. Ex-
amples of these rhythms are shown in Fig. 1. In addition,
there are graded seizure onsets; in some seizures the spike
evolves over a number of initial cycles of the seizure [as
presented in Figs. 1(a) and 1(c)], whereas in others the spike
appears immediately at the start of the seizure [for example,
Figs. 1(b) and 1(d)]. These suggest that a number of different
mechanisms may play a role in determining seizure dynam-
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FIG. 1. Representative examples of four different absence sei-
zures taken from a database covering 50 seizures from 20 subjects.
In panel (a) we present a “classical” single spike and wave dis-
charge of the sort often used to highlight absence epilepsy in the
literature. In panels (b), (d) we observe that seizure can evolve
dynamically, with for example the addition of an extra spike per
cycle. Panels (c) and (d) illustrate that seizures may have different
types of onset. For example, in panel (c) the seizure evolves gradu-
ally, with spikes appearing after an initial oscillation, whereas in
panel (d) spikes appear abruptly at the start of high amplitude
activity.
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ics and it is our desire to develop a unifying model that can
capture the wide variety of such transitions.

II. MODEL DEVELOPMENT

In the present paper we discuss a neural mass model,
which is based on our work in Ref. [12]. In this work, we
used a delay differential equation (DDE) to simulate dynam-
ics observed in patients with absence seizures. In the present
paper we demonstrate how this model can be improved, by
adding in a slow synaptic mechanism, leading first to a
model with distributed delay. Moreover, we compare the past
and present modelling approaches in terms of bifurcation
structures, and show the existence of various transitions to
SW dynamics.

The model we propose arises as a result of amalgamating
a number of different theoretical viewpoints: a mean-field
model to describe voltage responses in different brain re-
gions, the corticothalamic loop and a wavelike equation to
describe propagation of cortical activity. The history of the
mean-field equations we use to model activity in each popu-
lation may be traced back to the 1970s, where a number of
seminal papers laid the foundations for relating theoretical
studies to experimental and clinical data. For example, the
works of Nunez [13] and Amari [14,15] were among the first
to study brain activity from a spatially and temporally con-
tinuous viewpoint. The work of Amari may be in some sense
considered a spatially extended version of the earlier work of
Wilson and Cowan [16], who developed a temporally con-
tinuous firing rate model, whereas Nunez independently de-
rived a spatiotemporal activity model; called the “brain-wave
equation.” Related to these mathematical descriptions of
brain activity, Lopes da Silva [17] and Freeman [18], were
amongst the first to describe phenomenologically, activity in
large populations of neurons (neural masses), based upon the
results of detailed experimental studies.

The second fundamental aspect of the model, is the incor-
poration of the corticothalamic loop. This loop has been im-
plicated in a number of experimental and computational
studies to be significant in the generation of sleep-spindles
and generalized seizure activity [11,19,20]. From these stud-
ies, four main neuron types have been implicated in the gen-
eration of absence seizure activity. These are excitatory py-
ramidal cells and inhibitory interneurons in the cortex, and
inhibitory reticular neurons and excitatory specific thalamic
neurons in the thalamus.

The final important aspect of the model we consider, is
the use of a wavelike equation to describe the propagation of
cortical activity. A general formulation of this equation can
be traced back to the work of Nunez [13,21], written in
integral-differential form for an arbitrary choice of kernel
used to describe spatial connectivity within the neural tissue.
In the model we present, a specific choice of this kernel is
made, described in Ref. [22], which enables us to write down
a partial differential equation (PDE) description of the corti-
cal propagation.

A final assumption we make is that the activity arising
during absence seizures may be considered generalized to
any specific cortical region, enabling the reduction of a PDE

PHYSICAL REVIEW E 79, 021911 (2009)

Single delay
Cortex PY
,1
7/
4
L &
RE e T
o Distributed delay
Thalamus A l lB 4 /\
~
~
= ~
TC Sa
+
¢n et

FIG. 2. Schematic of the thalamocortical model. Three neural
populations (e, Re, Tc) are linked together via synaptic interactions.
Arrows represent excitatory synaptic connections, dots represent
inhibitory GABA, (label A) and GABAj (label B) receptors. A
comparision is drawn between modeling GABAj with a single de-
lay (as in our previous work [12]) or a distribution of delays k(7) (as
in the present study). We use the average of k(7), 7. as a bifurca-
tion parameter, to enable a comparison to be made.

description to an ODE model, where only spatially uniform
solutions are considered. While this is a strong assumption,
we believe that for the purposes of initial comparison with
clinical EEG traces it is appropriate to seek a minimal model
that could account for observed phenomena. Combining all
of these results in the following corticothalamic model (de-
picted schematically in Fig 2):

d
2P0 =50,
£ 3(0)= 7 4.0+ STVOT} - 22000,
ditvg(t) =z(1),
(0= @Bl V(D) + 1)+ v V0] + v V0T

- (a+pB)(1),

V) = w0,

d
d_tw(t) = aﬁ{_ VTC(I) + VTcn¢n + VTced)e(t) + V’?CReg[VRe(t)]

+ 18 et} = (a+ B)w(D),

d
5 VRl =000,

d
ZU(Z) = CVB{— VRe(t) + VRee¢e(t) + VReTcg[vTc(t)]}

—(a+ B)o(1). (1)

Each of the neural masses (e=excitatory cortical neuron,
Re=reticular nucleus, Tc=thalamocortical neurons) is de-
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TABLE 1. Parameter values for our model.

Quantity Description Values
omax Mean maximum firing rate of neural mass 250 57!

0 Threshold of membrane potential before neural mass fires 0.015V

o Standard deviation of neural mass firing 0.006 V

Y, Average ratio between pulse velocity and axon range 100 57!

a Mean voltage response inverse decay time 55571

B Mean voltage response inverse rise time 220 57!

Ve Excitatory corticocortical coupling strength 10X107* Vs
Vi Inhibitory corticocortical coupling strength —18X10™* Vs
VoTe Thalamocortical to cortex coupling strength 17X107* Vs
VTce Cortex to thalamocortical coupling strength is varied
VTen Subthalamic input strength 40X 107* Vs
Ve oRe Reticular to thalamocortical strength (GABA,) —8X10™* Vs
V%Re Reticular to thalamocortical strength (GABAp) —-8X10* Vs
VRee Cortex to reticular coupling strength 0.5X10™* Vs
VReTe Thalamocortical to reticular coupling strength 5X107* Vs
a GABA; inverse decay time is varied

b GABAj inverse rise time is varied

scribed by its average membrane potential V,(r), where a
=e, Re, Tc, and a sigmoidal function s(---) describing the
average firing rate (see Table I). In addition, cortical excita-
tory neurons are described by a field variable ¢,(f) to take
into account long-range cortico-cortical connections. In this
investigation, we shall only consider spatially uniform solu-
tions, leaving more general solutions as a next step in our
research. The parameters v, represent the weighting of in-
puts via synapses from population b onto population a. A
more detailed description of these equations and the function
s(-+) appears in Ref. [12].

Inhibition of Tc cells by Re neurons in the thalamus has
been found to be a crucial component in the development of
SW activity [19] and thus we focus our attention on model-
ing two important receptors GABA, and GABA, which me-
diate this inhibition. In our previous work [12], we incorpo-
rated a time-delayed connection 1% s[Vge(t—7)] with a
fixed delay 7 from Re to Tc populations. This served as a
straightforward mechanism to account for a difference in
time scales between GABA, and GABAp; the inhibitory
post-synaptic potential (IPSP) mediated by GABA g receptors
has a much slower time scale than those mediated by
GABA,.

To account more appropriately for this discrepancy in
time scales we introduce a firing rate ¢g(f), a slow variable
governing the IPSPs of GABAjg. We obtain this by convolv-
ing the output firing rate of the Re population with a distrib-
uted delay kernel to account for the slow mediation of
GABA; receptors

d’B(I):f k(7)s[ Vie(t = 7)]d, (2)
0

where the normalized kernel function k(z) is given by

—at _ ,—ast
k(D) = k(tsap.a,) = 292,

a—da

a>a;, ()

with a; and a, corresponding to rise and decay times, respec-
tively. Our choice is motivated by existing modeling ap-
proaches, which put emphasis on physiological GABAp
models (see [20] for single cell GABA, models, and Refs.
[5,23] for neural population dynamics). These various mod-
els (linear and nonlinear) have one thing in common: if a
sufficiently strong presynaptic input is given to activate
GABAg, the receptor responds with a current profile consist-
ing of a steep rise and a slow decay (see Fig. 5.9 of Ref. [20]
for an illustration). The double exponential function k(z) is
chosen because it mimics this particular behavior. Note that
to keep our model simple, we do not use this approach to
describe any other synapses (GABA,, excitatory), we con-
sider these faster timescales to be captured in the rise and
decay time parameters («,8) in Eq. (1).

An interesting comparison can be made with our previous
work [12], where we effectively used ¢g(1)=s[Vr(t—17)].
Our present approach turns the corticothalamic model (1)
into a distributed DDE. However, substituting the double ex-
ponential (3) as the kernel (), enables us to employ the
so-called “linear chain trick” [24] [essentially noting that
¢g(1) then satisfies a second order ODE] to reformulate our
model (1)—(3) as a set of ten ODEs, as opposed to the set of
eight DDEs in our previous investigations. It should be noted
that the particular choice of k(¢) to mimic the rise and decay
profile is not unique (see Ref. [25] for details).

It should be noted that in formulating the above equations,
a number of assumptions have been made. By only consid-
ering spatially uniform solutions, long-range cortical-cortical
connections are automatically neglected. In addition, we
have not considered directly the activity of cortical interneu-
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FIG. 3. (Color online) Two parameter analysis of our present model in the (v, 7.) plane. (a) Curves of bifurcations (H=Hopf,
SNL=saddle node of limit cycles, PD=period doubling, and NS=Neimark-Sacker) divide the plane into various dynamical regions. (I)
contains only a steady state, (IT) contains 2—3 Hz SW oscillations, (IIT) contains both steady state and SW oscillations, (IV) contains both
SW oscillations and a fast 20 Hz oscillation, (V) contains only the 20 Hz oscillation, (VI) contains an a-like 11 Hz oscillation. White regions
contain more complex dynamics, and are beyond the scope of the present paper. (b) We focus on all regions where our model supports
2-3 Hz oscillations (IL, IIL, IV). In these regions we track the onset of spikes (black lines), using a spike-detection method explained in Ref.

[9].

rons. A number of previous studies have reformulated the
activity of this population in terms of a contribution from a
negatively weighted pyramidal population (for example,
Refs. [2,4]). The justifications given therein for this have
included the synchronous firings of inhibitory and excitatory
neural populations, as well as the relatively small numbers of
interneurons and their possible contribution to EEG dynam-
ics. While we do not justify this reduction on either of these
grounds per se, having noted the qualitative agreement be-
tween model output and clinical EEG recordings, we feel it
is appropriate to pursue this reduction as we wish to consider
a minimal model whose well-defined mechanisms are suffi-
cient to explain the origin of spike and wave discharges gen-
erated in the corticothalamic network. In the conclusion we
discuss in more detail the possible consequences of the mod-
eling assumptions we have made.

III. RESULTS

We perform a numerical bifurcation analysis of the sys-
tem (1)—(3), using the continuation package MATCONT [26]
and then compare these results with our past investigations
with DDE-BIFTOOL, presented in Ref. [12,27]. To aid this
comparison, we introduce a term relating the effective delay

- +
Teff=f Tk(T)dT=u. (4)

0 ady

Our motivation for this choice is our past work with DDE-
BIFTOOL, where we used the single GABAjy delay as one of
the key parameters in continuation. Because our new model
has a delay distribution k(r), we use this average time scale
7.5 (see Fig. 2) as a bifurcation parameter. To simplify our
work, we will assume a fixed ratio a,/a;=3 (based on exist-
ing literature [23]), which ensures a one to one correspon-
dence between a; and 7. Further, the coupling vy, from

cortical excitatory neurons (e) to thalamic Tc neurons has
been used in past research [6,7,9,12] to study the onset of
SW activity, and we employ it as a second bifurcation pa-
rameter in our present study.

The results of our bifurcation analysis in the two-
dimensional (vy., 7. plane are shown in Fig. 3(a).
Branches of bifurcations divide the plane into various dy-
namical regions, of which (III, IV) are bistable. We find that
if the average delay 7. is made large enough (80—-100 ms, a
characteristic time scale for GABAj) our model supports
2-3 Hz SW activity. Interestingly, if 7.;<40 ms the model
supports 11 Hz a-like activity (region VI). Decreasing 7. to
this order of magnitude can be viewed as introducing a mis-
match between GABAergic receptors. Also, Fig. 3(b) dis-
plays the result of applying a spike-detection method [9] to
track the onset of (poly)spikes in the 2—3 Hz solutions of our
model. This clearly maps out how the specific shape of the
2-3 Hz solutions (wave, spike-wave, polyspike wave) de-
pends on the model parameters.

In Fig. 4 we present a comparison between our present
model and previous model with single delay [12]. Here panel
(a) is an expanded version of the upper quadrant of Fig. 3(b).
The bifurcation analysis performed on our previous model is
shown in Fig. 4(b). In addition, some demonstrative time
series are displayed. From Fig. 4 we find that in both models,
the parameter vr. can be used to make a transition from
a steady state region to a SW oscillation [for example, fix
7.4=0.12 s in Fig. 4(a) and increase vr.]. An increase of
(effective) delay leads to an increase of spikes in both mod-
els. Moreover, when the (effective) delay is decreased below
a certain point, no SW oscillations are generated in either
case. Note, however, that in Fig. 4(b), it is still possible to
have ~3 Hz oscillations without spikes for 7=<40 ms,
whereas in our present model, we find instead 11 Hz activity
(resembling @), which is in some sense more in keeping with
clinical data.
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FIG. 4. (Color online) Comparing transitions between different spike and wave morphologies in the present ODE model (a) and our
previous DDE model (b) [12]. Black solid curves in the top two panels indicate the points where an additional spike is added to 2—3 Hz
periodic solutions (see Fig. 1). In both models (a) and (b), SW oscillations only exist above a certain value of the (effective) delay.

In terms of modeling the onset of SW activity, our present
model captures two fundamentally different mechanisms.
First, a bifurcation from a preseizure state [such as region I
in Fig. 3(a)] into SW activity by changing a parameter. Sec-
ondly a noise-induced transition from an interictal state to an
SW attractor, in a bistable region of our model [for example,
region III in Fig. 3(a)]. In Fig. 5 we show examples of these
two transitions; in panels (al), (a2) we simulate an episode
of SW activity, by slowly ramping vy,. Alternatively, in
panel (b) we keep all model parameters fixed in a bistable
region, and observe transitions arising due to the subthalamic
noise term [¢,, see Eq. (1)]. This leads to episodes of SW
activity, the precise statistics of which may be controlled by
the levels of noise used. These mechanisms offer possible
explanations for the graded/abrupt onsets observed in panels
(c) and (d) of Fig. 1. Recall that some seizures gradually
build up a ~3 Hz oscillation and develop a spike as time
progresses, whereas others begin abruptly with spikes occur-
ring in the first cycle. It is an important feature of the present
model that both of these scenarios can be explained and
makes it worthy of further consideration.

It should be noted that small regions of bistability were
also observed in our original DDE model [12]. However, the
region of bistable activity corresponded only to oscillatory
activity (without spikes) and a steady state, meaning that this
model could not explain an abrupt transition to spike and
wave activity in the same manner (see Fig. 6).

IV. CONCLUSION

In conclusion, we have shown how a neural-mass model
can be enhanced by introducing an additional slow synaptic

-3

x 10

2s

FIG. 5. Illustrating the two mechanisms for the onset of SW
activity. In panels (al), (a2) the activity arises by varying a bifur-
cation parameter (vy.). In panel (b) bistability obtained by keep-
ing parameters fixed and injecting subthalamic noise causes a tran-
sition to a seizurelike state. Note that in the second case, the
spike is already present at the onset of oscillation. This can be
compared to human EEG data (see Fig. 1) where some SW patterns
measured during absence seizures start abruptly, whereas others
grow from a sinusoidal-like oscillation over the initial cycles of the
seizure.
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FIG. 6. (Color online) In the original DDE formulation of Ref.
[12], a small region of bistability is observed, as the Hopf bifurca-
tion in this model is subcritical for certain values of the delay 7. It
should be noted in this case, that the first spike in this system does
not occur for values of v, <2.0 X 1073. Hence there is no bistability
between a seizure state and an interictal state, only an oscillation
and a steady state. Our new formulation which permits bistability
between a seizure state and a steady state provides better agreement
with observed clinical recordings [see panel (d)] of Fig. 1, where
spikes appear abruptly at seizure onset.

term to account for IPSPs due to slow GABAj inhibition in
the thalamus. We used the linear chain trick to transform our
system from one with a distributed delay to a system of
ODEs. By considering the bifurcation structure of this
model, we have studied how a variety of different types of
dynamics, commonly observed in clinical EEG recordings
of subjects with absence seizures, can arise. We find that our
model permits different types of EEG dynamics over a wider
regions of parameter space than was the case for the system
of DDESs studies in Ref. [12]. In particular, the model permits
a region of bistability between a spike and wave attractor and
a steady-state corresponding to interictal-like dynamics. This
scenario fits in with clinical recordings [see panel (d) of
Fig. 1] that demonstrate an abrupt transition to seizure dy-
namics, with a prominent spike at seizure onset. Additionally
graded onsets are also possible [panel (c) of Fig. 1] which are
more akin to the bifurcation route through spike and wave
activity, as a suitable parameter is varied.

It should be noted that we made a number of specific
assumptions that permitted a reduction of the model equa-
tions from a PDE with delay, to an ODE without delay.
These assumptions resulted in a number of physiological
properties being discarded. For example, our model does not
include direct intracortical inhibition, rather an assumption
of synchronous firings of pyramidal cells and interneurons
enables synaptic interactions of interneurons [v,; in Eq. (1)]
to be a negatively weighted response of the firing rate of the
pyramidal population (see, for example, Ref. [4]). While this
assumption is difficult to justify physiologically, comparison

PHYSICAL REVIEW E 79, 021911 (2009)

to clinical EEG recordings (as presented) make it reasonable
in the current setting of developing a reduced model capable
of capturing a wide variety of EEG dynamics. It will be
desirable in future work to compare the output of the present
model with a model which directly includes a population of
inhibitory interneurons. We might speculate that adding such
a population could create additional limit cycles in the sys-
tem, due to the interaction between pyramidal cells and in-
hibitory cells. This raises the possibility of purely cortical
spike and wave activity, as has been observed in athalamic
cats [28] and studied in computational models [29]. We
should point out that such activity is not believed to play a
role in the types of typical absence seizures in humans that
we consider in this work. The inclusion of populations of
inhibitory interneurons in a purely cortical model has been
considered in Ref. [3] and the relationship to some nonsei-
zure EEG activity, for example, the o thythm, was explored.
A model of this type has also been considered to study the
effects of anaesthesia on human EEG [31].

There are a number of advantages to considering an ODE
formulation of a neural-mass model relative to the previously
considered DDE description. For example, the level of sys-
tem complexity is greatly reduced. In a DDE framework,
even with a single fixed delay, the phase space of system
becomes infinite, making rigorous analysis difficult. A fur-
ther important application of this research is the linking of
model predictions to clinical data. One way that this could be
achieved would be the fitting of model parameters from the
data. In the case of DDEs, robust techniques do not exist and
only “brute force” methods based on large numbers of simu-
lations may be used for estimation in this case. On the other
hand, a number of robust methods have been developed for
the fitting of parameters of ODE models. One such method,
Potter’s wheel) [30], provides a user-friendly interface for
obtaining estimates of parameters, as well as estimates of
goodness of fit. Our work in this area will be extended to
explore the possibility of model predictions being used to
develop schemes for the early detection and prediction of
seizures. For example, it may be possible to track changes in
model parameters estimated from clinical data in this manner
described above and use these as a warning. Such an ap-
proach provides an exciting alternative approach to existing
methods of seizure prediction based purely on data analysis
techniques [32].
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