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In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the
ultrasound field using a shell model of the bacteria, following an approach developed previously �P. V. Zinin et
al., Phys. Rev. E 72, 61907 �2005��. Within the shell model, the motion of the cell in an ultrasonic field is
determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surround-
ing viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological
cell: �a� the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic
properties of the shell the viscosities of all components of the system, �b� for dipole quadrupole oscillations the
cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA,
�c� the relative change in the area has a maximum at frequency fK� 1

2�
�KA / ��a3�, where a is the cell’s radius

and � is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to
rupture small bacteria such as E. coli in which the quality factor of natural vibrations is less than 1 �Q�1�. For
bacteria with high value quality factors �Q�1�, the area deformation has a strong peak near a resonance
frequency fK; however, the value of the deformation near the resonance frequency is not high enough to
produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for
describing the deformation of a biological cell under any arbitrary, external periodic force including radiation
forces unduced by acoustical �acoustical levitation� or optical waves �optical tweezers�.

DOI: 10.1103/PhysRevE.79.021910 PACS number�s�: 43.80.�p, 87.10.�e, 87.85.J�

I. INTRODUCTION

The frequencies of the normal modes of vibration for a
spherical virus particle were estimated by Ford in 2003 �1�.
Subsequent theoretical studies �2–4� led to the successful
detection of the normal oscillations for low-frequency vibra-
tional modes of bacteriophage M13 in water by Raman spec-
troscopy �5�. It was also demonstrated that by using a visible
femtosecond laser, it is feasible to inactivate viruses such as
the bacteriophage M13 through impulsive stimulated Raman
scattering �6�.

Normal vibrations of bacteria have also been considered
recently �7�. Theoretical calculations indicate that high-
quality resonances are possible for several types of bacteria
that have radii greater than 5 �m. The calculations also show
that it is more likely that Gram positive bacteria would have
resonances than Gram negative bacteria because the cell wall
�shell� of the Gram positive bacteria is much stiffer than that
of Gram negative bacteria �7�. The frequency of the natural
oscillations of bacteria are in the MHz frequency range and
therefore such oscillations cannot be detected by Raman or
Brillouin scattering �8�. Despite the fact that the quality fac-
tor for specific types of bacteria are relatively high, these
resonances have not been readily observed in biological cell
experiments �7�. Resonance oscillations of the cells were ob-
served by Miller who imaged standing wave �high-quality
resonance oscillation� in the cell wall of algae in a 1 MHz
ultrasonic wave �9�. An explanation of why mechanical reso-
nances of cells are difficult to excite by a plane acoustic
wave was provided by Ackerman �10,11�. For drops, this
problem was addressed by Marston and Apfel �12,13�. They
found that the sound scattering cross section of the cells and
drops at the frequency of the shape resonance was fairly

small. For instance, for a D. carota cell the wavelength, �, of
the sound wave in water at the resonance frequency was
estimated to be 1.67 mm �7�. This is 55 times greater than
the radius of the D. carota cell: 30 �m. Since the cross sec-
tion of the sound scattering by a small particle such as a
bacterium is proportional to the fourth power of the ratio
�a /��4, the effect of the sound wave on the bacteria at the
frequency of the shape resonance is negligible. Marston and
Apfel proposed to use modulated acoustic radiation pressure
for efficient excitation of the quadrupole resonance of drops
�13�. In their experiments, the acoustic radiation force in the
field of standing ultrasonic wave was modulated in a such
way that the wavelength of the carrier wave was close to the
radius of the drop and the frequency of modulation was close
to the frequency of the quadrupole surface resonance of the
drop. Ackerman predicted that mechanical resonances of
cells could be excited in the presence of microbubbles �14�.
His idea was to excite shape vibrations of the red blood cell
by an external force that �a� acts with frequency close to the
resonance frequency of the cell and �b� that is uniform at the
length comparable with the size of the cell �14�. A small
stable bubble oscillating near a cell �at the resonance fre-
quency of cell� may be a source of such excitation. The field
generated by such a microbubble in acoustic wave decays
with the distance from the bubble. The aim of this work is
twofold: �a� to investigate possible biological effects in bac-
teria produced by microbubbles oscillating in the vicinity of
a bacterium in the ultrasonic field and �b� to investigate the
possibility of excitation of the resonance vibration in a bac-
terium by vibration microbubble. To achieve these goals, we
develop a theoretical model of the interaction of mi-
crobubbles with bacteria in the ultrasound field. The model
can be used for �a� studying effects of the mechanical reso-
nances of bacteria �tension and deformation in the bacteria
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shell� in the vicinity of bubbles or ultrasound contrast agents
in the surrounding liquid, �b� investigating the possibility of
cell disruption at resonance frequency, and �c� understanding
the effect of resonances on sonoporation in the ultrasound
field relating the area deformation in the ultrasound field and
enlarged diameter of pores in the cell’s shells �membranes�.

II. MODEL

Modeling of the sound interaction with biological cells
includes four theoretical approaches: �a� theory of sound
scattering by liquid viscous drops �15,16�, �b� theory of natu-
ral oscillations of viscous drops �17�, �c� theory of shells and
plates �18,19�, and �d� theory of elasticity of biological mem-
branes �20,21�. To describe the viscoelastic response of the
cell to the sound field generated by a vibrating microbubble
we will use the “shell model” of a cell �Fig. 1� described in
detail elsewhere �7,22�. The shell model of the cell was suc-
cessfully applied to analyze mechanisms of sound attenua-
tion in blood and in erythrocyte suspensions �22�. A similar
model was used for description of shape oscillations of drops
in the presence of surfactants �23,24� and for modeling the
recovery of nonadherent cells after micropipette extension
�25�. Within the shell model, a bacterium is assumed to have
a spherical shape of radius a �Fig. 2�. A spherical shape of
the cell is assumed for two reasons. First, it is possible to
obtain an analytical solution for spherical objects �26�. Sec-
ond, many bacteria indeed have a spherical shape �cocci�.
The cellular shell does not have uniform thickness �21�, it is
a stratified system which is composed of at least three layers
differing in mechanical properties: bilipid membrane, exter-
nal shell, and internal polymer network. Each layer makes a
unique contribution to the resistance of the shell undergoing
different types of deformation. However, for the cells con-
sidered in this study, the thickness of the shell h is much less
than the characteristic size of the cell a: h	a. For thin shells
the equations of motion include the total values of the inter-
nal forces distributed over the thickness of the shell �19�.
Within such an approximation the flexural moments and the
intersecting stresses in the membrane may be neglected �19�.
Within the shell model, the motion of the cell is composed of

three components: the motions of the internal fluid, and the
surrounding fluid, and the deformation of cell shell �22�.

A. Wave equations

The fluid within and outside the cell is characterized by a
density �, a velocity of sound c, a compressional or bulk
viscosity 
, and a shear viscosity �. The values correspond-
ing to the internal fluid will be designated by the subscript i
and the values associated with the external fluid by o. The
motion of the fluids is described by the particle velocity
fields Vi and Vo and the pressures pi and po, which are de-
termined by a standard system of equations consisting of the
equation of continuity, the Navier-Stokes equation and the
linearized equation of state �27�. Following linear acoustic
assumptions, we assume that perturbation of the fluid density
�� and pressure p� caused by cell vibrations are small in
comparison with static values of the density � and pressure
p: ptotal= p+ p�; �total=�+��; p�	 p; ��	�. In this approach,
the equation of continuity can be written as �15�

���

�t
+ � div�V� � = 0, �1�

the Navier-Stokes equation as

�
�V�

�t
= − grad�p�� + ��V� + �
 + �/3�grad div�V� � , �2�

where � is the Laplacian, t is the time and the linearized
equation of state is

p� = c2��. �3�
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FIG. 1. Stresses on the element of the spherical shell in the
spherical coordinates �r ,
 ,��.
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FIG. 2. �Color online� Diagram of the interaction of a vibrating
bubble with bacteria in ultrasound field. Following notations were
introduced in the text and shown in the figure: xyz are Cartesian
coordinates; 
 is the zenith angle in the spherical coordinate system;
a is the radius of the cell; Ro is the equilibrium radius of the bubble;
L is the distance between center of the cell �O� and center of the
bubble �Q�; P is a point on the cell surface; R is the distance
between center of the bubble and point P; ko is the wave vector of
the incident plane sound wave; c and � are sound velocity and
viscosity of the corresponding liquids.
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The velocity field in the fluid may be represented as a super-
position of two parts: potential part described by a scalar

field �, and vortical part described by a vector field A�

�15,16,27�

V� = − grad � + rot A� . �4�

Solutions for the potentials �i and �o are sought in the
form of the diverging and standing spherical waves and for

Ai� and Ao� in the form of viscous shear waves, which expo-
nentially attenuate on both sides of the shell due to viscous
dissipation. Substituting Eq. �4� into Eqs. �1�–�3�, the wave
equations can be expressed as

�� + k2�� = 0, �5�

�� + �2�A� = 0, �6�

where k=� /c, �=��i��� /�, and � is the angular frequency.
We introduce a system of spherical coordinates r, 
 and �;

with the origin at the center of the shell �Fig. 1�. The analysis
of a shell of an arbitrary shape poses considerable math-
ematical difficulties; therefore, we limit the work in this ini-
tial study to the vibrations of a spherical shell. The Vr and V


components of the vector velocity V� can be written in the
spherical coordinate system as

Vr = −
��

�r
+

1

r
�
A , �7�

V
 = −
1

r

��

�

−

1

r

��rA�
�r

, �8�

where

�
A =
1

sin 


�

�

�sin 
A� . �9�

B. Boundary value problem

In the thin shell approximation, the cell wall is considered
as an infinitely thin elastic layer. The boundary conditions
evaluated at r=a include the kinematic conditions, the con-
tinuity of the velocities and the total stress balance
�17,22,24�. It is assumed that both surfaces of the shell move
at the same velocity, which is the velocity of the shell itself:

�V� i�r=a = �V� o�r=a =
�W�

�t
�10�

or

Vr
o = Vr

i , V

o = V


i , �11�

where W is the shell displacement. The radii of curvature of
the cell’s shell are much larger than the thickness of the
membrane structure �h /a	1�. Due to the small thickness of
the shell, the equation of motion of the shell can be replaced
by the equilibrium equations �Fig. 1�. The equations of me-
chanical equilibrium for an element for this spherical shell
may be expressed in the following form �19�:

�rr
o − �rr

i − �T


R


+
T�

R�
	 = 0, �12�

�
r
o − �
r

i +
1

a

 �T


�

+ cot 
�T
 − T��� = 0, �13�

where T
 ,T� are the normal tensions in the shell and R
 ,R�

are the local radii of curvature. The components of the tensor
of viscous stress acting on the shell on part of the fluid
�rr

o ,�rr
i ,�
r

o ,�
r
i have the following forms �15�:

�rr = 
− p� + 2�
�Vr

�r
+ �
 −

2

3
�	div V��

r=a
, �14�

�
r = �
1

a

�Vr

�

+

�V


�r
−

V


a
�

r=a
. �15�

Equations �12� and �13� must be supplemented by relation-
ships between the deformations and the internal forces in the
shell. The equations of motion are written in an instanta-
neous, local system of coordinates associated with the per-
turbed surface; therefore, its radii of curvature R depends on
the relative movement of the shell W �V=�W /�t�. Primarily
two forces resist deformation of the shell of the cell: constant
tension To and the force of surface elasticity. The resistance
to the change in the surface area is characterized by the area
compression modulus KA and the resistance to the shear de-
formation by modulus � �20,21�. The relationship between
the tensions T
 ,T� and the strains e

 and e�� for a thin
spherical shell have the following form �21,28�:

T
 = KA�e

 + e��� + ��e

 − e��� + To, �16�

T� = KA�e

 + e��� − ��e

 − e��� + To. �17�

Here �e

+e���=eS is the relative change in the area of the
element of the surface. For bacteria, the moduli � and KA are
similar in magnitude �20,29�. For cells without walls, the
surface shear modulus is smaller than KA: �	KA, by many
orders �21�. The strains are expressed in terms of the dis-
placement Wr and W
:

e

 =
1

a
�Wr +

�W


�

	 , �18�

e�� =
1

a
�Wr + W
 cot 
� . �19�

The radii of curvature of a perturbed spherical shell are ex-
pressed as

1

R


=
1

a
�1 −

Wr

a
−

1

a

�2Wr

�
2 	 , �20�

1

R�

=
1

a
�1 −

Wr

a
−

1

a
cot 


�Wr

�

	 . �21�

Using Eqs. �14�–�21�, we can write the equations of motion
of the shell in the following form:
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�rr
o − �rr

i +
To

a2�2Wr + �


�Wr

�

	 −

2KA

a2 �2Wr + �
W
� = 0,

�22�

�
r
o − �
r

i +
KA

a2

�

�

�2Wr + �
W
� +

�

a2�2W
 +
�

�

�
W
	 = 0,

�23�

where

�
W =
1

sin 


�

�

�sin 
W� .

The above equations determine the dynamic conditions be-
tween the motion of the shell and that of interior and sur-
rounding fluids.

C. Scattering of the sound waves by a cell

To find the acoustic field scattered by the bacteria, we
represent the incident wave as a solution of the wave equa-
tion in spherical coordinates with its origin at the particle
center. For simplicity, we consider only oscillations possess-
ing axial symmetry. For the case of axial symmetry, equa-
tions �5� and �6� are solved in terms of series expansions of
spherical wave functions. The acoustic field outside of the
cell is a superposition of the incident field and the scattered
field �15�

�o = �inc + �s, �24�

where the incident wave can be represented as a spherical
wave decomposition

�inc = �
n=0

�

Enjn�kor�Pn�cos 
�e−i�t, �25�

where Pn�cos 
� are the Legendre polynomials �30� and
jn�kr� are the spherical Bessel functions �30�. In this study,
we only consider the excitation of the cell vibration by
acoustic field. However, vibrations of cell can also be effec-
tively excited by other means such as acoustic radiation force
�13,31� or an optical radiation force in the focus of the laser
beam �32�. Coefficient En is determined from the equation
for spherical wave decomposition of the incident wave. For a
plane sound wave the coefficient En has the form �33�

En =
1

�
�2Ico

�o
in�2n + 1� ,

where I is the sound intensity. The expression for En in the
modulated acoustical filed can be found elsewhere �12,13�.
The response of the cell to an external force is determined by
a set of four undetermined coefficients An ,Bn ,Cn ,Dn. We
may write these for the surrounding fluid as follows �15,16�:

�s�r,
� = �n=0

�
Anhn�kor�Pn�cos 
�e−i�t, �26�

Ao�r,
� = �n=0

�
Cnhn��or�Pn

1�cos 
�e−i�t

= − �n=1

�
Cnhn��or�

�Pn�cos 
�
�


e−i�t, �27�

and for internal liquid

�i�r,
� = �n=0

�
Bnjn�kir�Pn�cos 
�e−i�t, �28�

Ai�r,
� = �n=0

�
Dnhn��ir�Pn

1�cos 
�e−i�t

= − �n=1

�
Dnjn��ir�

�Pn�cos 
�
�


e−i�t, �29�

where hn�kr� are the spherical Hankel function of the first

kind �30� and A is the � component of vector potential A� :

A� =Ai��.
According to Eqs. �25�–�29�, the movement of the cells in

an ultrasonic field is described by the superposition of oscil-
lations with different angular symmetry Pn�cos 
�. For each
value of n, the unknown amplitudes are linked by four linear
algebraic equations arising from the boundary conditions
�10�, �11�, �22�, and �23�.

With this linear approach, it is possible to consider the
response of the cell to ultrasound at each mode of oscillation
n. At the zeroth harmonic, the contribution of the shell to the
scattering is insignificant �KA / ��ac�	1�. Therefore, the
spherical symmetrical scattering for biological cell is not
very different from scattering for a simple drop �see Appen-
dix A�. The presence of the shell begins to be significant for
dipole oscillations.

Substituting solutions for scalar and vector potentials into
Eqs. �7� and �8� and using boundary conditions �10�, �11�,
�22�, and �23� we obtain a system of four equations for four
undetermined coefficients An ,Bn ,Cn ,Dn:

− zohn��zo�An + zijn��zi�Bn + n�n + 1�hn��o�Cn

− n�n + 1�jn��i�Dn = zojn��zo�En, �30�

− hn�zo�An + jn�zi�Bn + ��ohn���o� + hn��o��Cn

− ��i jn���i� + jn��i��Dn = jn�zo�En, �31�

�o

�*
hn�zo�An − 

 �i

�*
+

2�Kn
2

�2 − n�n + 1���� jn�zi�

− 
4�Kn
2 + �Tn

2

n�n + 1��2 − 2���zijn��zi��Bn

+ 

2
�Kn

2

�2 − n�n + 1�����i jn���i�

− 
2�Kn
2 + �Tn

2

�2 − n�n + 1���� jn��i��Dn

= −
�o

�*
jn�zo�En, �32�
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�Kn
2 + ��n

2

�2 − ��� jn�zi� − 
 2�Kn
2

n�n + 1��2 − ���zijn��zi��Bn

−
�o

�*
hn��o�Cn + 

�Kn

2 − ��n
2

�2 +
�i

�*
− �n2 + n

− 1���� jn��i� − 
�Kn
2 + ��n

2

�2 − ����i jn���i��Dn = 0,

�33�

where zi=kia, zo=koa, �i=�ia, �o=�oa. The mechanical re-
sponse of the cell to the external stimulus depends on the
relation between the frequency of sound � and characteristic
frequencies �� ,�T ,�R�K:

�Kn
2 =

n�n + 1�KA

�*a3
,

��n
2 =

�n − 1��n + 2��
�*a3

,

�Tn
2 =

�n − 1�n�n + 1��n + 2�To

�*a3
�34�

characterizing the restoring forces in the shell and normal-
ized liquid density

�* = �n + 1� � �i + n�o. �35�

The parameter

�� =
2��i − �o�

i��*a2
= 2
 �i

�*�i
2 −

�o

�*�o
2� �36�

expresses the process of mechanical relaxation due to the
viscous forces in the fluid.

As indicated by Ackerman �34�, the wavelength of the
sound waves in water, � at the frequency of mechanical reso-
nances of cell is much longer than the radius of cell �long-
wave approximation�: a /�	1. In the long-wave approxima-
tion �kia	1,koa	1� we can use the following relationship
for spherical functions for n�1:

�kia�jn��kia� � njn�kia� ,

�koa�hn��koa� � − �n + 1�hn�koa� ,

�koa�jn��koa� � njn�koa� . �37�

Then, the system �30�–�33� becomes �for n�1�

�n + 1��n
o + n�n

i + n�n + 1�An
o − n�n + 1�An

i = njn�zo�En,

�38�

− �n
o + �n

i +
1

Hn��i�
�1 − nHn��i��An

o

+
1

Jn��i�
�1 − �n + 1�Jn��i��An

i = jn�zo�En, �39�

�o�n
o − 
�i +

2�n − 1�
�n + 1�

�̃Kn
2 −

1

�n + 1�
�̃Tn

2 − n�n − 1�����n
i

−
1

Jn��i�
��̃Tn

2 Jn��i� + �2�̃Kn
2 − n�n + 1����

��1 − �n − 1�Jn��i���An
i = − �ojn�zo�En, �40�


 �n − 1�
�n + 1�

�̃Kn
2 + �̃�n

2 + �n − 1�����n
i − �oAn

o

+
1

Jn��i�
��iJn��i� + �̃Kn

2 �1 − �n − 1�Jn��i��

+ �̃�n
2 �1 − �n + 1�Jn��i��

− �1 + �n2 − 1�Jn��i�����An
i = 0, �41�

where we introduce the following notation:

�n
o = Anhn�zo�, An

o = Cnhn��o� ,

�n
i = Bnjn�zi�, An

i = Dnjn��i� , �42�

Jn��i� =
jn��o�

jn+1��i��i
, �43�

Hn��o� =
hn��o�

hn−1��o��o
�44�

and nondimensional frequencies and densities

�̃Kn
2 =

�Kn
2

�2 , �̃�n
2 =

��n
2

�2 , �̃Tn
2 =

�Tn
2

�2 , �45�

�o =
�o

�*
, �i =

�i

�*
. �46�

For n=0, boundary conditions are written in Appendix A. To
express deformation of the shell, we use the solution for �n

i

and An
i �n�0�

�n
i = �2n + 1��o

Enjn�zo�
dn���

��iJn��i� + �oHn − Hn��o�Jn��i��n�i + �n + 1��o� + �̃Kn
2 �1 − �n − 1�Jn��i���1 − �n + 2�Hn��o��

+ �̃�n
2 �1 − �n + 1�Jn��i���1 − nHn��o�� − �Tn

2 Hn��o�Jn��i� − �1 + �n2 − 1�Jn��i� − n�n + 2�Hn��o����� , �47�
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An
i = �2n + 1��o

Enjn�zo�
�n + 1�

Jn��i�
dn���

��n + 1���i − �o�Hn��o� − �Tn
2 Hn��o� − �n − 1��̃Kn

2 �1 − �n + 2�Hn��o��

− �n + 1���n
2 �1 − nHn��o�� − �n2 − 1���� . �48�

The expression for the determinant dn��� was derived elsewhere �7�:

dn��� = dD
n ��� + �̃Kn

2 dC
n ��� , �49�

where

dD
n ��� = �1 − �̃Tn

2 ���oHn��o� + �iJn��i� − ��� − ��2n + 1��iJn��i� − ��n�n + 2����2n + 1��oHn��o� + ���n2 − 1�� , �50�

dC
n ��� = �1 − �̃Tn

2 ��1 + �� − 4�̃�n
2 − �iJn��i���n − 1�2 + ��n + 1�2� − �oHn��o���n + 2�2 + �n�n + 1��

− 2����n − 1��n + 2� − �n�n + 1�� , �51�

where

� =
��n

2

�Kn
2 . �52�

Every partial term describing the nth mode of oscillations
contains, except for the Legendre polynomials, the product
of two terms; one of which �En� describes the structure of the
incident ultrasonic field, and the other which determines the
frequency dependence of the mechanical response of the cell
to an external stimulus. The derivation of the analytical so-
lutions for �n

i , Eq. �47�, and An
i , Eq. �48�, is lengthy, and is

omitted for brevity. However, �n
i and An

i can be obtained by
solving the system of linear equations �38�–�41� numerically.

D. Bubble cells interaction

We limit the investigation to bacteria interaction with
stable microbubbles �“stable cavitation” �35�� oscillating in
the ultrasonic field. Deformation of the cell wall in the plane
wave is negligible for most biological cells. It is in part due
to the fact that characteristic frequencies �� ,�T ,�R ,�K of
biological cells are smaller that the frequency of the geo-
metrical resonance �a=a /c. At frequencies lower than geo-
metrical resonance, the scattering cross section is described
by Rayleigh scattering and is proportional to the �a /��4.
Therefore, the efficiency of the sound plane wave interaction
with the cell is small if �a /��	1 and the effect of the sound
wave on the bacteria at frequency of the shape resonance is
negligible. That was a reason why Marston and Apfel sug-
gested to use modulated ultrasound for studying quadrupole
surface resonance behavior of drops �12,13�. For an effective
interaction of ultrasound fields with a cell it is necessary to
create a field with nonuniformity of the same order as a cell
dimension. A powerful nonuniform ultrasound field can be
created by a small-volume radiator radiating spherical waves
in the close vicinity of the cell. Nyborg and his colleagues
used an ultrasound needle in biological experiments to gen-
erate powerful spherical acoustic waves in the close vicinity
of cells �36,37�. In biological media and liquids, the source
of such spherical waves are cavitation bubbles, oscillating in

the ultrasound field �14,38� so we consider deformation of
the cell wall in the field of an oscillating bubble with negli-
gible effect of the plane wave on the cell. The sound wave
excites the radial oscillation of a bubble at a frequency close
to the resonance oscillation of the bubble. If the bubble is
located near the cell, then the spherical wave irradiated by
the bubble is not uniform and may excite shape oscillations
of the cell. A plane sound wave excites radial vibrations of
the gas bubble and subsequently an acoustic field generated
by the gas bubble is scattered by a cell which effects defor-
mation of the cell’s membrane or wall.

Let P�a ,
 ,0� be the point of observation and Q�L ,0 ,0�
be the source point of a spherical wave excited by a bubble
�Fig. 2�. The coordinates �a ,
 ,0� and �L ,0 ,0� refer to a fixed
coordinate system whose origin is O. Let R be the distance
between points Q and P. In the long wavelength limit koRo
	1, the acoustical field irradiated by a bubble has a simple
analytical expression �27�

�inc =
VpRo

2

R
eikoR, �53�

where Vp is the oscillation velocity of the surface of bubble.
The distance R can be expressed with the distances L and a
using the cosine theorem

R = �L2 + a2 − 2La cos 
 . �54�

Using addition theorem �33� �Chap. 7� we get for eikoR /R

eikoR

R
= iko�

n=0

�

�2n + 1�hn�koL�jn�koa�Pn� cos 
� . �55�

Inserting Eq. �55� into Eq. �53� we obtain the field generated
by a bubble

�inc = ikoVpRo
2�

n=0

�

�2n + 1�hn�koL�jn�koa�Pn� cos 
� .

�56�

An expression for the oscillation velocity of the surface of
bubble Vp can be approximated from the following consid-
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erations. We represent displacement of the bubble surface, as
in the monochromatic field, as R=Ro+�Roe−i�t, where Ro is
the equilibrium radius of the bubble and �Ro is the ampli-
tude of the bubble oscillation in the incident sound wave.
Since Vp=�R /�t, then Vp=−i��Ro. An expression for the
incident field �59� has the following form:

�inc = �koRo
3�Ro

Ro
�
n=0

�

�2n + 1�hn�koL�jn�koa�Pn� cos 
� .

�57�

The oscillation of a bubble in ultrasound fields has an
nonlinear character, but at low sound intensity it may be
linear and stable �39�. In this paper, we investigate the lim-
iting case of stationary, linearly oscillating bubbles. The os-
cillation of such bubbles in ultrasound fields is given by the
well-known linear resonance curves �39,38�:

�Ro = −
pm

�oRo��2 − �bub
2 − i�R�2�

, �58�

where �R is a damping constant, pm is the amplitude of pres-
sure in incident plane wave, �bub is the resonance frequency
of bubble. For the incident plane wave, we use pm

=�2Ico�o.
For the frequency range up to 10 MHz, the linear reso-

nance radius of the bubble Ro can be determined from the
Minnaert’s formula �39� corrected for surface tension �ST:

fo =
1

2�Ro

�3�b

�o

Po + �1 −

1

3�b
	2�ST

Ro
� , �59�

where �b�1.4 is the ratio of specific heats �air� and Po
=105 Pa is the pressure in liquid under normal conditions.
Calculations conducted using Eq. �62� of the resonance ra-
dius of the bubble as a function of frequency are shown in
Fig. 3. The surface tension value ��ST=0.0725 N /cm� is
from Ref. �40�. For a range of frequencies from 20 KHz to
several MHz, the damping of the resonance oscillation of
bubble is only slightly dependent on the frequency, thus it is
possible to approximate it as a constant. The ultrasound in-

tensity determines the magnitude of the bubble displacement
in the frequency range from 20 KHz to 10 MHz.

Using Eqs. �57� and �58� we can determine the coefficient
En for a spherical wave irradiated by an oscillating bubble

En = �
�R

Ro
koRo

3�2n + 1�hn�koL� . �60�

The most significant interaction of the secondary radiation
force of the bubble on the cells is the dilatation of the shell,
because this kind of deformation may lead to cell disruption
and the formation of pores in the cell membrane. Using ex-
pressions �48� and �49�, an analytical expression can de de-
rived for the local area deformation of the bacterium shell in
the ultrasound field:

�S

S
= e

 + e�� =

1

a
�2WR + �


2W
� =
i

a�
�2Vr + �
V
� .

�61�

The expression for the 2Vr+�
V
 has a compact form

2Vr + �
V
 = − 2
��0

i �r�
�r

P0� cos 
� +
1

a
�
n=1

�

nPn� cos 
�

�
�n − 1��n
i �r� + �n + 1�An

i �r�

�
1

Jn��i�
�1 − �n − 1�Jn��i��� .

Thus, the analytical expression for the area deformation of
the cell wall is

�S

S
=

i

a2�
�
n=1

�

�oEnjn�zo�n�2n + 1�
dS

n���
dn���

Pn� cos 
� ,

�62�

where

dS
n��� = ���n + 1���i − �o� + �n − 1��o − �Tn�Hn��o�

+ �n − 1��iJn��i��1 − �2n + 1�Hn��o��

− �2��n + ���n − 1��n + 2���1 − nHn��o��� .

�63�

Replacing En in Eq. �64� we have

�S

S
= i

�R

Ro

Ro
2

a2 �koRo��
n=1

�

n�2n + 1�2jn�koa�

�hn�koL��o

dS
n���

dn���
Pn� cos 
� . �64�

III. RESULTS AND DISCUSSION

Equation �64� can be simplified using expressions for
spherical Bessel and Hankel functions for small koa and koL:
jn�koa���koa�n / �1�3� ¯ �2n+1��; hn�koLa��−i�1�3
� ¯ �2n−1�� / �koL�n+1. Thus an expression for the area

FIG. 3. �Color online� Radius of a bubble at its linear resonance
as a function of the frequency from Minnaert’s Eq. �67�.
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deformation of a cell in the field of the resonance gas bubble
has a concise form

�S

S
��,
� =

�R .

Ro

Ro
2

a2

Ro

L
�
n=1

�

n�2n + 1��o� a

L
	ndS

n���
dn���

Pn� cos 
� .

�65�

The elastic properties of the bacteria are given in Table I.
Results of the numerical calculations of the area deformation
of different types of bacteria are given in Table II. These
results are derived under the assumption that the cell moves
and is deformed by the field of an oscillating bubble of reso-
nance size. The intensity of the incident plane wave was
assumed to be constant, and the relative displacement of the
bubble was choosen as 0.5: �R /Ro=0.5. To achieve such an
amplitude of the microbubble osclillation at the resonance
frequency, a low sound intensity ��10 mW /cm2� is re-
quired. We also assume that the bubble is in contact with the
cell: L=Ro+a. With increasing n, the deformation decreases
as �a /L�n. However, if the difference in the density between
the inner and outer liquids is small then the deformations on
the dipole and quadrupole modes may be of the same order.
Therefore, we restrict our investigation to only the dipole
and quadrupole modes. For numerical calculations, the ra-
dius of the resonance of the bubble at a given frequency was
derived from Eq. �59�.

Figure 4 shows the area deformation of the B. emersonii
cell in the vicinity of an oscillating bubble as a function of

frequency for quadrupole mode �n=2�. For the quadrupole
mode the deformation of the surface area decays as �1 /L�3

for distance between the cell and bubble L. The dependence
on the angle 
 is given by Legendre polynomial P2�cos 
�
=0.25� �3 cos 2
+1�. The maximum of the deformation oc-
curs at 
=� /4, at which P2�cos � /4�=1. Our numerical cal-
culations show that the magnitude of the deformation on the
dipole oscillations �n=1� is smaller than the one for the
quadrupole mode.

The curve in Fig. 4 has a resonancelike shape with a
strong peak at frequency fmax which is close to the frequency
�K /2� �see Table II�. At low frequencies ��	�K�, the cell
does not change its area during oscillations. At these fre-
quencies the shell is subjected to only shear deformations. At
high frequencies ����K�, the influence of the surface elas-
ticity is negligible, such that it behaves as a liquid viscous
drop. According to the results presented in Table II, B. em-
ersonii cells have a high quality factor �around 15� thus the
shape of the frequency response curve �Fig. 4� is not surpris-
ing. Despite the fact that these cells might have high quality
factors, the interaction with bubble at the resonance fre-
quency should not result in visible mechanical or biological
effects. At the maximum, the area deformation does not ex-
ceed 2%. Even red blood cells are able to sustain area defor-
mations up to about 5% �21�. For the B. emersonii cell, the
modulus KA is approximately 64 N /m �Table I� and it was
estimated that the maximum surface tension that the cell wall
can sustain is 8 N /m �41�. For bacteria, the magnitude of the
area deformation they can sustain is about 9%. It has been

TABLE I. Elastic shell properties of specific bacteria yeast cells: E is the Young’s modulus

Cell
E

�MPa�
Poisson’s

ratio
Radius
��m�

Thickness
�nm� T �N/m�

Turgor pressure
�MPa�

E. colib 25 0.16 0.50 6 7.5�10−3 0.3

C.eugametosb 8 60 38 9.5

B. emersoniib 10 450 32 6.5

Yeastc 0.6 0.5 1.5–8

Yeastc KA=12.9
�N/m�

0.5 90

aReference �67�. Method: AFM.
bReference �68�. Method: gas decompression
cReference �69�. Method: AFM
dReference �70�. Method: micromanipulation.

TABLE II. Natural frequencies �2, qualities of the quadrupole vibrations Q2, maximal area deformation
�S /Smax �n=2�, and the correspondent frequency fmax calculated for different types of bacteria.

Cell type a ��m�
�2 /2�
�MHz� Q2 fmax �MHz� �S /Smax Ro /a

E. coli 0.5 4.58 0.8 4.91 0.17 1.94

B. emersonii 10 2.24 15.8 2.17 0.01 0.19

B. yeast
�AFM� 4.5 0.16 1.2 0.14 0.24 5.2

B. yeast
�micromanipulation� 4.5 2.06 6.6 1.98 0.05 0.37
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shown recently, that some bacteria can survive a 260 MPa
pressure in a shock wave for a duration of 800 ns �42�. The
main reason for such a weak effect of the vibrating bubble on
the area deformation of the cell is that at the resonance fre-
quency the radius of the bubble is not great enough to create
a strongly inhomogeneous ultrasonic field in the vicinity of
cell �Table I�. For excitation of the natural vibrations of such
cells, modulated radiation acoustical or optical force should
be employed instead. Acoustic radiation force was used for
excitation resonance oscillation of drops �12,13� and radia-
tion force of the light was used for dynamic excitations of
the bilayer vesicles �43�.

Consider behavior of a small cell, such as E. coli, in the
field of a vibrating bubble. Behavior of E. coli in the sound
wave should not have resonancelike behavior, since the qual-
ity of the natural vibrations of the E. coli cell is lower than 1
�see Table II�. Figure 5 shows the relative area deformation
of E. coli cell with the parameters taken from Table I. The
relative area deformation of E. coli has a maximum at the
frequency fmax which is close to the �K /2�. At the maxi-
mum, the area deformation of the 0.5 �m E. coli calculated
to be 17%. Deformation of B. emersonii, which has a rela-

tively high quality factor, is 17 times lower than that of E.
coli. A similar tendency exists for yeasts cells which have a
higher quality factor and a lower area deformation than those
of E. coli. The explanation can be drawn from Table II. The
last column in Table II shows the ratio between the radius of
the oscillating bubble Ro and the radius of the cell a at the
frequency of the mechanical resonance of the cell �K /2�. It
can be seen that the value of the area deformation of the cell
wall correlates to the ratio between the bubble radius and cell
radius Ro /a. The higher this ratio, the higher the area defor-
mation. Figure 5 shows the area deformation of E. coli with
two radii: 0.5 and 1.0 �m. The deformation of the 1.0 �m
cell at maximum is twice as high as for E. coli of 0.5 �m
radius. It is in line with correlation discussed above: the ratio
Ro /a for a 1.0 �m cell is higher than that of 0.5 cell: 2.29
and 1.94, respectively. Results for different values of the
internal and external viscosity values are shown in Fig. 6.
The increase of the internal viscosity causes a decrease of
the deformation of the cell wall. With increases in the inter-
nal viscosity, the cell behaves more like a solid particle. In-
crease of the external viscosity has a different effect on the
cell wall deformation: fivefold increases of the viscosity of
the external fluid lead to the increase of the deformation by a
factor of 2.

High amplitude thermal vibration of cells has been ob-
served previously: vibration of the red blood cells �flicker�
visible by an optical microscope has been detected by Bro-
chard and Lennon �44�. The difference between flicker and
the natural vibration of a bacteria cell is that in case of flicker
no area deformation occurs. Flicker of a red blood cell is
determined by the bending deformation of the membrane. In
the case of a spherical bacterial cell, any variation of the cell
shape leads to an area deformation. The effect of the area
deformation on cell activity is not fully understood. In this
report, we considered only the most obvious that of cell rup-
ture. Relatively high area deformation may also influence
transport processes within the cell and across the membrane.
It was found recently that some cells with a strong wall, such
as bakery yeast cells, had internal vibrations of the mem-
brane at 1 KHz �45�.

FIG. 4. �Color online� Frequency dependence of the area defor-
mation �n=2� of the B. emersonii in the vicinity of an oscillating
bubble calculated with the parameters from Table I.

FIG. 5. �Color online� Frequency dependence of area deforma-
tion of the E. coli in the vicinity of oscillating bubble calculated for
two radii of the cell with the parameters taken from Table I.

FIG. 6. �Color online� Frequency dependence of the area defor-
mation �n=2� of the E. coli in the vicinity of oscillating bubble
calculated for different internal and external viscosities.
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A direct experimental verification of the proposed theory
might be conducted in the future; however, qualitative results
have been obtained already. Some experimental studies on
the mechanical effects of oscillating microbubbles on nearby
cells have been conducted �46�. A recent study was done
using a customized high-speed camera capable of recording
128 frames with a frame rate between 1 to 25 MHz visual-
izing the interaction between oscillating microbubbles and
cells over a finite exposure period. It was reported that “a
microbubble expansion of 100% resulted in a 2.3-�m dis-
placement of the cell membrane,” sufficient to observe reso-
nances of bacterial cells. Further experiments together with
complementary theory such as that outlined in this paper are
needed to more fully understand these complex interactions.

Rigorous modeling of the interaction of sound and cavi-
tation with cells may establish the missing scientific founda-
tions for bacteria death by ultrasound. Current research sug-
gests that ultrasound is effective in killing bacteria �47–50�,
although the exact mechanisms are not well understood. At
sufficiently high acoustic power inputs, ultrasound is capable
of rupturing cells; moreover, ultrasonication is a well-
established laboratory technique of cell disruption �51�. The
calculations conducted for E. coli bacteria show that area
deformation can reach 20%. This is sufficient deformation to
rupture the cell wall.

Our simulations show that the area deformation of rela-
tively large bacteria is not high enough �several percent� to
rupture a cell wall; however, area deformation can be respon-
sible for changing the transport processes of molecule across
the cell wall. Other acoustically mediated effects are pos-
sible, which do not involve the immediate death of the cells.
Ultrasound can enhance metabolic productivity of microbial
cells in bioreactors �52� or membrane permeation �sonopora-
tion� �53�. Under specific conditions, cavitational bubbles
may cause the reversible disruption of the cell membranes
facilitating the entry of molecules into cells �54,55�, allowing
for the enhanced drug delivery and other applications
�56,57�. Ultrasound has successfully induced transfer of ge-
netic material into living animals �58� and plant cells �59�.
Further development of the theory of sound interaction with
cells could eventually foster further development and optimi-
zation of these techniques.

The following setup allows verification of our theoretical
approach. The theory fits the case of a microbubble attached
to the bacteria or to any cell with spherical shape. Mi-
crobubbles or ultrasound contrast agents should bind to bac-
terial biofilms grown on a solid substrate. It is possible if
microbubbles are targeted with ligands that bind specific re-
ceptors to the bacteria surface surface �60,61�. Ultrasound
waves can be generated by a transducer attached to the solid
substrate. Microbubbles several microns in size and possible
rupture of a cell can also be detected by optical microscope.
The imaging of vibration of the cell wall and acoustic quan-
tification of a single bubble near an isolated cell is possible
with high-speed CCD camera �46,62,63�. Since the bacteria’s
cell wall is rigid, it may be difficult to visualize movement of
the membrane in the vicinity of oscillating bubble. Other
cells can be used for visualizing cell wall movements in the
field of an oscillating microbubble. The HeLa cell is a good
candidate for such experiments. HeLa cells become spherical

during division �64� and their acoustical properties have been
characterized �65�. Moreover, the HeLa celle were derived
from cervical cancer cells, and cancer cells express a specific
set of receptors, mainly receptors that encourage angiogen-
esis. Use of an appropriate ligand should allow binding of a
microbubble to the HeLa surface. The movement of the cell
wall in the vicinity of the microbubble can be detected with
a high-speed CCD camera either with a transmission optical
microscope or using the emulated transmission configuration
described elsewhere �66�.

IV. CONCLUSIONS

In this work, we investigate the oscillations of biological
cells in a sound field generated by pulsating bubble using a
shell model of the cell following an approach outlined pre-
viously �22�. Several conclusions can be drawn from the
modeling of sound interaction with a biological cell: �a� the
characteristics of a cell’s oscillations in an ultrasonic field are
determined both by the elastic properties of the shell and the
viscosities of all components of the system, �b� for dipole
and quadrupole oscillations the cell’s shell deforms due to a
change in the shell area and this oscillation depends on the
surface area modulus KA, �c� the relative change in the area
has a maximum a frequency fK� 1

2�
�KA / ��a3�.

Using this shell model the stress and tension in the bac-
terial shells within the close vicinity of a vibrating bubble are
calculated. For bacteria with high value quality factors, the
area deformation has a strong peak near a resonance fre-
quency �K; however, the value of the deformation near the
resonance frequency is not high enough to produce sufficient
mechanical effect. Deformation of the cell wall is higher for
smaller bacteria such as E. coli. At the frequency �K, the area
deformation of E. coli with is high enough for cell rupture in
the vicinity of an oscillating microbubble.

The model described can be used for �a� studying effects
of the mechanical resonances of bacteria �tension and defor-
mation in the bacteria shell� in the vicinity of bubbles or
contrast agents in the surrounding liquid, �b� investigating
the possibility of cell disruption at resonance frequency, and
�c� understanding the effect of resonances on sonoporation in
the ultrasound field, relating the area deformation in the ul-
trasound field and enlarged diameter of pores in the cell’s
shells �membranes�. However, the formulation can be ex-
tended to describe the deformation of a biological cell under
any arbitrary, external periodic force including radiation
forces induced by acoustical �acoustical levitation� or optical
waves �optical tweezers�.

APPENDIX A

For n=0, only two boundary conditions are left ��*=�i�:

− zoh0��zo�A0 + zij0��zi�B0 = zoE0��zo� , �A1�

�o

�i
h0�zo�A0 − 
 j0�zi� − 
 4KA

�ia
3�2�zij0��zi��B0 = − E0

�A2�

since h0��zo�=−h1�zo� and j0��zi�=−j1�zi�

PAVEL V. ZININ AND JOHN S. ALLEN III PHYSICAL REVIEW E 79, 021910 �2009�

021910-10



zoh1�zo�A0 − zij1�zi�B0 = zoE0��zo� , �A3�

�o

�i
h0�zo�A0 − 
 j0�zi� − 
 4KA

�ia
3�2�zij1�zi��B0 = − E0

�A4�

since zij1�zi���zi�2 /3 and j0�zi��1, then j0�zi�
− �

4KA

�ia
3�2 �zij1�zi��1−

4KA

�ia
3�2

�2a2

3ci
2 �1−

4KA

3a�ici
2 . The last term is

small �	1� and does not depend on the frequency. Therefore,
cell’s shell does not signficantly affect the monopole oscilla-
tions of the cell in the acoustic field:

zoh1�zo�A0 − zij1�zi�B0 = zoE0��zo� , �A5�

�o

�i
h0�zo�A0 − j0�zi�B0 = − E0. �A5��

APPENDIX B

The functions Jn��i� and Hn��i� are defined as follows:

�i jn���i�
jn��i�

= −
�i jn+1��i�

jn��i�
+ n = n −

1

Jn��i�
, �B1�

�ohn���o�
hn��o�

=
�ohn−1��o�

hn��o�
− �n + 1� =

1

Hn��i�
− �n + 1� .

�B2�

These functions can be calculated using the following itera-
tive relations:

Jn+1��i� =
1

�2n + 3 − Jn��i��
, �B3�

Hn+1��o� =
1

�o
2
2n + 1 −

1

Hn��o�� , �B4�

where

H0��o� = −
i

�o
, �B5�

J0��i� =
1

1 − �i cot �i
. �B6�
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